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Abstract. Let M be an irreducible Riemannian symmetric space. The index of M is
the minimal codimension of a (nontrivial) totally geodesic submanifold of M . We prove that
the index is bounded from below by the rank of the symmetric space. We also classify the
irreducible Riemannian symmetric spaces whose index is less than or equal to 3.

1. Introduction

A submanifold † of a Riemannian manifold M is said to be totally geodesic if every
geodesic in † is also a geodesic in M . The existence and classification of totally geodesic
submanifolds are two fundamental problems in submanifold geometry. In this paper we are
considering totally geodesic submanifolds in irreducible Riemannian symmetric spaces.

The totally geodesic submanifolds in Riemannian symmetric spaces of rank one were
classified by Wolf [14] in 1963. It is remarkable that the classification of totally geodesic sub-
manifolds in Riemannian symmetric spaces of higher rank is a very complicated and essentially
unsolved problem. Élie Cartan already noticed an algebraic characterization of totally geodesic
submanifolds in terms of Lie triple systems. Although a Lie triple system is an elementary al-
gebraic object, explicit calculations with them can be tremendously complicated. Using the
Lie triple system approach, Klein obtained between 2008 and 2010 in a series of papers [6–9]
the classification of totally geodesic submanifolds in irreducible Riemannian symmetric spaces
of rank two. No complete classifications are known for totally geodesic submanifolds in irre-
ducible Riemannian symmetric spaces of rank greater than two.

A rather well-known result states that an irreducible Riemannian symmetric space which
admits a totally geodesic hypersurface must be a space of constant curvature. As far as the
authors know, the first proof of this fact was given by Iwahori [5] in 1965. In 1980, Onishchik
[12] introduced the index i.M/ of a Riemannian symmetric spaceM as the minimal codimen-
sion of a totally geodesic submanifold ofM . Onishchik gave an alternative proof for Iwahori’s
result and also classified the irreducible Riemannian symmetric spaces with index 2.
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2 Berndt and Olmos, On the index of symmetric spaces

In this paper we present a new approach to the index based on different methods. Our
first main result states:

Theorem 1.1. Let M be an irreducible Riemannian symmetric space. Then

rk.M/ � i.M/:

Thus the index is bounded from below by the rank of the symmetric space. We prove this
result by showing that for every totally geodesic submanifold † in M there exists a maximal
flat in M which intersects † and is transversal to † at a point of intersection.

Our second main result is the classification of all irreducible Riemannian symmetric
spaces M of noncompact type with i.M/ � 3. For i.M/ D 1 and i.M/ D 2 we provide
alternative proofs of the classifications by Iwahori and Onishchik, respectively. The classifi-
cation for i.M/ D 3 is new. We emphasize that, in contrast to rk.M/ 2 ¹1; 2º, the totally
geodesic submanifolds for rk.M/ D 3 are not classified yet. The classification result is:

Theorem 1.2. Let M be an irreducible Riemannian symmetric space of noncompact
type.

(1) i.M/ D 1 if and only if M is isometric to

(i) the real hyperbolic space RHk D SOo
1;k
=SOk , k � 2.

(2) i.M/ D 2 if and only if M is isometric to one of the following spaces:

(i) the complex hyperbolic space CHk D SU1;k=S.U1Uk/, k � 2;

(ii) the Grassmannian G�2 .R
kC2/ D SOo

2;k
=SO2SOk , k � 3;

(iii) the symmetric space SL3.R/=SO3.

(3) i.M/ D 3 if and only if M is isometric to one of the following spaces:

(i) the Grassmannian G�3 .R
kC3/ D SOo

3;k
=SO3SOk , k � 3;

(ii) the symmetric space G22=SO4;

(iii) the symmetric space SL3.C/=SU3.

Duality between Riemannian symmetric spaces of noncompact type and of compact type
preserves totally geodesic submanifolds. Also, if M is an irreducible Riemannian symmetric
space of compact type and OM is its Riemannian universal covering space (which is also a
Riemannian symmetric space of compact type), then i.M/ D i. OM/. Therefore Theorem 1.2
leads, via duality and covering maps, to the classification of irreducible Riemannian symmetric
spaces of compact type whose index is less than or equal to 3.

This paper is organized as follows. In Section 2 we present some preliminaries and basic
facts. In Section 3 we investigate the set of maximal flats in an irreducible Riemannian sym-
metric space M . The main result states that for every connected totally geodesic submanifold
† of M and every point p 2 † there exists a maximal flat F of M with p 2 F such that F
is transversal to † at p. This implies Theorem 1.1. In Section 4 we investigate the geometry
of Lie triple systems for which the orthogonal complement is also a Lie triple system. If one
of the two Lie triple systems is not semisimple, we establish a relation to (extrinsically) sym-
metric submanifolds of Euclidean spaces and symmetric R-spaces (which are also known as
symmetric real flag manifolds). Finally, in Section 5, we prove Theorem 1.2.
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Berndt and Olmos, On the index of symmetric spaces 3

2. Preliminaries and basic facts

For the general theory and the classification of Riemannian symmetric spaces we refer to
[4]. LetM be an n-dimensional irreducible Riemannian symmetric space of noncompact type.
As usual we writeM D G=K, whereG D I o.M/ is the connected component of the isometry
group I.M/ of M containing the identity transformation, p 2M , and K D Gp is the isotropy
group of G at p. Let g D k˚ p be the corresponding Cartan decomposition of the Lie algebra
g ofG, where k is the Lie algebra ofK. We identify the subspace p of g with the tangent space
TpM of M at p in the usual way. Let B be the Killing form of g and � the Cartan involution
on g corresponding to the Cartan decomposition g D k˚ p. Then hX; Y i D �B.X; �Y / is an
Ad.K/-invariant positive definite inner product on g. The Riemannian metric on M is, up to
homothety, induced from this inner product. Since totally geodesic submanifolds are preserved
under homotheties, we can assume that the Riemannian metric on M is the one induced by the
inner product h�; �i. We denote by r the Levi-Civita connection of M .

Let † be a connected totally geodesic submanifold of M with 1 � m D dim.†/ < n.
SinceM is homogeneous, we can assume that p 2 †. Then p0 D Tp† is a Lie triple system in
p, that is, ŒŒp0;p0�;p0� � p0. Since every connected totally geodesic submanifold of a Riemann-
ian symmetric space can be extended to a complete totally geodesic submanifold, we can also
assume that † is complete. Then the subspace g0 D Œp0;p0�˚ p0 � k ˚ p D g is a subalgebra
of g and† D G0=K 0, where G0 is the connected closed subgroup of G with Lie algebra g0 and
K 0 D G0p is the isotropy group of G0 at p. We denote by r 0 the Levi-Civita connection of †.

Since † is connected, complete and totally geodesic in M , it is also a Riemannian sym-
metric space of nonpositive sectional curvature and its de Rham decomposition is of the form
† D †0 � †1 � � � � � †d , where †0 is a (possibly 0-dimensional) Euclidean space and
†1; : : : ; †d are (possibly 0-dimensional) irreducible Riemannian symmetric spaces of non-
compact type. In particular, † is simply connected and therefore K 0 is connected. The trans-
vection group OG of † is OG D †0 �G1 � � � � �Gd , where †0 acts on itself by translations and
Gi D I o.†i / (see [15, Theorem 8.3.12]). We have † D OG= OK with OK D OGp. Note that OK is
connected since OG is connected and † is simply connected.

For g 2 G0 we denote by gj† the restriction of g to†. The maps G0 ! OG, g 7! gj† and
K 0 ! OK, g 7! gj† are local group isomorphisms. In particular, we have g0 D Og and k0 D Ok.

Let K.M/ be the Lie algebra of Killing fields on M . Every X 2 g determines a Killing
field X� on M by

X:q D X�q D
d

dt jtD0
.t 7! Exp.tX/:q/

for all q 2 M , where Exp W g ! G denotes the exponential mapping. The map g ! K.M/,
X 7! X� is a Lie algebra isomorphism and its inverse map is given by ˇ W K.M/! g D k˚p,
Z 7! .rZ/p CZp. Note that ŒX; Y �� D �ŒX�; Y �� for all X; Y 2 g.

For every vector field Y on M we denote by NY the vector field on † which is obtained
by first restricting Y to † and then projecting it orthogonally onto the tangent bundle T† of
†, that is, NYq D .Yq/

T for all q 2 †, where .�/T denotes the orthogonal projection from TM

onto T†. Since † is totally geodesic in M , we have NY 2 K.†/ for all Y 2 K.M/.
Let X 2 g. Then Y D X� 2 K.M/ and NY 2 K.†/. First assume that X 2 p. Then the

Killing field Y D X� on M is r-parallel at p and hence, since † is totally geodesic in M , the
Killing field NY on† isr 0-parallel at p. Next, assume thatX 2 k and let �; � 2 Tp†0 � p0 � p.
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4 Berndt and Olmos, On the index of symmetric spaces

Then we have

hr
0

��
p

NY ; ��pi D hr��
p
X�; ��pi D hŒ�

�; X��p; �
�
pi D hŒX; ��

�
p; �
�
pi

D hŒX; ��; �i D hX; Œ�; ��i D 0;

as Tp†0 is an abelian subspace of p. Recall that the transvection algebra Og of † is given by
Og D †0 ˚ g1 ˚ � � � ˚ gd . From the above calculations we therefore conclude:

Lemma 2.1. Let X 2 g, Y D X� the induced Killing field on M and NY the induced
Killing field on †. Then r 0 NYp C NYp 2 Og.

Roughly speaking, if we identify the Lie algebras of isometries and Killing fields as
described above, this result states that the induced Killing fields on † are in the transvection
algebra of †.

The Cartan decomposition g D k ˚ p is a reductive decomposition and therefore the
isotropy representation ofK on TpM can be naturally identified with the adjoint representation
of K on p. Note that the symmetric space M is irreducible if and only if K acts irreducibly
on p. For k 2 K, X 2 k and v 2 p we define k:v D Ad.k/:v and X:v D ŒX; v�. The orbit of
K resp. K 0 containing v is denoted by K:v resp. K 0:v.

Lemma 2.2. Let 0 ¤ v 2 p0 D Tp† � TpM D p. Then dim.K 0:v/ < dim.K:v/.

Proof. Since K 0 � K, we obviously have dim.K 0:v/ � dim.K:v/. Assume that equal-
ity holds, that is, dim.K 0:v/ D dim.K:v/. Both K and K 0 are connected since M and † are
simply connected, and thus we must have K:v D K 0:v � p0. Then the linear span of K:v is a
proper K-invariant subspace of p. This contradicts the irreducibility of the K-action on p.

The following result is well known.

Lemma 2.3. Let I be a countable set, M and Mi (i 2 I ) be smooth manifolds with
dim.Mi / < dim.M/, and fi WMi !M be smooth maps. Then

S
i2I fi .Mi / ¤M .

3. The set of maximal flats

Let r D rk.M/ be the rank of M . A maximal flat in M is an r-dimensional Euclidean
space which is embedded inM as a totally geodesic submanifold. In this section we investigate
the structure of the set of maximal flats in M .

Let F be the set of maximal flats in M containing p and let A be the set of maximal
abelian subspaces of p ' TpM . The map F ! A, F 7! TpF is an isomorphism and
therefore provides a natural identification of both sets with each other. For v 2 p we denote
by C.v/ D ¹w 2 p W Œv; w� D 0º the centralizer of v in p. A vector v 2 p is called regular if
C.v/ 2 A.

Let a 2 A and v 2 a be a regular vector. Then K:v is a principal orbit of the K-action
on p and the normal space �v.K:v/ of K:v in p is equal to a. More generally, for every w 2 p

the centralizer C.w/ is equal to the normal space �w.K:w/. Since K acts transitively on the
set A, there exists for every a0 2 A a point u 2 K:v such that a0 D �u.K:v/.
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Berndt and Olmos, On the index of symmetric spaces 5

Since K acts transitively on A we have A D K=Ka, where Ka D ¹k 2 K W k:a D aº is
the isotropy group of K at a. The isotropy group Ka is a compact subgroup of K. This equips
A (and hence F ) with the structure of a smooth manifold.

The isotropy group Kv D ¹k 2 K W k:v D vº of K at v is a normal subgroup of Ka

and Koa � Kv � Ka. The finite group W D Ka=Kv is the so-called Weyl group of a. The
Weyl group W may be regarded either as a finite subgroup (generated by reflections) of the
orthogonal group O.a/, or as a finite group acting on K:v by diffeomorphisms (not in general
by isometries, since W acts from the right on K:v). The Weyl group W acts irreducibly on a

if and only if M is irreducible.
The orbit K:v D K=Kv is a covering space of A D K=Ka and the fibers are the orbits

of W on K:v. Observe that

dim.A/ D dim.K:v/ D dim.M/ � rk.M/ D n � r:

For z 2 p we define Az WD ¹a 2 A W z 2 aº. Observe that A0 D A. The statements in
the next lemma are well known or easy to prove.

Lemma 3.1. Let z 2 p.

(1) The centralizer C.z/ is a Lie triple system in p and the corresponding totally geodesic
submanifold N z of M splits off a line in the direction of z.

(2) The image under the slice representation of .Kz/o in �z.K:z/ D C.z/ coincides with the
isotropy group Kz at p of the transvection group Gz of the symmetric space N z .

(3) Any element of Az is a maximal abelian subspace of C.z/. Conversely, any maximal
abelian subspace of C.z/ belongs to Az . In particular, the rank of N z is equal to the
rank of M .

(4) The isotropy group Kz , or equivalently .Kz/o, acts transitively on Az . Thus Az is in a
natural way a smooth manifold of dimension dim.N z/ � rk.M/ D n � dim.K:z/ � r .

(5) Let a 2 A and H1; : : : ;Hs � a be the reflection hyperplanes of the symmetries of the
Weyl group W . Define J.u/ D ¹i 2 ¹1; : : : ; sº W u 2 Hiº for u 2 a (J.u/ D ; if and
only if u is regular). Then J.u/ D J.u0/ if and only if C.u/ D C.u0/.

(6) Let Vu
a D

T
j2J.u/Hj (if J.u/ D ; then Vu

a D a). Then Vu
a is the tangent space at p

of the Euclidean factor of N z .

Remark 3.2. If a 2 Az , then the Weyl group of a, regarding a as a maximal abelian
subspace of C.z/ D TpN

z , does not act irreducibly, since N z splits off a line. So this group
does not coincide with W .

We now come to the main result of this section.

Theorem 3.3. Let M be an irreducible Riemannian symmetric space, † a connected
totally geodesic submanifold of M , and p 2 †. Then there exists a maximal flat F of M with
p 2 F such that F is transversal to † at p, that is, TpF \ Tp† D ¹0º.

Proof. Using covering maps (for compact type) and duality between symmetric spaces
of compact type and of noncompact type, we can assume that M is of noncompact type. As †
is an open part of a connected complete totally geodesic submanifold, we can also assume that
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6 Berndt and Olmos, On the index of symmetric spaces

† is complete. We continue using the notations from above. We have to prove that there exists
a maximal abelian subspace a of p such that a \ p0 D ¹0º.

Let a0 be a maximal abelian subspace of p0. For any a 2 A we have a \ p0 ¤ ¹0º if and
only if there exists k0 2 K 0 such that k0:a \ a0 ¤ ¹0º. So, for any a 2 A with a \ p0 ¤ ¹0º,
there exist z 2 a0, Qa 2 Az and k0 2 K 0 with k0: Qa D a. Let a0 2 A be a maximal abelian
subspace containing a0.

By defining u0 � z0 if and only if J.u0/ D J.z0/ we get an equivalence relation on
a0 n ¹0º. We restrict this equivalence relation to a0 n ¹0º. There are finitely many equiva-
lence classes on a0 n ¹0º, say Œz1�; : : : ; Œzs� with z1; : : : ; zs 2 a0 n ¹0º. From Lemma 3.1 (5)
we know that for every z 2 a0 n ¹0º there exists i 2 ¹1; : : : ; sº such that C.z/ D C.zi /.
Lemma 3.1 (3) then implies Az D Azi

. Let fi W K 0 �Azi
! A be the smooth map defined

by f .k0; a/ D k0:a. Then a 2 A intersects p0 nontrivially if and only if a belongs to the union
over i D 1; : : : ; s of the images of fi . But the dimension of K 0 �Azi

is in general not smaller
than the dimension of A (in order to apply Lemma 2.3 to conclude that there exists an element
of A that intersects p0 trivially). We will replace each fi by a finite number of smooth functions
g1i ; : : : ; g

d.i/
i which are defined on smooth manifoldsX1i ; : : : ; X

d.i/
i with dim.Xji / < dim.A/

and such that the image of fi coincides with the union over j D 1; : : : ; d.i/ of the images of
g
j
i . The result then follows by applying Lemma 2.3.

Let us consider the principal fibre bundle

0! K 0zi
! K 0 ! K 0=K 0zi

D K 0:zi ! 0 .i D 1; : : : ; s/:

We cover the compact manifold K 0:zi with finitely many open sets U 1i ; : : : ; U
d.i/
i such that

there exist global sections  ji W U
j
i ! K 0, j D 1; : : : ; d.i/, i D 1; : : : ; s. We define a smooth

function gji W X
j
i D U

j
i �Azi

! A by gji .u; a/ D fi . 
j
i .u/; a/. Since K 0zi

� K, it leaves
invariant the normal space �zi

.K:zi / D C.zi /. Then, by Lemma 3.1 (4), K 0zi
leaves invariant

the set Azi
. Then, with �ji D  

j
i .U

j
i /:K

0
zi

we get

fi .�
j
i �Azi

/ D g
j
i .X

j
i /:

Since �1i ; : : : ; �
d.i/
i cover K 0, we obtain that Im.fi / D

Sd.i/
jD1 Im.gji /, where Im denotes the

image of the map. Using Lemma 3.1 (4) and Lemma 2.2 we get

dim.Xji / D dim.U ji /C dim.Azi
/ D dim.K 0:zi /C dim.Azi

/

D dim.K 0:zi /C n � dim.K:zi / � r < n � r D dim.A/:

It follows that every a 2 A with a \ p0 ¤ ¹0º belongs to the union over j D 1; : : : ; d.i/ and
i D 1; : : : ; s of the images of gji W X

j
i ! A. As dim.Xji / < dim.A/, we conclude from

Lemma 2.3 that there exists a maximal abelian subspace a 2 A with a \ p0 D ¹0º.

Theorem 1.1 is a consequence of Theorem 3.3.

4. Complementary Lie triple systems and symmetric submanifolds

A submanifold S of a Euclidean space Rm is called a symmetric submanifold if for each
point q 2 S the orthogonal reflection � of Rm in the normal space �qS leaves S invariant.

Brought to you by | King's College London
Authenticated | jurgen.berndt@kcl.ac.uk author's copy

Download Date | 10/14/15 9:09 AM



Berndt and Olmos, On the index of symmetric spaces 7

Symmetric submanifolds in Euclidean spaces were classified by Ferus [3]. Examples of sym-
metric submanifolds are standard embeddings of symmetric R-spaces. An orbit of the isotropy
representation of a semisimple Riemannian symmetric space is called an R-space (or real flag
manifold), and if this orbit is in addition a symmetric space then it is called a symmetric R-
space (or symmetric real flag manifold). It turns out that these symmetric R-spaces are of
relevance in our context.

Lemma 4.1. Let M D G=K be an irreducible Riemannian symmetric space of non-
compact type with rk.M/ � 2, where G D I o.M/ and K D Gp is the isotropy group of G at
p 2 M . Let g D k ˚ p be the corresponding Cartan decomposition. Let v 2 p and assume
that the orbitK:v � p D TpM is a symmetric submanifold of the Euclidean space p. Then the
tangent space Tv.K:v/ and the normal space �p.K:v/ are Lie triple systems and the abelian
part of �p.K:v/ coincides with Rv.

Proof. Assume that the orbitN D K:v is a symmetric submanifold of p and let � be the
orthogonal reflection of p in the normal space �vN . Then we have �.N / D N , dv�.x/ D �x
for all x 2 TvN and dv�.�/ D � for all � 2 �vN . Let R be the Riemannian curvature tensor of
M at p. ThenR takes values in k (K is regarded, via the isotropy representation, as a subgroup
of SO.TpM/). Let NK be the Lie subgroup of SO.TpM/ generated byK and �.K/ D �K��1.
Then NK is not transitive on the unit sphere of TpM , since NK:v D N and rk.M/ � 2. Observe
that both R and �.R/ take values in Nk. Then, by the Simons holonomy theorem (see [10] or
[13]), �.R/ is a scalar multiple of R. However, both R and �.R/ have the same (negative)
scalar curvature, and therefore �.R/ D R (and so �.K/ D K). So we have � D dph for some
isometry h 2 I.M/. The normal space �vN coincides with the set of fixed vectors of dph
and the tangent space TvN coincides with the set of fixed vectors of dp.� ı h/, where � is the
geodesic symmetry of M at p. This shows that both �vN and TvN are Lie triple systems.

We now show that the abelian part a of �vN is spanned by v. We denote by r? the
normal connection of N and by A� the shape operator of N with respect to � 2 a. Since N is
contained in the sphere with radius kvk in p, Av is minus the identity. From Lemma 2.1 and
[1, Theorem 4.1.7] we obtain that .Kv/o acts trivially on a, and hence Rv � a. Every � 2 a

induces a unique r?-parallel and (locally defined)G-invariant normal vector field Q� ofN with
Q�p D � .

Assume that dim.a/ � 2 and let � 2 a with � … Rv. We claim that A� cannot be a
multiple of the identity. Otherwise, adding to � some scalar multiple of v we obtain a nonzero
element  2 a with A D 0. Then Q is constant on N and so N is not a full submanifold
of p, which contradicts the irreducibility of the isotropy representation of M D G=K. Thus
A� is not a multiple of the identity.

Let �1; : : : ; �g be the different eigenvalues of A� , g � 2. We may assume that �1 > 0

and put z D vC 1
�1
�. ThenK:z is a singular orbit of theK-action on p with Tz.K:z/ ¨ TvN .

If we decompose TvN orthogonally into TvN D Tz.K:z/ ˚ V , then �z.K:z/ D �vN ˚ V .
Note that �.z/ D z, dz�.x/ D �x for all x 2 TvN D Tz.K:z/ ˚ V and dz�.x/ D x for
all x 2 �vN . The first normal space of K:z coincides with the normal space, since K:z is a
full submanifold with constant principal curvatures (see [1]). Let ˛ be the second fundamental
form of K:z. Then, if x; y 2 Tz.K:z/ are arbitrary,

dz�.˛.x; y// D ˛.dz�.x/; dz�.y// D ˛.�x;�y/ D ˛.x; y/:
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8 Berndt and Olmos, On the index of symmetric spaces

This implies dz�.x/ D x for all x 2 �z.K:z/, which contradicts the fact that dz�.x/ D �x
for all x 2 V � �z.K:z/. We thus conclude that a D Rv.

Recall that a Lie triple system in p corresponds to a connected complete totally geodesic
submanifold in M and that this submanifold is a simply connected Riemannian symmetric
space of nonpositive curvature. The Lie triple system is said to be semisimple if this symmetric
space has no Euclidean factor.

Proposition 4.2. Let M D G=K be an irreducible Riemannian symmetric space of
noncompact type with rk.M/ � 2, where G D I o.M/ and K D Gp is the isotropy group
of G at p 2 M . Let g D k ˚ p be the corresponding Cartan decomposition. Assume that
p D p0 ˚ p00 decomposes orthogonally into two Lie triple systems p0;p00 � p. Then p00 is not
semisimple if and only if there exists v 2 p00 such that the orbitK:v is a symmetric submanifold
of p with Tv.K:v/ D p0 and �v.K:v/ D p00. Moreover, if p00 is not semisimple, then its abelian
part is one-dimensional.

Proof. The if-part and the final statement follow from Lemma 4.1. Conversely, assume
that p00 is not semisimple. Let a be the abelian part of p00 and 0 ¤ v 2 a. Note that Œv;p00� D ¹0º
and thus p00 � C.v/, where C.v/ is the centralizer of v in p. Since both p0 and p00 are Lie triple
systems, there exists an involutive isometry � 2 I.M/ such that �.p/ D p, dp�.x/ D �x for
all x 2 p0 and dp�.x/ D x for all x 2 p00. We have that

dp�.K:v/ D dp�.K:dp�
�1.v// D .dp�Kdp�

�1/:v D K:v:

Since the normal space �v.K:v/ coincides with C.v/ � p00, we get dp�.x/ D �x for all
x 2 Tv.K:v/. If ˛ is the second fundamental form of K:v and x; y 2 Tv.K:v/, then

dp�.˛.x; y// D ˛.dp�.x/; dp�.y// D ˛.�x;�y/ D ˛.x; y/:

So dp� is the identity when restricted to the first normal space ofK:v. SinceK acts irreducibly
on p and v ¤ 0, the orbit K:v is a full submanifold of p. Then, since K:v is a submanifold
with constant principal curvatures, the first normal space coincides with the normal space. This
implies Tv.K:v/ D p0, dp� is an extrinsic symmetry of K:v at p, and �v.K:v/ D C.v/ D p00

(see the last part of the proof of Lemma 4.1).

Remark 4.3. Let N v be the connected complete totally geodesic submanifold of M
corresponding to the Lie triple system p00 and assume that p00 is not semisimple. From the
proof of Proposition 4.2 we know that p00 D C.v/. From Lemma 3.1 (3) we obtain that
rk.N v/ D rk.M/.

Remark 4.4. Assume that the abelian part of the normal space �v.K:v/ D C.v/ of
the isotropy orbit K:v � p has dimension at least 2. Then there exists � 2 �v.K:v/ such
that K:.v C �/ is a parallel focal orbit of K:v. In particular, �v.K:v/ is properly contained in
�vC�.K:.v C �//. This is a well-known fact that can be proved, for instance, using arguments
as in the proof of Lemma 4.1. Note that if the isotropy orbit K:v, v ¤ 0, is most singular, then
the abelian part of �v.K:v/ must have dimension 1 and so must coincide with Rv.
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Berndt and Olmos, On the index of symmetric spaces 9

Remark 4.5. We recall [11, Corollary 2.8] (in the notation of the present paper): If Kv
acts irreducibly on the tangent space Tv.K:v/ of the isotropy orbitK:v, thenK:v is a symmetric
submanifold of p. We will use this result in Section 5.

Remark 4.6. If M D G=K is an n-dimensional irreducible Riemannian symmetric
space of noncompact type and of dimension n � 3, then 2 rk.M/C1 � n. In fact, any principal
isotropy orbit K:v � p has dimension m � 2 and is isoparametric. The normal space �v.K:v/
is a maximal abelian subspace of p. Let �1; : : : ; �g 2 �v.K:v/ be the curvature normals of
K:v at v (see [1]). For rk.M/ D 1 the assertion is trivial. We thus assume that rk.M/ � 2 and
hence 2 � g � m. The curvature normals generate �v.K:v/ since K:v is a full isoparametric
submanifold. Moreover, the equality g D m holds if and only if the curvature normals are
mutually perpendicular. In this caseK:v splits as a product of submanifolds, which contradicts
the irreducibility of the isotropy representation of M D G=K. Thus we have g � m � 1 and
therefore rk.M/ D dim.�v.K:v// � m � 1, which implies n D mC rk.M/ � 2 rk.M/C 1.

5. Symmetric spaces of index at most three

In this section we classify all irreducible Riemannian symmetric spaces of noncompact
type with i.M/ � 3. Let M be an irreducible Riemannian symmetric space of noncompact
type. From Theorem 1.1 we know that rk.M/ � i.M/, and therefore rk.M/ � 3 if i.M/ � 3.
For rk.M/ D 1 the totally geodesic submanifolds were classified by Wolf [14]. Recall that the
Riemannian symmetric spaces of noncompact type and with rank equal to one are

� the real hyperbolic space RHk D SOo
1;k
=SOk (k � 2),

� the complex hyperbolic space CHk D SU1;k=S.U1Uk/ (k � 2/,

� the quaternionic hyperbolic space HHk D Sp1;k=Sp1Spk (k � 2), and

� the Cayley hyperbolic plane OH 2 D F�204 =Spin9.

The following lemma follows easily from Wolf’s classification:

Lemma 5.1. i.RHk/ D 1; i.CHk/ D 2; i.HHk/ D 4; i.OH 2/ D 8 (k � 2).

We will need the following general result:

Lemma 5.2. Let M D G=K be an irreducible Riemannian symmetric space of non-
compact type with rk.M/ � 2, where G D I o.M/ and K D Gp is the isotropy group of G
at p 2 M . Let g D k ˚ p be the corresponding Cartan decomposition. Let † be a nonflat
totally geodesic submanifold of M such that p 2 †. Let G0 be the connected subgroup of G
with Lie algebra Œp0;p0� ˚ p0, where p0 D Tp† � p D TpM , and K 0 D G0p. Then the slice
representation of .K 0/o on �p† is nontrivial.

Proof. Assume that .K 0/o acts trivially on �p† and consider the orthogonal decompo-
sition TpM D Tp†˚ �p†. Let R and R0 be the Riemannian curvature tensors of M and † at
p, respectively. We define the algebraic curvature tensor NR D R0 ˚ 0 on TpM , where 0 is the
null algebraic curvature tensor on �p†. By construction, the restriction of NR to Tp† has values
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10 Berndt and Olmos, On the index of symmetric spaces

in the isotropy algebra k0 (regardingK 0 as a subgroup of SO.Tp†/ via the isotropy representa-
tion). By assumption, the slice representation of .K 0/o is trivial, and therefore NR takes values
in the full isotropy algebra k. Then, by the Simons holonomy theorem (see [10] or [13]), NR is
a scalar multiple of R. The scalar must be nonzero as R0 ¤ 0. This is a contradiction, since NR
is degenerated and R is not.

We have the following consequence of Proposition 4.2:

Lemma 5.3. Let M D G=K be an irreducible Riemannian symmetric space of non-
compact type with rk.M/ � 2, where G D I o.M/ and K D Gp is the isotropy group of G at
p 2M . Let g D k˚ p be the corresponding Cartan decomposition. Assume that p D p0˚ p00

decomposes orthogonally into two Lie triple systems p0;p00 � p. Moreover, assume that p0

is not abelian and dim.p00/ � 3. Let G0 be the connected subgroup of G with Lie algebra
g0 D Œp0;p0� ˚ p0. If G0 does not act with cohomogeneity one on M , then rk.M/ D 2 and
dim.p00/ D 3. Moreover, there exists v 2 TpM such that K:v is a symmetric submanifold of p

with Tp.K:p/ D p0 and �p.K:p/ D p00.

Proof. Let† D G0:p be the totally geodesic submanifold given by the Lie triple system
p0. Assume that G0 does not act with cohomogeneity one on M and let K 0 D G0p. Then the
slice representation of .K 0/o on p00 D �p† is not transitive on the unit sphere. According
to Lemma 5.2 this slice representation is nontrivial, which implies dim.�..K 0/o// D 1 and
dim.p00/ D 3, where � W K 0 ! O.�p†/ is the slice representation. In particular, �..K 0/o/
fixes a vector 0 ¤ v 2 p00 D �p† . Note that v is unique up to a scalar multiple. Let G00 be the
Lie subgroup ofG with Lie algebra g00 D Œp00;p00�˚p00,K 00 D G00p and†? D G00:p D G00=K 00

the totally geodesic submanifold determined by the Lie triple system p00. Since K 00 leaves †
invariant, �..K 0/o/ is an ideal of K 00. This implies that †? splits off the line corresponding to
Rv and thus rk.†?/ D 2. Therefore p00 is not semisimple. The assertion then follows from
Proposition 4.2 and Remark 4.3.

Example 5.4. We illustrate Lemma 5.3 with an example. Consider the isotropy repre-
sentation of the symmetric space M D SL3.R/=SO3. The principal orbits are 3-dimensional
since dim.M/ D 5 and rk.M/ D 2. The singular orbits are Veronese embeddings of the real
projective plane RP 2 into p Š R5, which are known to be symmetric submanifolds of R5. By
Lemma 4.1, both the tangent space p0 and the normal space p00 at a point of a focal orbit are Lie
triple systems in p. The corresponding totally geodesic submanifolds ofM are a 2-dimensional
real hyperbolic plane † D RH 2 and, perpendicular to it, a totally geodesic †? D R �RH 2.
The isometry group G0 D SL2.R/ of † acts with cohomogeneity 2 on M .

5.1. Symmetric spaces of index 1. The classification of irreducible Riemannian sym-
metric spaces M of noncompact type with i.M/ D 1 follows immediately from Theorem 1.1
and Lemma 5.1, but uses Wolf’s classification of totally geodesic submanifolds in Riemannian
symmetric spaces of rank one. We would like to give here an alternative and conceptual proof.

Theorem 5.5. Let M be an n-dimensional irreducible Riemannian symmetric space of
noncompact type, n � 2. If i.M/ D 1, then M is isometric to the real hyperbolic space
RHn D SOo1;n=SOn.
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Berndt and Olmos, On the index of symmetric spaces 11

Proof. Since every homogeneous Riemannian manifold of dimension 2 has constant
curvature, we can assume that n � 3. Since i.M/ D 1, there exists a connected complete
totally geodesic hypersurface † in M . Let p 2 †, G D I o.M/ and K D Gp. We identify K,
via the isotropy representation at p, with a compact subgroup of SO.TpM/.

If † is flat, then rk.M/ � n � 1. Since M is irreducible, this implies that the principal
orbits of K are full isoparametric submanifolds of TpM of dimension 1. This implies n D 2,
which is a contradiction. Hence we may assume that † is not flat.

Let G0 be the connected subgroup of G with Lie algebra g0 D Œp0;p0� ˚ p0, where
p0 D Tp† � p D TpM , and K 0 D G0p. Note that K 0 is connected since G0 is connected
and † is simply connected. Since �p† has dimension 1, the slice representation of K 0 on
�p† is trivial. It follows from Lemma 5.2 that rk.M/ D 1. Since both Tp† and �p† are
Lie triple systems and M is simply connected, the geodesic reflection �† of M in † is a
well-defined global isometry of M . The differential dp�† is the orthogonal reflection of the
Euclidean space p D TpM in the hyperplane Tp†. Since rk.M/ D 1, the isotropy group
K acts transitively on the unit sphere in TpM and hence on all hyperplanes in TpM . As the
orthogonal reflections in all hyperplanes of TpM generate the orthogonal group O.TpM/, it
follows that O.TpM/ � Ad.I.M/p/ and thus M has constant curvature.

5.2. Symmetric spaces of index 2. LetM be an n-dimensional irreducible Riemannian
symmetric space of noncompact type, n � 2, and assume that i.M/ D 2. For n D 2 we have
M D RH 2 D SOo1;2=SO2 and for n D 3 we have M D RH 3 D SOo1;3=SO3, which both
have i.M/ D 1. We can therefore assume that n � 4. Let † be an .n � 2/-dimensional
totally geodesic submanifold of M . We can assume that † is connected and complete. From
Theorem 1.1 we know that rk.M/ � 2. If † is flat, we have 2 D rk.M/ � n � 2 and
therefore n D 4. However, there are no 4-dimensional irreducible Riemannian symmetric
spaces M of noncompact type with rk.M/ D 2. We can therefore assume that † is not flat.
Let p 2 †, G0 be the connected subgroup of G with Lie algebra g0 D Œp0;p0� ˚ p0, where
p0 D Tp† � p D TpM , and K 0 D G0p.

If rk.M/ D 2, it follows from Lemma 5.2 that the slice representation of K 0 D .K 0/o

on �p† is nontrivial and hence transitive on the unit sphere. Therefore G0 acts on M with
cohomogeneity one and has a totally geodesic singular orbit †. The first author and Tamaru
classified in [2] the cohomogeneity one actions on irreducible Riemannian symmetric space
of noncompact type with a totally geodesic singular orbit. From this classification we obtain
that M is isometric to the noncompact Grassmannian G�2 .R

kC2/ D SOo
2;k
=SO2SOk (where

2k D n � 6 and † D G�2 .R
kC1)), or to SL3.R/=SO3 (where n D 5 and † D R �RH 2).

If rk.M/ D 1, we can use Lemma 5.1 to conclude that M is isometric to the complex
hyperbolic space CHk D SU1;k=S.U1Uk/ (where 2k D n and † D CHk�1). Altogether
this finishes the proof of Theorem 1.2 for i.M/ D 2.

Remark 5.6. Theorem 1.2 for i.M/ D 2 was proved by Onishchik [12] with differ-
ent, mainly algebraic, methods. From Theorem 1.1 we have rk.M/ � 2, and therefore one
can alternatively apply the classifications of totally geodesic submanifolds by Wolf [14] (for
rk.M/ D 1) and Klein [6–9] (for rk.M/ D 2).

5.3. Symmetric spaces of index 3. Let M be an n-dimensional irreducible Riemann-
ian symmetric space of noncompact type with i.M/ D 3. From Theorem 1.1 we know that
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12 Berndt and Olmos, On the index of symmetric spaces

rk.M/ � 3 and then Lemma 5.1 implies that rk.M/ 2 ¹2; 3º. The smallest dimension of an
irreducible Riemannian symmetric space with rk.M/ � 2 is n D 5. We can therefore assume
that n � 5.

The following lemma solves the case i.M/ D 3 when † is not semisimple.

Lemma 5.7. Let M be an n-dimensional irreducible Riemannian symmetric space of
noncompact type and † be an .n � 3/-dimensional, connected, complete, totally geodesic
submanifold of M . Assume that † is maximal in M (that is, † is not contained in a totally
geodesic submanifold N† of M with dimension n � 3 < dim. N†/ < n). If † is not semisimple,
then one of the following statements holds:

(i) M D SL4.R/=SO4 D SOo3;3=SO3SO3 and † D R � SL3.R/=SO3;

(ii) M D SOo2;3=SO2SO3 and † D R �RH 2.

Proof. Obviously we have i.M/ � 3 and therefore rk.M/ � 3 by Theorem 1.1. Let
p 2 †, G D I o.M/, K D Gp, g D k ˚ p be the corresponding Cartan decomposition and
p0 D Tp† � p. Since† is not semisimple, the abelian part a0 of p0 has dimension dim.a0/ � 1.
Let 0 ¤ v 2 a0. Then we have p0 � C.v/ D �v.K:v/. Since C.v/ is a Lie triple system (see
Lemma 3.1) and † is maximal in M , we conclude p0 D C.v/ and hence dim.K:v/ D 3. From
Remark 4.4 we see that dim.a0/ D 1. SinceK acts irreducibly on p, the orbitK:v � p is full in
p. Then K acts effectively (by isometries) on K:v. Therefore we must have 3 � dim.K/ � 6.

If dim.K/ D 6, then the classification of symmetric spaces implies M D G22=SO4 or
M D SL4.R/=SO4 D SOo3;3=SO3SO3. The orbit K:v has constant sectional curvature.
Moreover, we have dim.Kv/ D 3, which implies thatKv acts transitively on the 2-dimensional
unit sphere of Tv.K:v/. In particular, Kv acts irreducibly on Tv.K:v/. Then, by Remark 4.5,
K:v is a symmetric submanifold of p, or equivalently,K:v is an irreducible symmetricR-space.
From the classification of irreducible symmetric R-spaces (see, for instance, [1]) we obtain
that K:v D RP 3 and M D SL4.R/=SO4. The corresponding totally geodesic submanifold is
† D R � SL3.R/=SO3.

There are no irreducible Riemannian symmetric spaces of noncompact type M D G=K

with dim.K/ D 5.
If dim.K/ D 4, the classification of symmetric spaces implies

M D SOo2;3=SO2SO3 D Sp2.R/=U2;

which has rank 2 and dimension 6. This implies dim.†/ D 3. Therefore the orbit K:v is not
principal, dim.Kv/ D 1, and a principal orbit of theK-action has dimension 4. LetK:.vC�/ be
a principal orbit, where � 2 �v.K:v/ D p0. Note that such an orbit must be isoparametric. The
normal space �vC�.K:.vC�// is an abelian subspace of p. Observe that �vC�.K:.vC�// � p0.
Moreover, �vC�.K:.v C �// has codimension one in p0. This implies that † is either flat or
splits as a product of a real hyperbolic plane and a Euclidean space. However, † cannot be flat
since dim.†/ D 3 and rk.M/ D 2, and therefore † D R �RH 2.

If dim.K/ D 3, the classification of symmetric spaces implies M D SL3.R/=SO3,
which has rank 2 and dimension 5. The orbit K:v is therefore a principal orbit of the isotropy
representation, which shows that v is regular and so the normal space �v.K:v/ D p0 is abel-
ian. This means that † is a maximal flat in M . However, a maximal flat in SL3.R/=SO3
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Berndt and Olmos, On the index of symmetric spaces 13

is not a maximal totally geodesic submanifold, as it is always contained in a totally geodesic
submanifold R �RH 2 of SL3.R/=SO3.

The following lemma deals with the case when † is semisimple and the slice representa-
tion of the isotropy group of † is not transitive.

Lemma 5.8. Let M be an n-dimensional irreducible Riemannian symmetric space of
noncompact type with rk.M/ � 2 and let † be an .n � 3/-dimensional, connected, complete,
totally geodesic submanifold ofM . Assume that† is maximal inM . If† is semisimple and the
slice representation of † is not transitive on the unit sphere in �p†, p 2 †, then the following
statements hold:

(i) The fixed point set of the slice representation is one-dimensional.

(ii) The totally geodesic submanifold † is a Hermitian symmetric space.

(iii) If n � 6, the normal space �p† is a Lie triple system which is not semisimple.

Proof. Let G D I o.M/, K D Gp and g D k ˚ p be the corresponding Cartan decom-
position. Let G0 be the connected subgroup of G with Lie algebra g0 D Œp0;p0� ˚ p0, where
p0 D Tp† � p D TpM , and K 0 D G0p. According to Lemma 5.2, the slice representation
� W K 0 ! SO.�p†/ cannot be trivial. Since �.K 0/ is not transitive on the unit sphere in �p†,
it is a proper connected subgroup of SO.�p†/ ' SO3 and so �.K 0/ ' SO2. This implies (i)
since dim.�p†/ D 3.

Let † D †1 � � � � � †d be the de Rham decomposition of †. Let Gi be the connected
closed subgroup of G with Lie algebra gi D Œpi ;pi � ˚ pi , where pi D Tp†i � p D TpM ,
and Ki D Gip. The isotropy group Ki acts trivially on Tp†j for all j ¤ i . It thus follows
from Lemma 5.2 that �.Ki / is nontrivial and hence �.Ki / D �.K 0/ ' SO2. This implies that
ki D hi ˚ so2, where hi is the ideal in ki given by

hi D
®
X 2 ki W ŒX; Y � D 0 for all Y 2 �p†

¯
:

This shows that ki is not semisimple and hence †i is Hermitian symmetric. This implies (ii).
We now assume that n � 6. Then dim.†/ � 3 and hence dim.K 0/ � 2. We first consider

the case that † is irreducible, that is, d D 1. Then K 0 D K1 and dim.h1/ > 0. Let H 1 be the
connected closed subgroup of K1 with Lie algebra h1. Since H 1 is a normal subgroup of K1,
and since K1 acts irreducibly and almost effectively on Tp†, the adjoint action of H 1 on Tp†
cannot fix any nonzero vectors in Tp†. By construction, the adjoint action of H 1 fixes each
vector in �p†. This implies that �p† is a Lie triple system.

We next consider the case that † is not irreducible, that is, d � 2. Let zi ' so2 be the
center of ki and Zi ' SO2 be the connected subgroup of Ki with Lie algebra zi . Then, as
we have seen above, we have �.Zi / D �.K 0/ ' SO2 for all i D 1; : : : ; d . It is not difficult
to show that there exist nontrivial zi 2 Zi , i D 1; : : : ; d , such that �.k/ 2 SO.�p†/ is the
identity, where k D z1 � : : : � zd 2 K

0. By construction, k does not fix any nonzero vectors in
Tp†, and therefore �p† coincides with the set of vectors which are fixed by k, which implies
that �p† is a Lie triple system.

Thus we have proved that p00 D �p† is a Lie triple system of p if p0 D Tp† is semisimple
and n � 6. LetG00 be the connected closed subgroup ofG with Lie algebra g00 D Œp00;p00�˚p00

and K 00 D G00p . The orbit †? D G00:p D G00=K 00 is a totally geodesic submanifold of M with

Brought to you by | King's College London
Authenticated | jurgen.berndt@kcl.ac.uk author's copy

Download Date | 10/14/15 9:09 AM



14 Berndt and Olmos, On the index of symmetric spaces

Tp.†
?/ D �p†. Note thatK 00 is connected since†? is simply connected andG00 is connected.

The isotropy group K 00 normalizes K 0 since it leaves p0 invariant. This implies that �.K 0/ is
a normal subgroup of the restriction of K 00 to �p†. Then the one-dimensional subspace of
�p† spanned by the set of fixed vectors of �.K 0/ must be invariant under K 00 and thus be fixed
pointwise by K 00 since K 00 is connected. This shows that �p† is not semisimple.

We will now prove Theorem 1.2 for i.M/ D 3. Let M be an n-dimensional irre-
ducible Riemannian symmetric space of noncompact type with i.M/ D 3 and let † be an
.n � 3/-dimensional, connected, complete, totally geodesic submanifold of M . Let p 2 †,
G D I o.M/, K D Gp and g D k ˚ p be the corresponding Cartan decomposition. Let G0

be the connected closed subgroup of G whose Lie algebra is equal to g0 D Œp0;p0�˚ p0, where
p0 D Tp† � TpM D p, and K 0 D G0p.

From Theorem 1.1 and Lemma 5.1 we obtain rk.M/ 2 ¹2; 3º. According to Remark 4.6
we have 2 rk.M/C1 � n and therefore n � 5. There is only one irreducible Riemannian sym-
metric space of noncompact type whose rank is 2 and dimension is 5, namely SL3.R/=SO3,
which has index 2 by part (2) of Theorem 1.2. It follows that n � 6.

Recall that † is a simply connected Riemannian symmetric space of nonpositive cur-
vature. Let † D †0 � †1 � � � � � †d be the de Rham decomposition of †, where †0 is a
(possibly 0-dimensional) Euclidean space and †1; : : : ; †d are (possibly 0-dimensional) irre-
ducible Riemannian symmetric spaces of noncompact type.

We first assume that dim.†0/ > 0, that is, † is not semisimple. Then, by Lemma 5.7,
M is isometric either to SL4.R/=SO4 D SOo3;3=SO3SO3 and † D R � SL3.R/=SO3, or
to SOo2;3=SO2SO3 and † D R � RH 2. However, by part (2) of Theorem 1.2, the index of
SOo2;3=SO2SO3 is 2, and therefore

M D SL4.R/=SO4 D SO
o
3;3=SO3SO3 and † D R � SL3.R/=SO3:

We now assume that dim.†0/ D 0, that is, † is semisimple. We first assume that
the slice representation of K 0 on �p† is not transitive on the unit sphere. From Lemma 5.8
we see that the 3-dimensional normal space p00 D �p† is a Lie triple system in p which
splits off a one-dimensional abelian factor a00. The corresponding connected complete to-
tally geodesic submanifold †00 of M is therefore isometric to R � RH 2. Let 0 ¤ v 2 a00.
From Proposition 4.2 we obtain that the isotropy orbit K:v � p0 is a symmetric submani-
fold of p with Tv.K:v/ D p0 and �v.K:v/ D p00. From Lemma 5.8 we know that † is
Hermitian symmetric. Altogether this implies that K:v is an irreducible symmetric R-space
which is a Hermitian symmetric space. Since we are in the noncompact case, this means that
K:v is either an irreducible symmetric R-space of Hermitian type, or an irreducible symmet-
ric R-space of non-Hermitian type whose universal covering space is Hermitian symmetric.
The classification of symmetric R-spaces can for instance be found in the appendix of [1]. It
follows from this list that there is no irreducible symmetric R-space of Hermitian type whose
codimension is equal to 3. The symmetric R-spaces of non-Hermitian type whose universal
covering space is Hermitian symmetric are

SO3=S.O1O2/ � SL3.R/=SO3 (which has codimension 3),

SO4=S.O2O2/ � SL4.R/=SO4 (which has codimension 5),

.S2 � S2/=Z2 � SO
o
3;3=SO3SO3 (which has codimension 5).
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However, by Theorem 1.2 (2), the index of SL3.R/=SO3 is 2. Altogether it now follows that
the slice representation of K 0 on �p† is transitive on the unit sphere. This implies that † is a
totally geodesic singular orbit of a cohomogeneity one action onM . Such singular orbits were
classified by the first author and Tamaru in [2]. From their classification one can easily find
those for which the codimension of the singular orbit is 3 and rk.M/ 2 ¹2; 3º, namely

† D SL3.R/=SO3 �M D G
2
2=SO4;

† D SOo3;k�1=SO3SOk�1 �M D SO
o
3;k=SO3SOk .k � 3/;

† D R � SL3.R/=SO3 �M D SL4.R/=SO4 D SO
o
3;3=SO3SO3;

† D SL3.R/=SO3 �M D SL3.C/=SU3:

This concludes the proof of Theorem 1.2 for i.M/ D 3.

Remark 5.9. The normal space of † D SL3.R/=SO3 � M D G22=SO4 is not a Lie
triple system. Therefore the assumption in Lemma 5.8 that the slice representation of † is not
transitive on the unit sphere in �p†, p 2 †, is essential.

Remark 5.10. Onishchik calculated in [12] the index of some symmetric spaces. Those
with i.M/ � 4 in his list are:

M D SU2;k=S.U2Uk/; k � 3: i.M/ D 4I

M D SU �6 =Sp3: i.M/ D 6I

M D Sp2;2=Sp2Sp2: i.M/ D 6I

M D Sp2;k=Sp2Spk; k � 3: i.M/ D 8I

M D E�266 =F4: i.M/ D 10I

M D E�146 =Spin10U1: i.M/ D 12:

Remark 5.11. Consider the symmetric space M D G=K D SLkC1.R/=SOkC1 for
k � 2, which has rk.M/ D k and n D dim.M/ D k.kC3/=2. Let 0 ¤ v 2 p Š Rn. The orbit
K:v has minimal dimension in p if and only if K:v is congruent to the Veronese embedding of
the real projective space RP k into Rn (see, e.g., [11, Lemma 8.1]). This RP k is an irreducible
symmetric R-space of non-Hermitian type and therefore a symmetric submanifold of p. It
follows from Lemma 4.1 that both Tv.K:v/ and �v.K:v/ are Lie triple systems in p. Let † be
the totally geodesic submanifold in M with Tv† D �v.K:v/. Then we have

k D rk.M/ � i.M/ � codim.†/ D dim.RP k/ D k;

and therefore i.M/ D k.

Motivated by the inequality rk.M/ � i.M/ it is natural to ask the following questions:

(1) What are the irreducible Riemannian symmetric spaces M of noncompact type with
rk.M/ D i.M/? Known examples are:

i.M/ D k: M D G�k .R
kCn/ D SOokCn=SOkSOn; 1 � k � nI

i.M/ D k: M D SLkC1.R/=SOkC1; 2 � k:

Brought to you by | King's College London
Authenticated | jurgen.berndt@kcl.ac.uk author's copy

Download Date | 10/14/15 9:09 AM



16 Berndt and Olmos, On the index of symmetric spaces

(2) Are there other geometric or algebraic characterizations of the irreducible Riemannian
symmetric spaces M of noncompact type with rk.M/ D i.M/?
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