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1. Introduction

A n-Lie algebra is mainly a vector space endowed with a n-Lie bracket which is taken
between n elements instead of two. This new bracket is n-linear, anti-symmetric
and satisfies a generalization of the Jacobi identity. It was introduced in 1985 by
Filippov [6] as a generalization of a Lie algebra. In [6] and several subsequent papers,
[7, 10–12] a structure theory of finite-dimensional n-Lie algebras over a field F of
characteristic 0 was developed. In [12], Ling proved that for every n ≥ 3 there is,
up to isomorphism only one finite-dimensional simple n-Lie algebra, namely Cn+1

where the n-ary operation is given by the generalized vector product, namely, if
e1, . . . , en+1 is the standard basis of Cn+1, the n-ary bracket is given by

[e1, . . . , êi, . . . , en+1] = (−1)n+i−1ei,

†Corresponding author.
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where i ranges from 1 to n + 1 and the hat means that ei does not appear in the
bracket.

In 2010, Cantarini and Kac, [4], stated that there are no simple linearly com-
pact n-Lie superalgebras over an algebraically closed field of characteristic zero,
which are not n-Lie algebras and classified simple linearly compact n-Lie super-
algebras with n > 2. A linearly compact algebra is a topological algebra, whose
underlying vector space is linearly compact, namely is a topological product of
finite-dimensional vector spaces, endowed with discrete topology (and it is assumed
that the algebra product is continuous in this topology). They obtained a list con-
sisting in four examples, one of them being the n + 1-dimensional vector product
n-Lie algebra presented above, and the remaining three are infinite-dimensional
n-Lie algebras, (cf. Theorem 3 below, [4]). One of them is the simple linearly com-
pact n-Lie algebra of type S we are interested in.

Also, representation theory for n-Lie algebras was developed. Dzhumadildaev
studied in [5] the finite-dimensional irreducible representations of the simple n-Lie
algebra Cn+1. Balibanu and van de Leur in [1] classified both, finite and infinite-
dimensional irreducible highest weight representations of this algebra.

In the present paper, we aim to classify all irreducible continuous representations
of the simple linearly compact n-Lie algebra Sn. We tried to apply technics we also
used in [3] to classify irreducible representation of the other infinite-dimensional
simple linearly compact n-Lie algebra Wn. As in [1], the key idea is to reduce the
problem to find irreducible continuous representations of simple linearly compact
n-Lie algebra Sn to find irreducible continuous representations of its associated
basic Lie algebra on which some two-sided ideal acts trivially.

The paper is organized as follow: In Sec. 2, we give the basic definitions and
results related with n-Lie algebras and state the relationship between representa-
tions of n-Lie algebras and representations of its associated Lie algebra. In Sec. 3, we
introduce the simple linearly compact n-Lie algebra Sn, we identify its associated
Lie algebra with the Lie algebra of its inner derivations which is nothing but Sn,
the Lie algebra of Cartan type S and finally we relate representations of the n-Lie
algebra Sn with representations of Sn. In Sec. 4, we present some general results
of the representation theory of Sn, prove some technical lemmas and we describe
some generators of the two-sided ideal that must act trivially in our representations.
Finally in Sec. 5, we state and prove the main result of the paper.

2. n-Lie Algebras and n-Lie Modules

For completeness and following the presentation of [3], we will give an introduction
to basic definitions and notions related with n-Lie algebras and n-Lie modules. We
will also introduce some useful results over the correspondence between represen-
tations of n-Lie algebra and representations of its basic associated Lie algebra.

As mentioned before, we are interested in studying irreducible representations of
the linearly compact n-Lie algebra Sn. Cantarini and Kac stated in [4] that there
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are no simple linearly compact n-Lie superalgebras over an algebraically closed
field of characteristic zero, which are not n-Lie algebras. Then we will use the
representation theory of n-Lie algebras to give the representation theory of simple
linearly compact n-Lie superalgebras. Given an integer n ≥ 2, an n-Lie algebra
V is a vector space over C, the field of complex numbers, endowed with an n-ary
anti-commutative product

∧nV → V

a1 ∧ · · · ∧ an �→ [a1, . . . , an],

subject to the following Filippov–Jacobi identity:

[a1, . . . , an−1, [b1, . . . , bn]]

= [[a1, . . . , an−1, b1], b2, . . . , bn] + [b1, [a1, . . . , an−1, b2],

b3, . . . , bn] + · · · + [b1, . . . , bn−1, [a1, . . . , an−1, bn]]. (1)

A derivation D of an n-Lie algebra V is an endomorphism of the vector space
V such that:

D([a1, . . . , an]) = [D(a1), a2, . . . , an] + [a1, D(a2), . . . , an] + · · · + [a1, . . . , D(an)].

As in the Lie algebra case (n = 2), the meaning of the Filippov–Jacobi identity
is that all endomorphisms Da1,...,an−1 of V (a1, . . . , an−1 ∈ V ), defined by

Da1,...,an−1(a) = [a1, . . . , an−1, a]

are derivations of V . These derivations are called inner.
A subspace W ⊂ V is called an n-Lie subalgebra of the n-Lie algebra V if

[W, . . . , W ] ⊂ W. An n-Lie subalgebra I ⊂ V of an n-Lie algebra is called an ideal
if [I, V, . . . , V ] ⊂ I. An n-Lie algebra is called simple if it has not proper ideal other
than 0.

Let V be an n-Lie algebra, n ≥ 3. We will associate to V a Lie algebra called the
basic Lie algebra, following the presentation given in [1, 5]. Consider ad : ∧n−1V →
End(V ) given by ad(a1 ∧ · · · ∧ an−1)(b) := Da1,...,an−1(b) = [a1, . . . , an−1, b]. One
can easily see that we could have chosen the codomain of ad to be Der(V ) (the set
of derivations of V ) instead of End(V ). ad induces a map ãd : ∧n−1V → End(∧•V )
defined as ãd(a1 ∧ · · · ∧ an−1)(b1 ∧ · · · ∧ bm) =

∑m
i=1 b1 ∧ · · · ∧ [a1, . . . , an−1,

bi] ∧ · · · ∧ bm. Denote by Inder(V ) the set of inner derivations of V , i.e. endo-
morphisms of the form Da1,...,an−1 = ad(a1 ∧ · · · ∧ an−1).

The set of derivations Der(V ) of an n-Lie algebra V is a Lie algebra under the
commutator and Inder(V ) is a Lie ideal. Note the Lie bracket of Inder(V ) can be
given by

[ad(a1 ∧ · · · ∧ an−1), ad(b1 ∧ · · · ∧ bn−1)] = ad(c1 ∧ · · · ∧ cn−1),
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where

c1 ∧ · · · ∧ cn−1 =
n−1∑
i=1

b1 ∧ · · · ∧ [a1, . . . , an−1, bi] ∧ · · · ∧ bn−1 = ãd(a)(b). (2)

By skew symmetric condition c1 ∧ · · · ∧ cn−1 can be defined also by

c1 ∧ · · · ∧ cn−1 = −
n−1∑
i=1

a1 ∧ · · · ∧ [b1, . . . , bn−1, ai] ∧ · · · ∧ an−1 = −ãd(b)(a). (3)

Then ãd is skew-symmetric (cf. [2]). We give to ∧n−1V a Lie algebra structure
under the Lie bracket defined by

[a, b] = ãd(a)(b). (4)

Therefore, this proposition follows.

Proposition 1. [· , · ] defines a Lie algebra structure on ∧n−1V and ad : ∧n−1V →
Inder(V ) is a surjective Lie algebra homomorphism.

Consider

Ker(ad) = {a1 ∧ · · · ∧ an−1 ∈ ∧n−1V : ad(a1 ∧ · · · ∧ an−1)(b) = 0 for all b ∈ V }
and

Ker(̃ad) = {a1 ∧ · · · ∧ an−1 ∈ ∧n−1V : ãd(a1 ∧ · · · ∧ an−1)(b) = 0 for all b ∈ ∧•V }.
It is straightforward to check that Ker(ad) is an abelian ideal of ∧n−1V and
Ker(ad) ⊆ Ker(ãd). Thus,

∧n−1 V/Ker(ad) � Inder(V ), (5)

as Lie algebras. Note that due to Eqs. (2) and (3), the Ker(ad) is a trivial submodule
of Inder(V ), thus

∧n−1 V � Ker(ad)� Inder(V ). (6)

Following the definition given by [1, 5], a vector space M is called an n-Lie module
for the n-Lie algebra V , if on the direct sum V ⊕ M there is a structure of n-Lie
algebra, such that the following conditions are satisfied:

• V is a subalgebra;
• M is an abelian ideal, i.e. when at least two slots of the n-bracket are occupied

by elements in M , the result is 0.

We have the following results that establish some relations between representa-
tions of ∧n−1V and n-Lie modules.

Theorem 1. (1) Let M be an n-Lie module of the n-Lie algebra V and define
ρ : ∧n−1V → End(M) given by

ρ(a1 ∧ · · · ∧ an−1)(m) := [a1, . . . , an−1, m]

for all m ∈ M, where this n-Lie bracket corresponds to the n-Lie structure of
V ⊕ M. Then ρ is an homomorphism of Lie algebras.
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(2) Given (M, ρ) a representation of ∧n−1V such that the two-sided ideal Q(V ) of
the universal enveloping algebra of ∧n−1V, generated by the elements

xa1,...,a2n−2 = [a1, . . . , an] ∧ an+1 ∧ · · · a2n−2

−
n∑

i=1

(−1)i+n(a1 ∧ · · · ∧ âi ∧ · · · ∧ an)(ai ∧ an+1 ∧ · · · ∧ a2n−2)

(7)

acts trivially on M, then M is an n-Lie module.

Proof. Part (1) is direct from the definition of the Lie bracket in ∧n−1V and the
Filippov–Jacobi identity of the n-Lie bracket corresponding to the n-Lie structure
of the semidirect product of V and M.

Let’s prove part (2). Consider the n-ary map [[ , ]] : ∧n−1(V �M) → V �M

such that M is an abelian ideal and V is a subalgebra with its own n-Lie bracket
and define

[[a1, . . . , an−1, m]] := ρ(a1 ∧ · · · ∧ an−1)(m), (8)

where ai ∈ V, m ∈ M. We need to show that the Filippov–Jacobi identity holds for
the n-ary bracket defined above. It is enough to show that

[[a1, . . . , an−1, [[b1, . . . , bn−1, m]]]] − [[b1, . . . , bn−1, [[a1, . . . , an−1, m]]]]

=
n−1∑
i=1

[[b1, . . . , [a1, . . . , an−1, bi], . . . , bn−1, m]] (9)

and

[[[a1, . . . , an], an+1, . . . , a2n−2, m]]

=
n−1∑
i=1

(−1)n+i+1[[a1, . . . , [an+1, . . . , a2n−2, ai, m], . . . , a2n−2]] (10)

hold for ai and bi ∈ V and m ∈ M .
Since ρ is a representation of ∧n−1V and ρ[a, b] = ρ(ãd(a)(b)) by definition of

the Lie bracket, then the identity (9) holds.
Let’s prove the identity (10). Writing the identity (10) using (8), we have that

ρ([a1, . . . , an] ∧ an+1 ∧ · · · ∧ a2n−2)(m)

=
n∑

i=1

(−1)i+nρ(a1 ∧ · · · ∧ âi ∧ · · · ∧ an)ρ(ai ∧ an+1 ∧ · · · ∧ a2n−2)(m).

(11)

Therefore, (11) is equivalent to the fact that the ideal Q(V ) acts trivially on M,

finishing our proof.

The following proposition was proven in [5].
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Proposition 2. Let M be a n-Lie module over an n-Lie algebra V . Then any
submodule, any factor-module and dual module of M are also n-Lie modules. If M1

and M2 are n-Lie modules over V, then their direct sum M1 ⊕ M2 is also n-Lie
module.

As in [5], we deduce the following Corollary.

Corollary 1. Let M be an n-Lie module over n-Lie algebra V . Then

(a) M is irreducible if and only if M is irreducible as a Lie module over Lie algebra
∧n−1V .

(b) M is completely reducible, if only if M is completely reducible as a Lie module
over Lie algebra ∧n−1V .

Since we are aiming the study of the representation theory of V as an n-Lie
algebra, Theorem 1 shows that it is closely related to the representation theory
of the Lie algebra ∧n−1V. But first, due to (6), we need to characterize the ideal
Ker(ad). We have the following lemma.

Lemma 1. If a ∈ Ker(ad) and ρ is a representation of ∧n−1V, then ρ(a) commutes
with ρ(b) for any b ∈ ∧n−1V.

Proof. Consider a ∈ Ker(ad) ⊆ Ker(ãd). By definition of Lie bracket in ∧n−1V

follows

ρ(a)ρ(b) − ρ(b)ρ(a) = ρ[a, b] = ρ(ãd(a)(b)) = 0.

Thus, we have the following proposition.

Proposition 3. Let ρ be an irreducible representation of ∧n−1V in M with count-
able dimension. Then Ker(ad) acts by scalars in M .

Proof. Immediate from the lemma above and Schur Lemma.

Theorem 2. Let (M, ρ) be an irreducible representation of ∧n−1V such that the
ideal Q(V ) acts trivially on M . Then

(a) ρ|Ker(ad) := λ Id with Id the identity map in End(M) and λ ∈ (Ker(ad))∗ is
an Inder(V )-module homomorphism (where C is thought as a trivial Inder(V )-
module),

(b) ρ|Inder(V ) is an irreducible representation of Inder(V ) such that the ideal Q(V )
acts trivially on M .

(c) ρ = ρ|Inder(V ) ⊕ λ Id.

Proof. Let’s prove part (a). If l ∈ Inder(V ) and a ∈ Ker(ad), since Ker(ad) is an
abelian ideal, by Lemma 1, we have 0 = ρ([l, a])(m) = λ([l, a]) Id(m). Thus λ is an
Inder(V )-module homomorphism.
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Let’s prove part (b). Consider N � M a nontrivial Inder(V )-subrepresentation
of M and take 0 
= m ∈ M such that 0 
= Ñ := ρ(Inder(V ))(m) ⊆ N . Note if
a ∈ Ker(ad), due to Lemma 1 and Proposition 3, ρ(a)Ñ = ρ(a)ρ(Inder(g))(m) =
ρ(Inder(V )ρ(a)(m) = λ(a)ρ(Inder(V ))(m) = Ñ . Using (6), we can conclude that
0 
= Ñ is a subrepresentation of M as a ∧n−1V -module but M was irreducible by
hypothesis which is a contradiction. Part (c) is an immediate consequence of (6)
and Lemma 1.

3. The Simple Linearly Compact n-Lie Algebra Sn

As mentioned in the introduction, Cantarini and Kac proved the following classifi-
cation theorem.

Theorem 3 ([4]). (a) Any simple linearly compact n-Lie algebra with n > 2, over
an algebraically closed field F of characteristic 0, is isomorphic to one of the
following four examples:
(i) the (n + 1)-dimensional vector product n-Lie algebra Cn+1;
(ii) the n-Lie algebra, denoted by Sn, which is the linearly compact vector space

of formal power series F[[x1, . . . , xn]], endowed with the n-ary bracket

[f1, . . . , fn] = det

D1(f1) . . . D1(fn)
. . . . . . . . . . . . . . . . .

Dn(f1) . . . Dn(fn)

.

Where Di = ∂
∂xi

;
(iii) the n-Lie algebra, denoted by Wn, which is the linearly compact vector

space of formal power series F[[x1, . . . , xn−1]], endowed with the n-ary
bracket,

[f1, . . . , fn] = det


f1 . . . fn

D1(f1) . . . D1(fn)

. . . . . . . . . . . . . . . . . . . . . .

Dn−1(f1) . . . Dn−1(fn)

.

Where Di = ∂
∂xi

;
(iv) the n-Lie algebra, denoted by SWn, which is the direct sum of n−1 copies

of F[[x]], endowed with the following n-ary bracket, where f 〈j〉 is an ele-
ment of the jth copy and f ′ = df

dx :

[f 〈j1〉
1 , . . . , f 〈jn〉

n ] = 0, unless {j1, . . . , jn} ⊃ {1, . . . , n − 1},
[f 〈1〉

1 , . . . , f
〈k−1〉
k−1 , f

〈k〉
k , f

〈k〉
k+1, f

〈k+1〉
k+2 , . . . , f 〈n−1〉

n ]

= (−1)k+n(f1 . . . fk−1(f ′
kfk+1 − f ′

k+1fk)fk+2 . . . fn)〈k〉.

(b) There are no simple linearly compact n-Lie superalgebras over F, which are not
n-Lie algebras, if n > 2.
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Throughout the rest of this paper, we will consider F = C and the simple
infinite-dimensional linearly compact n-Lie algebra Sn.

Remark 1. (a) The map ad : ∧n−1Sn → Inder(Sn), which sends f1∧· · ·∧fn−1 →
ad(f1 ∧ · · · ∧ fn−1). By Proposition 1, it is an epimorphism of Lie algebras and
we will show that in this case,

ker(ad) = span{f1 ∧ · · · ∧ fn−1 : fi ∈ C, for some 1 ≤ i ≤ n − 1}.
Note that any f1 ∧ · · · ∧ fn−1 such that fi ∈ C for some 1 ≤ i ≤ n − 1, clearly
is in ker(ad). On the other hand, if we assume that f1 ∧ · · · ∧ fn−1 ∈ ker(ad),
we have

ad(f1 ∧ · · · ∧ fn−1)(f) = det

D1(f1) · · · D1(f)

· · · · · · · · · · · · · · · · · · · · ·
Dn(f1) · · · Dn(f)

 = 0, (12)

for any f ∈ Sn. Since f is arbitrary, we have that at least two of the first n− 1
columns of this matrix should be linearly dependent, in other words, there exist
i < j ∈ {1, . . . , n− 1} such that 
fi = c
 fj for some c ∈ C. Since C is a field
of characteristic zero, we can deduce that fi = cfj + k, for some k ∈ C. Thus,
f1 ∧ · · · ∧ fn−1 = k (f1 ∧ · · · ∧ 1 ∧ · · · ∧ fj ∧ · · · ∧ fn−1).

(b) Let (M, ρ) be an irreducible representation of ∧n−1Sn such that the ideal Q(Sn)
acts trivially on M . By Theorems 2(a) and 2(b), we have that ρ|Ker(ad) := λ Id,
with Id the identity map in End(M) and λ ∈ (Ker(ad))∗, and ρ|Inder(Sn) is an
irreducible representation of Inder(Sn) such that the ideal Q(Sn) acts trivially
on M. We will show that λ = 0. Consider xf1,...,f2n−2 an element of Q(Sn) such
that fi /∈ C for all i = 1, . . . , 2n − 2 and [f1, . . . , fn] ∈ C, then

xf1,...,f2n−2 = [f1, . . . , fn] ∧ fn+1 ∧ · · · ∧ f2n−2

−
n∑

i=1

(−1)i+n(f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn)(fi ∧ fn+1 ∧ · · · ∧ f2n−2)

∈ Ker(ad) + U(Inder(Sn)).

Fix m ∈ M . We have,

0 = ρ(xf1,...,f2n−2)(m) = λ(1 ∧ fn+1 ∧ · · · ∧ f2n−2)(m)

−
n∑

i=1

(−1)i+nρ(ad(f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn))ρ(ad(fi ∧ fn+1 ∧ · · · ∧ f2n−2))(m).

(13)

Note that (13) is in the image of the ideal Q(Sn) by the ad map acting on m. Thus,
by Theorem 2(b),

∑n
i=1(−1)i+nρ(ad(f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn))ρ(ad(fi ∧ fn+1 ∧ · · · ∧

f2n−2)) · m = 0, from where we deduce that λ(1 ∧ fn+1 ∧ · · · ∧ f2n−2) · m = 0.
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Now, suppose λ 
= 0 with λ : ker(ad) → C and let β = {1, α1, α2, . . . , } a basis
of C[[x1, . . . , xn]]. Then α = {1 ∧ αi1 · · · ∧ αin−2 : i1 < · · · < in−2} is a basis of
Ker(ad). Then there exists αi1 · · ·αin−2 ∈ β such that λ(1 ∧ αi1 ∧ · · · ∧ αin−2) 
= 0.
Choosing fn+1, . . . , f2n−2 as αi1 · · ·αin−2 for xf1,...,f2n−2 , we have that λ(1∧ fn+1 ∧
· · · ∧ f2n−2) · m 
= 0, which is a contradiction. Then it follows that λ = 0.

Denote W (m, n) the Lie superalgebra of continuous derivations of the tensor
product C(m, n) of the algebra of formal power series in m even commuting vari-
ables x1, . . . , xm and the Grassmann algebra in n anti-commuting odd variables
ξ1, . . . , ξn. Elements of W (m, n) can be viewed as linear differential operators of
the form

X =
m∑

i=1

Pi(x, ξ)
∂

∂xi
+

n∑
j=1

Qj(x, ξ)
∂

∂ξj
, Pi, Qj ∈ C(m, n).

The Lie superalgebra W (m, n) is simple linearly compact (and it is finite-
dimensional if and only if m = 0).

Now, we shall describe S(m, n) a linearly compact subalgebras of W (m, n).
First, given a subalgebra L of W (m, n), a continuous linear map Div : L →

C(m, n) is called a divergence if the action πλ of L on C(m, n), given by

πλ(X)f = Xf + (−1)p(X)p(f)λf Div X, X ∈ L,

is a representation of L in C(m, n) for any λ ∈ C. Note that

S′
Div(L) := {X ∈ L |Div X = 0}

is a closed subalgebra of L. We denote by SDiv(L) its derived subalgebra.
An example of a divergence on L = W (m, n) is the following, denoted by div:

div

 m∑
i=1

Pi
∂

∂xi
+

n∑
j=1

Qj
∂

∂ξj

 =
m∑

i=1

∂Pi

∂xi
+

n∑
j=1

(−1)p(Qj) ∂Qj

∂ξj
.

Hence for any λ ∈ C, we get the representation πλ of W (m, n) in C(m, n). Also,
we get closed subalgebras S′

div(W (m, n)) ⊃ Sdiv(W (m, n)) denoted by S′(m, n) ⊃
S(m, n). Observe that S′(m, n) = S(m, n) is simple if m > 1. From now on, we will
denoted the Lie algebras S(n, 0) by Sn.

Proposition 5.1 in [4] gives the description of the Lie algebra of continuous
derivation of each simple linearly compact n-Lie algebra. Moreover, they state in
particular, that the Lie algebra of continuous derivations of the n-Lie algebra Sn

is isomorphic to Sn and in the proof of this proposition, they show that the Lie
algebra of continuous derivations of the n-Lie algebra Sn coincides with the Lie
algebra of its inner derivations. Thus,

Inder(Sn) � Sn. (14)

Therefore, Theorems 1, 2 and Remark 1 give us the following.
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Theorem 4. Irreducible representations of the n-Lie algebra Sn are in 1 − 1 cor-
respondence with irreducible representations of the universal enveloping algebra
U(Sn), on which the two-sided ideal Q(Sn), generated by the elements

xf1,...,f2n−2 = ad([f1, . . . , fn] ∧ fn+1 ∧ · · · ∧ f2n−2)

−
n∑

i=1

(−1)i+nad(f1 ∧ · · · ∧ f̂i · · · ∧ fn)ad(fi ∧ fn+1 ∧ · · · ∧ f2n−2),

where fi ∈ C[[x1, . . . , xn]] and fi 
= 1 for all i = 1, . . . , n, acts trivially.

4. Representations of Simple Linearly Compact Lie Algebra Sn

In this section, we present the approach given by Rudakov in [13] for the representa-
tion theory of the infinite-dimensional simple linearly compact Lie algebra Sn. The
algebra Sn is a subalgebra of the algebra Wn of all derivations of the ring C of formal
power series in n variables. The elements D ∈ Wn has the form D =

∑n
i=1 fi∂/∂xi

with fi ∈ C[[x1, . . . , xn]]. The algebra Wn is endowed with the filtration

(Wn)(j) = {D, deg fi ≥ j + 1, i = 1, . . . , n}
and a compatible gradation

(Wn)j = {D, deg fi = j + 1, i = 1, . . . , n}.
The subalgebra Sn is defined by the condition

n∑
i=1

∂fi

∂xi
= 0.

The filtration and gradation of Wn induce a filtration and gradation in Sn. The
gradation of Sn gives a triangular decomposition

Sn = (Sn)− ⊕ (Sn)0 ⊕ (Sn)+,

with (Sn)± = ⊕±m>0(Sn)m. We shall consider continuous representations in spaces
with discrete topology. The continuity of a representation of a linearly compact Lie
superalgebra Sn in a vector space V with discrete topology means that the stabilizer
(Sn)v = {g ∈ Sn | gv = 0} of any v ∈ V is an open (hence of finite codimension)
subalgebra of Sn. Let (Sn)≥0 = (Sn)>0 ⊕ (Sn)0. Denote by P (Sn, (Sn)≥0) the
category of all continuous Sn-modules V , where V is a vector space with discrete
topology, that are (Sn)0-locally finite, that is, any v ∈ V is contained in a finite-
dimensional (Sn)0-invariant subspace. Given an (Sn)≥0-module F , we may consider
the associated induced Sn-module

M(F ) = IndSn

(Sn)≥0
F = U(Sn) ⊗U((Sn)≥0) F

called the generalized Verma module associated to F .
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Let V be an Sn-module. The elements of the subspace

Sing(V ) := {v ∈ V | (Sn)>0v = 0}

are called singular vectors. When V = M(F ), the (Sn)≥0-module F is canonically
an (Sn)≥0-submodule of M(F ), and Sing(F ) is a subspace of Sing(M(F )), called
the subspace of trivial singular vectors. Observe that M(F ) = F ⊕F+, where F+ =
U+((Sn)−)⊗F and U+((Sn)−) is the augmentation ideal in the symmetric algebra
U((Sn)−). Then

Sing+(M(F )) := Sing(M(F )) ∩ F+

are called the nontrivial singular vectors.

Theorem 5 ([9, 13]). (a) If F is a finite-dimensional (Sn)≥0-module, then M(F )
is in P (Sn, (Sn)≥0).

(b) In any irreducible finite-dimensional (Sn)≥0-module F, the subalgebra (Sn)+
acts trivially.

(c) If F is an irreducible finite-dimensional (Sn)≥0-module, then M(F ) has a
unique maximal submodule.

(d) Denote by I(F ) the quotient by the unique maximal submodule of M(F ). Then
the map F �→ I(F ) defines a bijective correspondence between irreducible finite-
dimensional (Sn)≥0-modules and irreducible (Sn)-modules in P ((Sn), (Sn)≥0),
the inverse map being V �→ Sing(V ).

(e) An (Sn)≥0-module M(F ) is irreducible if and only if the (Sn)≥0-module F is
irreducible and M(F ) has no nontrivial singular vectors.

Remark 2. (a) Note that

(Sn)0 ∼= sln(C), (15)

the isomorphism is given by the map that sends xi
∂

∂xj
→ Ei,j for (i 
= j) and

xi
∂

∂xi
− xi+1

∂
∂xi+1

→ Ei,i − Ei+1,i+1, where Ei,j denote as usual the matrix whose
(i, j) entry is 1 and all the other entries are 0 for i, j = 1, . . . , n.

(b) Due to Theorem 5(b), any irreducible finite-dimensional (Sn)≥0-module F

will be obtained extending by zero the irreducible finite-dimensional sln(C)-module.

In the Lie algebra sln(C), we choose the Borel subalgebra b = {xi
∂

∂xi
−

xj
∂

∂xj
, xi

∂
∂xj

: i < j, i, j = 1, . . . , n}. We denote by

h = span
{

hi = xi
∂

∂xi
− xi+1

∂

∂xi+1
, i = 1, . . . , n − 1

}
the corresponding Cartan subalgebra.

Let F0, . . . , Fn−1 be the irreducible (Sn)≥0-modules got by extending
trivially the irreducible sln(C)-modules with highest weight λ0 =(0, 0, . . . , 0),
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λ1 =(1, 0, . . . , 0), λ2 = (0, 1, . . . , 0), . . . , λn−1 = (0, 0, . . . , 1), respectively. We will
call them exceptional (Sn)≥0-modules.

Theorem 6 ([13]). Let F be an irreducible finite-dimensional sln(C)-module. If
F is not isomorphic to one of the exceptional modules F0, . . . , Fn−1, then the Sn-
module M(F ) is irreducible. Each module Np := M(Fp) contains a unique irre-
ducible submodule Kp which is generated by all its nontrivial singular vectors.

Corollary 2 ([13]). If the Sn-module E is irreducible, then the sln(C)-module F :=
Sing(E) is also irreducible. If F coincides with none of the modules F0, . . . , Fn−1,

then E = M(F ). If F = Fp, then E is isomorphic to J(Fp) := Np/Kp.

4.1. Some useful lemmas

Let F be an irreducible finite-dimensional sln(C)-module with highest weight vec-
tor vλ and highest weight λ. Let J(F ) be the irreducible module M(F ) if F is
an irreducible finite-dimensional sln(C)-module which coincides with none of the
exceptional modules F0, . . . , Fn−1 and Np/Kp otherwise. Note that if F is an irre-
ducible finite-dimensional sln(C)-module which coincides with none of the excep-
tional modules F0, . . . , Fn−1, Sing+(M(F )) = {0}, (cf. Theorem 5(e)).

Our main goal is to find those irreducible finite-dimensional sln(C)-modules F

for which J(F ) is an irreducible module over the n-Lie algebra Sn, more precisely,
we are looking for those J(F ) where the ideal Q(Sn) acts trivially.

Lemma 2. (1) If F is an irreducible finite-dimensional sln(C)-module
which coincides with none of the exceptional modules F0, . . . , Fn−1, then
Q(Sn)⊗U(Sn)≥0 F is equal to the trivial submodule if and only if Q(Sn) acts
trivially on M(F ).

(2) If F = Fp, then Q(Sn) ⊗U(Sn)≥0 F ⊂ Kp if and only if Q(Sn) acts trivially on
J(Fp).

Proof. It follows from the definitions of a factor module and a two-sided ideal.

Lemma 3. (1) If F is an irreducible finite-dimensional sln(C)-module which coin-
cides with none of the exceptional modules F0, . . . , Fn−1, then Q(Sn) ⊗ vλ = 0
if and only if Q(Sn) acts trivially on M(F ).

(2) If F = Fp, then Q(Sn)⊗U(Sn)≥0 vλ ⊂ Kp if and only if Q(Sn) acts trivially on
J(Fp).

Proof. Due to Lemma 2, it is immediate from the definition of generalized Verma
module and the facts that F is a highest weight sln(C)-module and sln(C) ⊆
U(Sn)≥0.
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4.2. Description of the ideal Q(Sn)

Inder(Sn) � Sn, where the isomorphism is given explicitly by

ad(f1 ∧ · · · ∧ fn−1) →
n∑

i=1

(−1)n+i det



D1(f1) · · · D1(fn−1)

· · · · · · · · · · · · · · · · · · · · ·
D̂i(f1) · · · D̂i(fn−1)

· · · · · · · · · · · · · · · · · · · · ·
Dn(f1) · · · Dn(fn−1)


Di, (16)

for any f1, . . . , fn−1 ∈ C[[x1, . . . , xn]], Dj = ∂
∂xj

and the hat means that the ith row
does not appear in the matrix. Consider the subset

A =

{
D =

n∑
i=1

fiDi ∈ Sn : fi ∈ C[x1, . . . , xn]

}
.

It is dense in Sn. Since we are classifying continuous representations, it is enough
to characterize a set of generator of QA(Sn) := Q(Sn)

⋂
A. Take f1, . . . , f2n−2 ∈

C[x1, . . . , xn], where fl = XIl with

XIl := x
il
1

1 x
il
2

2 · · ·xil
n

n ,

where Il := (il1, . . . , i
l
n) with il1, . . . , i

l
n ∈ Z≥0 and l ∈ {1, . . . , 2n − 2}. Then the

generators of QA(Sn) are given by

xf1,...,f2n−2 =

(
n∑

k=1

α̃(k)Dk

)
−

n∑
i=1

(−1)i+n

(
n∑

q=1

β̃(i, q)Dq

)(
n∑

s=1

γ̃(i, s)Ds

)
,

(17)

where

α̃(k) = (−1)n+k f1 · · · f2n−2

x2
1 · · ·xk · · ·x2

n

det Ã det B̃k, k = 1, . . . , n,

β̃(i, q) = (−1)n+q f1 · · · f̂i · · · fn

x1 · · · x̂q · · ·xn
det Ãq,i, q = 1, . . . , n,

γ̃(i, s) = (−1)n+s fifn+1 · · · · · · f2n−2

x1 · · · x̂s · · ·xn
det C̃(i)

s , s = 1, . . . , n,

with i = 1, . . . , n and the matrices Ã, B̃ and C̃ ’s are defined as follows:

Ã =


i11 · · · in1

· · · · · · · · ·
· · · · · · · · ·
i1n · · · inn

,
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Ãq,i is the matrix Ã with the q-row and the i-column removed,

B̃k =



∑n
r=1(i

r
1 − 1) in+1

1 · · · i2n−2
1

· · · · · · · · · · · ·
̂∑n

r=1(i
r
k − 1) în+1

k · · · î2n−2
k

· · · · · · · · · · · ·∑n
r=1(i

r
n − 1) in+1

n · · · i2n−2
n


and

C̃(i)
s =



ii1 in+1
1 · · · i2n−2

1

· · · · · · · · · · · ·
îis în+1

s · · · î2n−2
s

· · · · · · · · · · · ·
iin in+1

n · · · i2n−2
n


,

where the hats mean that the corresponding row is removed.

5. Main Theorems and Their Proofs

In this section, we will state the main result of this paper. We applied successfully
the same technics used to classify irreducible continuos representations of the simple
linearly compact n-Lie algebra of type W , (cf. [3]). Recall that the inner derivations
of the simple linearly compact n-Lie algebra Sn are isomorphic to Sn and denote
by h the Cartan subalgebra of the Lie algebra sln(C) chosen above Theorem 6. Let
F be a finite-dimensional irreducible highest weight sln(C)-module, with highest
weight λ ∈ h∗ and highest weight vector vλ. Recall that our goal is to determine
for which λ ∈ h∗ the two-sided ideal Q(Sn) acts trivially on the irreducible highest
weight module J(F ) (see Sec. 4.1). This will ensure us that J(F ) is an n-Lie module
of Sn. Let us denote by λi = λ(Ei,i − Ei+1,i+1) for i = 1, . . . , n − 1 and introduce
the following useful notation for the proof of the theorem,

δi,j =

{
1 if i ≥ j

0 otherwise,
(18)

with i, j ∈ {1, . . . , n}.
Theorem 7. Let n ≥ 3 and F be a finite-dimensional irreducible highest weight
sln(C)-module, then the irreducible continuous representation J(F ) of Sn is an
irreducible continuous representation of the simple linearly compact n-Lie algebra
Sn if and only if λ ∈ h∗ is such that λ = (0, 0, . . . , 0).

Proof. Let F be a highest weight irreducible finite-dimensional sln(C)-module,
with highest weigh λ ∈ h∗ and highest weigh vector vλ. Recall that h :=
⊕n−1

i=1 C (Ei,i − Ei+1,i+1) is the chosen Cartan subalgebra of the Lie algebra sln(C).
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Here, we are identifying the subalgebra h with the subalgebra of Sn generated by
the elements xi

∂
∂xi

− xi+1
∂

∂xi+1
, i = 1, . . . , n − 1. Consider F as a (Sn)≥0-module

and take the induced module M(F ) = U(Sn) ⊗U((Sn)≥0) F. We will use Lemma 3
and the general look of the generators of QA(Sn) to find out for which λ’s, QA(Sn)
acts trivially in J(F ). Let wλ = 1 ⊗U((Sn)≥0) vλ = 1 ⊗ vλ.

According to the description of the generators given in (17) and taking into
account that (Sn)+ acts by zero on wλ, it is enough to consider the subset of
generators QA(Sn) and ask them to either act trivially wλ if F is nonexceptional or
QA(Sn) ⊗ vλ ⊆ Sing+(M(F )) otherwise. It is enough to consider xf1,...,f2n−2 with
monomials fi ∈ C[x1, . . . , xn] as in (17) such that,

(1) deg(f1 · · · f2n−2) = 2n− 1 and there exist i ∈ {1, . . . , n} such that

(a) deg(fifn+1 · · · f2n−2) = n − 1 or
(b) deg(fifn+1 · · · f2n−2) = n,

(2) deg(f1f2 · · · f2n−2) = 2n, and there exist i ∈ {1, . . . , n} such that deg(fifn+1 · · ·
f2n−2) = n,

(3) deg(f1f2 · · · f2n−2) = 2n + 1, and there exist i ∈ {1, . . . , n} such that deg(fi

fn+1 · · · f2n−2) = n,

since the remaining ones are either zero or act trivially any way. Here, we are
assuming by simplicity that i = n and fi /∈ C for all i = 1, . . . , 2n − 2. Let us
analyze each possible case.

Case 1(a): Here, deg(f1 · · · f2n−2) = 2n − 1, deg(f1 · · · fn−1) = n and deg(fn · · ·
f2n−2) = n − 1. We have two possible expressions for f1 · · · fn−1 such that
xf1,...,f2n−2 
= 0 and two expression for fnfn+1 · · · f2n−2. Namely, there exist
q, l, j, k, m ∈ {1, . . . , n}, such that

f1 · · · fn−1 = x1 · · ·xn (19)

or

f1 · · · fn−1 = x1 · · · x̂l · · ·x2
m · · ·xn, (20)

and

fn · · · f2n−2 = x1 · · · x̂k · · ·xn (21)

or

fn · · · f2n−2 = x1 · · · x̂q · · · x̂j · · ·x2
k · · ·xn. (22)

Suppose we have (19) and (21), namely f1 · · · fn−1 = x1 · · ·xn and fn · · · f2n−2 =
x1 · · · x̂k · · ·xn for some k ∈ {1, . . . , n}. Therefore, we can consider the monomials
as follows.
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(i) Let n ≥ 3 and l, j, k ∈ {1, . . . , n}. Note that to define the monomials fn+1, . . . ,

f2n−2, we are assuming that j < k. Otherwise, we can interchange those indexes
in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , l − 1,

fs = xs+1, s = l, . . . , n − 1, s 
= j − δj,l,

fj−δj,l
= xjxl, fn = xj ,

fn+s = xs, s = 1, . . . , j − 1,

fn+s = xs+1, s = j, . . . , k − 2,

fn+s = xs+2, s = k − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)j+l+k+δk,l (Dl ⊗ El,kvλ − Dj ⊗ Ej,kvλ

−Dk ⊗ (El,l − Ej,j)vλ). (23)

Now, suppose (19) and (22), namely f1 · · · fn−1 = x1 · · ·xn and fn · · · f2n−2 =
x1 · · · x̂q · · · x̂j · · ·x2

k · · ·xn for some j, q, k ∈ {1, . . . , n}. Therefore, we have the
following possibilities.

(ii) Let n ≥ 4 and q, l, j, k ∈ {1, . . . , n − 1}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , l − 1, s 
= k − δk,l,

fs = xs+1, s = l, . . . , n − 1,

fk−δk,l
= xkxl, fn = xk,

fn+s = xs, s = 1, . . . , q − 1,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

By (17), we have

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)l+q+j+δq,j (Dj ⊗ Ek,qvλ − Dq ⊗ Ek,jvλ). (24)

Equation (20) combined with Eqs. (21) and (22) does not give us new results.

Case 1(b): Do not provide new information.

Case 2: Here, deg(f1 · · · f2n−2) = 2n, deg(f1 · · · fn−1) = n = deg(fn · · · f2n−2) The
two possible expressions for deg(f1 · · · fn−1) such that xf1,...,f2n−2 
= 0 are the same
that (19) and (20). We have three expression for fn · · · f2n−2. Namely, there exist
q, j, k, r ∈ {1, . . . , n}, such that

fn · · · f2n−2 = x1 · · ·xn (25)
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or

fn · · · f2n−2 = x1 · · · x̂j · · ·x2
k · · ·xn (26)

or

fn · · · f2n−2 = x1 · · · x̂q · · · x̂r · · ·xj
2 · · ·x2

k · · ·xn. (27)

Consider (19) and (25), namely f1 · · · fn−1 = x1 · · ·xn = fn · · · f2n−2. Therefore,
we can consider the monomials as follows:

(i) Let n ≥ 4 and l, m, j, k ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that m < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , j − 1, s 
= l − δl,j,

fs = xs+1, s = j, . . . , n − 1,

fl−δl,j
= xlxj , fn = xj ,

fn+s = xs, s = 1, . . . , m − 1, s 
= k − δk,m − δk,j ,

fk−δk,m−δk,j
= xkxm,

fn+s = xs+1, s = m, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that,

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)m+δm,j (1 ⊗ Ej,mEm,jvλ − 1 ⊗ EjkEkjvλ

+ 1 ⊗ (Em,m − Ek,k)(1 − (Ej,j − El,l))vλ). (28)

Suppose in the definitions of f1, . . . , f2n−2 in (i), we take m := l, then we
have

(ii) Let n ≥ 3 and j, k, l ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)l+δj,l(1 ⊗ EjkEkjvλ

− 1 ⊗ (El,l − Ek,k)(1 − (Ej,j − El,l))vλ). (29)

Now, suppose in the definitions of f1, . . . , f2n−2 in (i), we take l := k, then
we have the following.

(iii) Let n ≥ 3 and m, j, k ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ)

= (−1)m+δm,j (1 ⊗ (Ej,j − Ek,k)(1 − (Em,m − Ek,k))vλ). (30)

Suppose in the definitions of f1, . . . , f2n−2 in (iii), we take l := j, j := m

and m := q then we have
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(iv) Let n ≥ 4 and q, m, j, k ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ)

= (−1)q+m+j+δj,q (1 ⊗ (Em,m − Ej,j)(Eq,q − Ek,k)vλ). (31)

Now, consider (19) and (26), namely f1 · · · fn−1 = x1 · · ·xn and
fn · · · f2n−2 = x1 · · · x̂j · · ·x2

k · · ·xn.
(v) Let n ≥ 5 and q, m, j, k, l ∈ {1, . . . , n}. Note that to define the monomials

fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , k − 1,

fs = xs+1, s = k, . . . , n − 1, s 
= l − δl,j ,

fl−δl,j = xlxk, fn = xk,

fn+s = xs, s = 1, . . . , q − 1, s 
= m − δm,q − δm,j,

fm−δm,q−δm,j = xmxq,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that,

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(j+q+k+δq,k)(1 ⊗ Ek,qEq,jvλ − 1 ⊗ Ek,mEm,jvλ

− 1 ⊗ Ekj(Eq,q − Em,m)vλ). (32)

Suppose in the definitions of f1, . . . , f2n−2 in (v), we take m := l, then we
have

(vi) Let n ≥ 4 and m, j, k, l ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(j+m+k+δm,k)(1 ⊗ Ek,qEq,jvλ

− 1 ⊗ Ekj(Eq,q − El,l)vλ). (33)

Now, suppose in the definitions of f1, . . . , f2n−2 in (v), we take l := j, then
we have the following.

(vii) Let n ≥ 4 and m, j, k, l ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ)

= (−1)(l+m+k+δm,l)(1 ⊗ Ek,qEq,jvλ − 1 ⊗ EkmEm,jvλ). (34)

(viii) Let n ≥ 5 and m, q, j, k, l ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
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those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , m − 1, s 
= l − δl,m,

fs = xs+1, s = m, . . . , n − 1,

fl−δl,m
= xlxm, fn = xkxq,

fn+s = xs, s = 1, . . . , q − 1,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(m+j+q+δq,j)(1 ⊗ Ek,j(Em,m − El,l)vλ). (35)

Suppose in the definitions of f1, . . . , f2n−2 in (viii), we take l := k, then we
have the following.

(ix) Let n ≥ 4 and m, j, k, l ∈ {1, . . . , n},

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(m+j+l+δl,j)(1 ⊗ Ek,j(Em,m − Ek,k − 1)vλ).

(36)

(x) Let n ≥ 3 and l, j, k ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that l < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , l − 1, s 
= j − δj,l,

fs = xs+1, s = l, . . . , n − 1,

fj−δj,l
= xlxj , fn = xl,

fn+s = xs, s = 1, . . . , l − 1, s 
= k − δk,l − δk,j ,

fn+k−δk,l−δk,j
= x2

k,

fn+s = xs+1, s = l, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that,

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(j+δj,l)(1 ⊗ Ek,j(El,l − Ej,j)vλ). (37)

Suppose (19) and (27), namely f1 · · · fn−1 = x1 · · ·xn and fn · · · f2n−2 =
x1 · · · x̂q · · · x̂r · · ·xj

2 · · ·x2
k · · ·xn, for some q, r, j, k ∈ {1, . . . , n}.

(xi) Let n ≥ 5 and r, q, j, k, l ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that r < q. Otherwise, we can interchange
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those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , l − 1,

fs = xs+1, s = l, . . . , n − 1, s 
= j − δj,l,

fj−δj,l
= xjxl, fn = xj ,

fn+s = xs, s = 1, . . . , r − 1, s 
= k − δk,r − δk,q,

fn+k−δk,r−δk,q
= x2

k,

fn+s = xs+1, s = r, . . . , q − 2,

fn+s = xs+2, s = q − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(l+q+δq,r)2(1 ⊗ Ej,rEk,qvλ − 1 ⊗ Ej,qEk,rvλ).

(38)

Equations (20) and (25) do not give us new information. Now, consider
(20) and (26), namely f1 · · · fn−1 = x1 · · · x̂l · · ·x2

m · · ·xn and fn · · · f2n−2 =
x1 · · · x̂j · · ·x2

k · · ·xn, for some l, m, j, k ∈ {1, . . . , n}.
Suppose m := k and l := q in the Eq. (20), then we have

(xii) Let n ≥ 4 and r, q, j, k ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , k − 1,

fs = xs+1, s = k, . . . , n − 1, s 
= q − δq,k,

fq−δq,k
= x2

q, fn = xk,

fn+s = xs, s = 1, . . . , q − 1, s 
= r − δr,q − δr,j,

fn+r−δr,q−δr,j = xrxq,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that,

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(k+j+q+δj,q)(1 ⊗ Eq,rEr,jvλ

+ 1 ⊗ Eq,j(Eq,q − Er,r + 1)vλ). (39)

Suppose in the definitions of f1, . . . , f2n−2 in the Eq. (19), we take m := k

and l := j, then we have the following.
(xiii) Let n ≥ 4 and r, q, j, k ∈ {1, . . . , n}. Note that to define the monomials

fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
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those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , k − 1,

fs = xs+1, s = k, . . . , n − 1, s 
= j − δj,k,

fj−δj,k
= x2

j , fn = xk,

fn+s = xs, s = 1, . . . , q − 1, s 
= r − δr,q − δr,j ,

fn+r−δr,q−δr,j = xrxq,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that

xf1,...,f2n−2 · (1 ⊗ vλ)

= (−1)(k+j+q+δj,q)(1 ⊗ Eq,jEj,qvλ − 1 ⊗ Er,jEj,rvλ

+ 1 ⊗ (Eq,q − Er,r)vλ). (40)

(xiv) Let n ≥ 5 and m, q, j, k, l ∈ {1, . . . , n}. Note that to define the monomials
fn+1, . . . , f2n−2, we are assuming that q < j. Otherwise, we can interchange
those indexes in the definition of fn+1, . . . , f2n−2.

fs = xs, s = 1, . . . , m − 1,

fs = xs+1, s = m, . . . , n − 1, s 
= l − δl,m,

fl−δl,m
= x2

l , fn = xkxq,

fn+s = xs, s = 1, . . . , q − 1,

fn+s = xs+1, s = q, . . . , j − 2,

fn+s = xs+2, s = j − 1, . . . , n − 2.

Thus, using (17) for these fi’s, it follows that,

xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(l+q+δr,q)(1 ⊗ El,mEk,jvλ). (41)

Suppose in the definitions of f1, . . . , f2n−2 in (xiv), we take l := k, then we
have the following.

(xv) Let n ≥ 4 and m, q, j, k ∈ {1, . . . , n},
xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(q+δq,k)(1 ⊗ Ek,mEk,jvλ). (42)

Now, suppose in the definitions of f1, . . . , f2n−2 in (xiv), we take l := k and
m := j, then we have the following.

(xvi) Let n ≥ 3 and, q, j, k ∈ {1, . . . , n},
xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(q+δq,k)(1 ⊗ Ek,jEk,jvλ). (43)

Suppose in the definitions of f1, . . . , f2n−2 in (xiv), we take m := k then we
have the following.

1950036-21



2nd Reading

March 20, 2018 9:26 WSPC/S0219-4988 171-JAA 1950036

C. Boyallian & V. Meinardi

(xvii) Let n ≥ 4 and, q, j, k, l ∈ {1, . . . , n},
xf1,...,f2n−2 · (1 ⊗ vλ) = (−1)(j+k+q+δj,q)(1 ⊗ El,jvλ − 1 ⊗ Ek,jEl,kvλ).

(44)

Equations (20) and (27) do not give us new information.

Case (3): Do not give us new equations.
Observe that the right-hand side of all the equations from (28) to (44) belongs to
1⊗U((Sn)≥0), therefore they are trivial singular vectors. Due to Lemma 3 and the
fact that Sing+(M(F )) does not contain trivial singular vectors, we need to ensure
that all the equations from (28) to (44) are equal to zero. Since different equations
hold for n = 3 and n ≥ 4, we will study these cases separately.

If n = 3, Eqs. (29), (30), (37) and (43) hold and they have to be zero. Note that
Eq. (30) is equivalent to

−(λ1 + λ2)(1 − λ2)(1 ⊗ vλ) = 0, (45)

λ1(1 + λ2)(1 ⊗ vλ) = 0, (46)

λ1(1 + λ1 + λ2)(1 ⊗ vλ) = 0. (47)

Thus, Eqs. (45)–(47) implies λ1 = λ2 = 0 or λ1 = 0, λ2 = 1.

Now, if n ≥ 4, Eqs. (30) and (32) equate to zero implies that λ1 = λ2 = · · · =
λn−1 = 0 or λ1 = λ2 = · · · = λn−2 = 0 and λn−1 = 1.

Then we will apply the Freudenthal’s formula to calculate the dimensions of the
weight spaces and check whether the remaining equations are satisfied.

We will need the following notation to apply Freudental’s formula to sln(C) (cf.
[8, Sec. 22.3]):

Let h be our chosen Cartan subalgebra of sln(C) and εj be defined by
εj (
∑n

i=1 aiEi,i) = aj . We will consider the roots

φ = {εi − εj | 1 ≤ i 
= j ≤ n},
where the root space associated to (εi − εj) is generated by Ei,j and simple roots
are

∆ = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn}.
Let Λ+ be the set of all dominant weights and δ = 1

2

∑
α�0 α. If αi := εi − εi+1, the

fundamental dominant weights relatives to ∆ of sln(C) are given by

πi =
1
n

[(n − i)α1 + 2(n − i)α2 + · · · (i − 1)(n − i)αi−1

+ i(n − i)αi + i(n − 1 − i)αi+1 + · · · + iαn−1]. (48)

Therefore, Λ is a lattice with basis πi, i = 1, . . . , n − 1.
Let n ≥ 3. Require that (αi, αi) = 1, (αi, αj) = −1/2 if |i − j| = 1 and

(αi, αj) = 0 if |i − j| ≥ 2.
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First, we will consider λ = (λ1, . . . , λn−1) = (0, . . . , 0). Since (λ + δ, λ + δ) −
(µ + δ, µ + δ) = 0 for µ = −αk−1 with k ∈ {1, . . . , n} it follows from [8, Proposi-
tion 21.3 and Lemma C of (13.4)], that µ is not a weight, therefore multiplicities
µ = −αk−1 are equal to zero. Also, it follows from Freudenthals formula, that the
multiplicities for µ = −∑i−1

k=j αk are also equal to zero for all i, j ∈ {1, . . . , n}, i > j.

Thus, Ei,jvλ = 0, for all i > j. In particular, all the equations from (23) to (44) are
equal to zero. Observe that if λ = (λ1, . . . , λn−1) = (0, . . . , 0), for n ≥ 3 then the
sln(C)-module F coincides with the exceptional module F0. Due to Theorem 6, we
have to take the quotient of M(F0) by the submodule generated by all its nontrivial
singular vectors to make the module irreducible.

Finally, if λ = (0, 0, . . . , 1), the Freudenthal’s formula gives that the multi-
plicities for µ = −2(αn−2 + αn−1) are equal to one. This implies that En,n−2

En,n−2vλ 
=0, therefore Eq. (43) is nonzero and the induced representation M(F ) is
not a representation of the n-Lie algebra Sn, for n ≥ 3. Conversely, it is straightfor-
ward to check that if λ = (λ1, . . . , λn−1) = (0, . . . , 0), the corresponding irreducible
quotient of the induced module is an Sn module, finishing our proof.
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