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Abstract. Riemannian manifolds carrying 2-forms satisfying the Killing-Yano equation
are natural generalizations of nearly Kähler manifolds. In this article we exhibit new
solutions of these equations on flag manifolds.

1. Introduction

We consider Riemannian manifolds (M2n, g,H) where H is a (1, 1) tensor satisfying
g(HX,Y ) = −g(X,HY ) for every X,Y vector fields on M . When H2 = −I we have an
almost Hermitian manifold. Notice that when H is invertible, associated to (M2n, g,H)
one has an almost Hermitian manifold (M2n, g, J) by considering a polar decomposition
H = PJ , P a positive definite (1, 1) tensor.

Let ∇ denote the Levi Civita connection associated to g. A result of Peter Petersen [17]
asserts that when H is invertible and parallel, that is, (∇XH)Y = 0 for any X,Y vector
fields on M and M is irreducible then H = cJ , with c ∈ R and (M2n, g, J) Kähler. This
happens in the case of a Riemannian homogeneous space M = G/K of maximal rank, for
example full flag manifolds, since they are irreducible by a result of [10].

If one requires (∇XH)X = 0 for all X, the analog of the nearly Kähler condition when
H is an almost complex structure, then the associated 2-form ω(X,Y ) = g(HX,Y ) satisfies
the Killing Yano equation.

Killing Yano forms were first introduced by K. Yano [23], who showed that they give rise
to quadratic first integrals of the geodesic equation. This was first used by R. Penrose and
M. Walker ([16]) to integrate the equation of motion.

In 1952 K. Yano considered the generalization of Killing 1-forms (duals of Killing vector
fields) defining Killing tensors of order p. They are p-forms η on M such that

(1) ∇Xη(Z, Y1, Y2, . . . , Yp−1) +∇Zη(X,Y1, Y2, . . . , Yp−1) = 0

is satisfied for all vector fields X,Z, Y1, Y2, . . . , Yp−1. In many references these forms are
known as Killing-Yano p-forms. They satisfy the Killing-Yano equation:

(2) ∇Xη =
1

p+ 1
ι(X)dη.

Observe that the covariant derivative is totally skew symmetric.
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In the case of Killing 2-forms ω on a Riemannian manifold (M, g) one can consider the
associated skew-symmetric tensor H : TM → TM defined by ω(X,Y ) = g(HX,Y ). In this
case the 2-form ω is KY if and only if

(∇XH)Y + (∇YH)X = 0,

or equivalently,

(∇XH)X = 0, for all X ∈ X(M).

As a particular case, if (M, g, J) is an almost Hermitian manifold with Kähler form
ω(X,Y ) = g(JX, Y ) then ω is a Killing-Yano 2-form if and only if (∇XJ)X = 0, equiva-
lently (M, g, J) is nearly Kähler.

In [4] the authors showed that a compact simply connected symmetric space carries a
non-parallel Killing p-form if and only if it is isometric to a Riemannian product Sk ×N ,
where Sk is a round sphere and k > p.

In this note we will consider non degenerate homogeneous solutions to equation (5). We
analyse G-invariant Killing-Yano tensors on reductive homogeneous spaces G/K. As an
application we study the Killing-Yano equation on generalized flag manifolds and we give
examples of invariant Killing-Yano tensors on full flag manifolds of dimension six, eight and
twelve. In all cases, we look at the behaviour of the associated almost complex structures
and we study their inherited properties.

In section 3 we will prove that the full flag Fn = SU(n)/S(U(1)n), n ≥ 3 carries an
invariant non degenerate solution to the Killing Yano equation. In the case of F3 =
SU(3)/S(U(1)3) we provide families of solutions. As an 8-dimensional example we show
that SO(5)/T , T a maximal torus also carries solutions to equation 5. The last example
toghether with Fnn ≥ 4 do not carry invariant nearly Kähler structures (see [], []). In the
case of F3 non degenerate and degenerate solutions are given. The above examples show
that on flag manifolds, which may be thought of as the opposite extreme to a symmetric
space, there are plenty of invariant solutions to the Killing-Yano equation.

2. Preliminaries

M a differentiable manifold, f : M → M a diffeomorphism, X a vector field on M .
With Xf we will denote the vector field Xff = dfX. If ∇ is an affine connection on M , a
diffeomorphism f : M →M is affine if (∇XY )f = ∇XfY f for all X,Y vector fields on M .

If (M, g) is a riemannian manifold , ∇ the Levi Civita connection and X,Y, Z are Killing
vector fields on M then

(3) g(∇XY, Z) = 1/2(g([X,Y ], Z) + g([Y,Z], X) + g([X,Z], Y )).

If f : M →M is an isometry and X is a Killing vector field on M then Xf is also a Killing
vector field on M .

Let (M, g) be a Riemannian manifold, and H : TM → TM a skew-symmetric endomor-
phism of the tangent bundle TM of M with its associated 2-form ω given by ω(X,Y ) =
g(HX,Y ) for all X,Y vector fields on M .

Let NH be the Nijenhuis tensor of H It is defined by

(4) NH(X,Y ) := [HX,HY ]−H([X,HY ] + [HX,Y ]) +H2[X,Y ].
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The endomorphism H is called integrable when NH ≡ 0, and the tensor field H is called
parallel with respect to ∇ when ∇H = 0, that is, (∇XH)Y = 0 for all X,Y vector fields
on M .

The endomorphismH is called Killing-Yano (or KY) if the associated 2-form ω, ω(X,Y ) =
g(HX,Y ) satisfies the Killing-Yano equation,

(5) (∇Xω)(Y,Z) + (∇Y ω)(X,Z) = 0,

where ∇ is the Levi-Civita connection and X,Y, Z are arbitrary vector fields on M (see
[23]). Equivalently

(6) g(∇XH)Y, Z) + g(∇YH)X,Z) = 0,

for all X,Y, Z vector fields on M . When the endomorphism H is parallel, it is clearly KY.
If the endomorphism H is KY and not parallel we will say it is Killing Yano strict.

If H is Killing-Yano and also integrable then it is parallel with respect to ∇ ([2] for a
proof).

Note that if (J, g) is an almost Hermitian structure, then the fundamental 2 form ω
given by ω(X,Y ) = (JX, Y ) is Killing-Yano if and only if (J, g) is nearly Kähler. Also, an
integrable nearly Kähler structere is Kähler, that is parallel.

2.1. Homogeneous Riemannian manifolds. Let M = G/K be a homogeneous space
where G is a connected Lie group and K is a closed subgroup of G. If x ∈ G, left invariant
translations Lx on G, induce diffeomorphisms τ(x) on G/K in such a way that τ(x)π = πLx
where π stands for the projection G→ G/K. If gM is a G -invariant metric on M = G/K,
that is τ(x) are isometries, for all x ∈ G we will say that M is a riemannian homogeneous
space. We may assume the action of G on G/K given by τ is effective, that is, τ(x) = I, I
the identity map implies x = e, e the identity of the group G.

If ∇M stands for the associated Levi Civita connection then

dτ(x−1)π(x)(∇MX Y )π(x) = ((∇MX Y )τ(x
−1))τ(x−1)π(x) = (∇M

Xτ(x−1)Y
τ(x−1))π(e),

thus the Levi Civita connection ∇M is determined by its value at π(e).
Given a G-invariant (1, 1)-tensor H on M , that is, Hdτ(x) = dτ(x)H then Hπ(e) is an

endomorphism of Tπ(e) commuting with dτ(k)π(e) for all k ∈ K and conversely. Also, if
X,Y are vector fields on M then

dτ(x−1)π(x)(∇MXH)Yπ(x) = dτ(x−1)π(x)(∇MXHY )π(x) − dτ(x−1)π(x)(H∇MX Y )π(x)

= (∇M
Xτ(x−1)(HY )τ(x

−1))π(e) −H(∇M
Xτ(x−1)Y

τ(x−1)
π(e)

= ((∇M
Xτ(x−1)H)Y τ(x−1))π(e),

thus, ∇MXH is also determined by its value at π(e).
Let g be the Lie algebra of left invariant vector fields onG and X(M) the space of all vector

fields onM . Each x ∈ g gives a vector field x∗ ∈ X(M) defined by x∗π(g) = d/dtt=0exptx.π(g).

Notice that [x∗, y∗] = −[x, y]∗ and x∗π(g) = dπgx
r
g where xrg = d/dtt=0exptx.g is the right

invariant vector field defined by x ∈ g.
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The vector fields x∗ are Killing vector fields and they give, in a neighborhood U of π(e)
a basis of all vector fields X(U). Therefore, from 3 the Levi Civita connection is given by

gM (∇Mx∗y∗, z∗)π(e) =1/2(gM ([x∗, y∗], z∗)π(e) + gM ([y∗, z∗], x∗)π(e) − gM ([z∗, x∗], y∗)π(e)(7)

=− 1/2(gM ([x, y]∗, z∗)π(e) − gM ([y, z]∗, x∗)π(e) + gM ([z, x]∗, y∗)π(e).(8)

Homogeneous spaces M = G/K carrying a G-invariant metric are reductive, that is, the
Lie algebra g of G decomposes g = k ⊕ m where k is the Lie algebra of K and m is an
Ad(K)-invariant complement. Choosing one such a complement m and identifying with
Tπ(e)M via d(π)e, the isotropy representation of K on Tπ(e)M is identified with the adjoint
representation of K on m.

The G- invariant metrics on reductive homogeneous M are in one to one correspondence
with Ad(K)-invariant inner products on m. More generally, there is a one to one correspon-
dence between G- invariant (r, s) tensor fields on M and Ad(K)-invariant tensors on the
vector space m.

Given an Ad(K)-invariant inner product (, ) on m corresponding to the G-invariant metric
gM on M and x, y, z ∈ m, 7 becomes

gM (∇Mx∗y∗, z∗)π(e) = 1/2(−([x, y]m, z) + ([z, y]m, x) + ([z, x]m, y)).

(Compare [7] Proposition 7.28).
Another basis of vector fields in a neighborhood of π(e) is given by the analogues of left

invariant vector fields as considered in [15]. Notice that left invariant vector fields on G do
not descend to vector fields on M but restricting to a convenient subset of G do so. Indeed,
there exists a neighborhood V of e in G homeomorphic to a product N × K1 such that
π|N is an homeomorphism onto a neighborhood N∗ of π(e). Every x ∈ m induces a vector
field on N∗ given by (x∗)π(c) = dτ(c)π(e)dpie)x where c ∈ N . Since τ(c) are isometries and
[x∗, y∗] = ([x, y]m)∗ it follows that,for x, y, z ∈ m one has

2gM (∇Mx∗y∗, z∗)π(e) = gM (([x, y]m)∗, z∗)π(e) − gM (([y, z]m)∗, x∗)π(e) + gM (([z, x]m)∗, y∗)π(e).

Therefore, for a given Ad(K)-invariant inner product (, ) on m, the Levi Civita connection
on M for the corresponding G-invariant metric is given by the mapping Λ : m→ so(m):

Λ(x)y = 1/2[x, y] + U(x, y),

where

(2U(x, y), z) = (([z, y]m, x) + ([z, x]m, y)).

The correspondence is given by dπeΛ(x)y = (∇Mx∗y∗)π(e). Moreover, the mapping Λ : m →
so(m) is Ad(K)-invariant and satisfies

Λ(x)y − Λ(y)x = [x, y]m, (Λ(x)y, z) + (Λ(y)x, z) = 0.

G-invariant endomorphisms on G/K are determined by Ad(K)-invariant endomorphisms
of m. Such endomorphisms commute with adx for all x ∈ k. The adjoint representation
ad : k→ gl(m) gives an orthogonal decomposition of m into mutually orthogonal irreducible
subspaces, such that each subspace is adx invariant for all x ∈ k.
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3. The Killing-Yano equation on homogenous manifolds

Let M be a homogeneous Riemannian space (M = G/K, gM ) where G/K is a homoge-
neous reductive space with reductive decomposition g = k⊕m , G is a connected Lie group,
K is a closed subgroup of G, π stands for the projection G→ G/K and gM is a G-invariant
metric. The corresponding Ad(K)-invariant inner product on m will be denoted by (, ).

There is a one to one correspondence between homogeneous (1, 1) tensors H on M which
are skew symmetric with respect to gM and linear endomorphisms H on m which commute
with Ad (K) and are skew symmetric with respect (, ) on m. Examples of this kind of
structures are given by almost Hermitian homogeneous spaces and by metric Lie groups
carrying skew symmetric endomorphism at g.

The following proposition gives an algebraic condition that ensure the fulfillment of the
Killing-Yano equation (5) on homogeneous reductive spaces. It generalizes to arbitrary
isotropy the one obtained in Proposition 1.4 of [3].

Proposition 3.1. The G-invariant skew-adjoint endomorphism H of TM , where M =
G/K is a homogeneous riemannian manifold with reductive decomposition g = k⊕m satisfies
(∇MXH)Y = 0 for all vector fields X,Y on M if and only if βH(x, y, z) = 0 for all x, y, z ∈ m
where

βH(x, y, z) = ([x,Hy]m, z) + ([z, x]m, Hy) + ([z,Hy]m, x) + ([x, y]m, Hz)+

+ ([Hz, x]m, y) + ([Hz, y]m, x).
(9)

It satisfies the Killing Yano equation (∇MXH)X = 0 for all vector fields X on M if and only
if αH(x, y, z) = 0 for all x, y, z ∈ m where

αH(x, y, z) := β(x, y, z) + β(y, x, z) =

([Hx, y]m − [x,Hy]m, z) + (−H[y, z]m + [Hy, z]m + 2[y,Hz]m, x)

+ (−H[x, z]m + [Hx, z]m + 2[x,Hz]m, y).

(10)

It is integrable, NH(X,Y ) = 0, for all vector fields X,Y on M if and only if γH(x, y) = 0
for all x, y ∈ m where

(11) γH(x, y) := [Hx,Hy]m −H([x,Hy]m + [Hx, y]m) +H2[x, y]m.

Moreover, the following identities hold:

(1) βH(x, y, z) = −βH(x, z, y),
(2) αH(x, y, z) = αH(y, x, z)
(3) αH(x, y, x) = βH(x, y, x)
(4) βH(x, y, z) = 0 if Hy = az and Hz = −ay.
(5) αH(x, y, z) + αH(y, z, x) + αH(z, x, y) = 0.

Proof. If gM is a G-invariant metric on M = G/K and ∇M stands for the associated Levi
Civita connection then H is parallel if and only if gM ((∇MXH)Y,Z)π(e) = 0. As considered in
[15], there exists a neighborhood V of e in G homeomorphic to a product N ×K1 such that
π|N is an homeomorphism onto a neighborhood N∗ of π(e). Every x ∈ m induces a vector
field on N∗ given by (x∗)π(c) = dτ(c)π(e)dπex where c ∈ N . Notice that (x∗)π(c) = dπcx|N
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and [x∗, y∗] = ([x, y]m)∗. Thus, H is parallel if and only if gM ((∇Mx∗H)y∗, z∗)π(e) = 0, for
x, y, z ∈ m.

Since gM (∇Mx∗y∗, z∗)π(e) = (Λ(x)y, z) and Hy∗ = (Hy)∗ it follows that H is parallel if
and only if (Λ(x)Hy, z) − (HΛ(x)y, z) = 0 and this is equivalent to βH(x, y, z) = 0 for all
x, y, z ∈ m.
H satisfies the Killing-Yano equation if and only if gM ((∇Mx∗H)y∗, z∗)π(e)+g

M ((∇My∗H)x∗, z∗)π(e) =
0 hence, if and only if βH(x, y, z) + βH(y, x, z) = αH(x, y, z) = 0 for all x, y, z ∈ m.

Finally, the Nijenhuis tensor is also G- invariant thus, H is integrable if and only if
NH(x∗, y∗)π(e) = 0 for all x, y ∈ m. Since

NH(x∗, y∗)π(e) =[Hx∗, Hy∗]π(e)−H([x∗, Hy∗]π(e) + [Hx∗, y∗]π(e)) +H2[x∗, y∗]π(e)

=(dπ)eγH(x, y)

and γH(x, y) ∈ m the last assertion follows.
The last identities can be easily verified.

�

Remark 1. It follows from βH(x, y, z) = −βH(x, z, y) that βH vanishes on span{x, y, z} if
and only if

βH(x, y, z) = βH(y, z, x) = βH(z, x, y) = 0.

Furthermore, from αH(x, y, z) = αH(y, x, z) and αH(x, y, z) + αH(y, z, x) + αH(z, x, y) = 0
it follows that αH vanishes on span{x, y, z} if and only if

αH(x, y, z) = αH(z, x, y) = 0

Definition 3.2. If a G-invariant skew-adjoint endomorphism H of TM , where M = G/K
is a homogeneous riemannian manifold with reductive decomposition g = k ⊕ m satisfies
(∇MXH)X = 0 for all vector fields X in M , equivalently, αH(x, y, z) = 0 for all x, y, z ∈ m
where in m the Ad(K)-invariant inner product corresponding to the G−invariant metric on
M is considered then we will say it is Killing Yano (KY for short). When (∇MXH)Y = 0 for
all vector fields X,Y in M , equivalently, βH(x, y, z) = 0 for all x, y, z ∈ m we will say it is
a parallel skew adjoint endomorphism.

In the case of a symmetric space G/K with canonical decomposition g = k⊕p every skew
symmetric isomorphism H which is Ad(K) invariant is integrable, γH(x, y, z) = 0 for all
x, y, z ∈ p, because [p, p] ⊂ k. If moreover H satisfies the Killing-Yano equation then it is
parallel. Hence symmetric spaces do not carry invariant solutions (non parallel) to the KY
equation. But, according to [?], spheres do so (of course not invariant).

All the examples known to us of homogeneous skew symmetric endomorphisms H of TM
satisfying the Killing-Yano equation occur on Lie groups with a left invariant metric. In
the following section we will present homogeneous solutions to equation (5) on various flag
manifolds.

When the isotropy is trivial we obtained in [3] an algebraic characterization of non-
degenerate Killing-Yano 2-forms on 2-step nilpotent Lie groups. They cannot be parallel,
according to Theorem 5.1 in [2]. Furthermore, in [2] a method is shown to build Killing-Yano
2-forms on Lie groups with left invariant metrics, starting with a Lie group equipped with
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such a tensor and a suitable representation of its Lie algebra. Choosing appropriate repre-
sentations of the nilpotent Lie algebras obtained in [3] and applying the referred method
one may produce many non parallel KY endomorphisms on Lie algebras ( not necessarily
nilpotent).

If M has dimension 4 there are no non parallel solutions to equation (5)

Theorem 3.3. Let M = G/K be a 4-dimensional homogeneous reductive space with a G-
invariant metric and let H be a G-invariant skewsymmetric endomorphism of TM . If H
satisfies the Killing Yano equation then it is parallel.

Proof. We have to prove that when m is 4-dimensional αH = 0 implies βH = 0. It is im-
mediate that βH(x, y, z) = −βH(x, z, y). From αH(x, y, z) = 0 it follows that βH(x, y, z) =
−βH(y, x, z). Thus βH is totally skew symmetric. Using β(x, y, z) = 0 if Hy = az and
Hz = −ay and that m is 4− dimensional the assertion follows.

�

Remark 2. More generally, it was proved in [1] that on a 4-dimensional Riemannian mani-
fold, any Killing-Yano 2-form of constant length is parallel.

As a consequence of results in [10] and [17] one has

Theorem 3.4. Let M be a homogeneous riemannian manifold M = G/T with a G-
invariant metric g, where G is a compact, connected and simple Lie group and T is a max-
imal torus. If H is an invertible endomorphism of TM satisfying g(HX,Y ) = −g(X,HY )
for every X,Y vector fields on M then H = cJ with J a Kähler structure with respect to g
and c ∈ R, c 6= 0.

Proof. If G is a compact connected Lie group and T is a maximal torus of G then χ(G/T ) >
0 ( see for example [?] for a proof ). Moreover, homogeneous Riemannian manifolds with
G compact and simple and Euler characteristic 6= 0 are irreducible as Riemannian manifold
([10]). Hence, if H is an invertible parallel endomorphism which is skew-symmetric with
respect to the G-invariant metric g then, according to Theorem 10.3.2 in [17], H = cJ with
J a Kähler structure with respect to g and c ∈ R, c 6= 0.

�

It follows from the Theorem above that in maximal flags parallel invertible (1, 1)-tensors
are multiples of a Kähler structure.

3.1. Invariant Killing Yano endomorphisms on flag manifolds. In this section we
obtain explicit invariant solutions to the Killing Yano equation on full flag manifolds.

We write next the Killing-Yano equation on a flag manifold and we present three examples
carrying non parallel KY structureon SU(n)/S(U(1)n), n ≥ 3 and on SO(5)/T .

There exist many equivalent definitions of flag manifolds. We will use the Lie theoretic
approach.

Let g be a complex semisimple Lie algebra and G a connected complex Lie group such
that Lie(G) = g. We fix a Cartan subalgebra h of g. For α ∈ h∗, denote by gα the following
subspace of g:

gα := {X ∈ g : [H,X] = α(H)X for all H ∈ h}.
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α ∈ h∗ is called a root if α 6= 0 and the subspace gα is nonzero. If R is the set of all roots,
g decomposes as follows:

g = h⊕
∑
α∈R

gα.

We choose a system Σ of simple roots and denote by R+ ⊂ R the set of positive roots.
Then

b = h⊕
∑
α∈R+

gα

is a Borel subalgebra of g. Let G be the simply connected complex Lie group with Lie
algebra g. We denote by B the connected Lie subgroup of G with Lie algebra b, which is
the normalizer of b in G. We call the homogeneous space F := G/B a full (or maximal)
flag manifold.

We denote by 〈·, ·〉 the Killing form of g. Its restriction to h is non degenerate, hence,
for each α ∈ R, there exists a unique hα ∈ h such that α(·) = 〈hα, ·〉. We will work with a
Cartan-Weyl basis Xα ∈ gα, α ∈ R, satisfying:

• 〈Xα, X−α〉 = 1,
• [h,Xα] = α(h)Xα, ∀h ∈ h,
• [Xα, X−α] = hα,
• [Xα, Xβ] = mα,βXα+β if α+ β ∈ R, and zero otherwise,
• mα,β ∈ Q and mα,β = −m−α,−β.

For each α ∈ R we set: Aα := Xα −X−α, Sα := Xα +X−α. It follows that

u := Span{Aα, iSα, ihR}α∈R+

is a compact real form of g, unique up to inner automorphisms, where hR = spanR{hα : α ∈
R}.

Let U = exp(u) be the connected Lie subgroup of G with Lie algebra u. U is a compact
real form of G. The intersection T = U ∩ B is a maximal torus of U . U acts transitively
on F, hence F = G/B = U/T . Denote by π : G → G/B (resp π : U → U/T ) and by π(e)
the origin of the homogeneous spaces

Let m be the orthogonal complement (with respect to the Killing form) of t. m is multi-
plicity free as a t-module under the adjoint representation and identifies naturally with

m =
∑
α∈R

Span{Aα, iSα} =
∑
α∈R

mα,

where mα, α ∈ R are the irreducible components.
The complex tangent space mC identifies with

∑
α∈R gα. A U -invariant metric on F is

determined by 〈·, ·〉Q = −〈Q·, ·〉, where Q ∈ GL(m) is symmetric, positive definite and
commutes with Ad(k) ∀k ∈ T . The inner product 〈·, ·〉Q admits a natural extension to a

symmetric bilinear form on mC that we denote again Q. Since the inner product on m is
Ad(T ) invariant, the elements of the standard basis {Aα, iSα, α ∈ R} are eignvectors of
Q with the same eigenvalue. In the complex tangent space one has QXα = λαXα, α ∈ R,
with λα > 0 and λ−α = λα. A U -invariant endomorphism H of the tangent bundle T (U/T )
skew symmetric with respect to a U -invariant metric correponds to H : m→ m an Ad(T )-
invariant skew-symmetric endomorphism with respect to the inner product 〈·, ·〉Q, where
〈·, ·〉 is the Killing form. On each component mα we have
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(12) [H0]mα =

[
0 −vα
vα 0

]
In the complex tangent space one has HXα = ivαXα, α ∈ R, with α ∈ R and v−α = −vα.

We will call triple of roots to the roots α, β, γ ∈ R such that α+ β + γ = 0. We denote
{α, β, γ}.

Proposition 3.5. Let H ∈ GL(m) be Ad(T )-invariant and skew-symmetric with respect to
〈·, ·〉Q. Then H is KY if and only if the following equations are satisfied ∀ α, β, γ ∈ R such
that α+ β + γ = 0:

(13) (vβ − vα)λγ + (λβ − λα)(vα + vβ + 2vγ) = 0,

(14) (vγ − vα)λβ + (λγ − λα)(vα + vγ + 2vβ) = 0;

H is parallel if and only if the following equations are satisfied ∀ α, β, γ ∈ R such that
α+ β + γ = 0:

(vβ + vγ)(λγ + λβ − λα) = 0(15)

(vα + vγ)(λγ − λβ + λα) = 0(16)

(vβ + vα)(−λγ + λβ + λα) = 0.(17)

Proof. According to Proposition 3.1, H satisfies the Killing-Yano equation if and only if
αH = 0 on m if and only if αH = 0 on mC. Observe that αH = 0 on the span of x, y, z if
and only if αH(x, y, z) = 0 and αH(z, x, y) = 0 (see Remark 1). In our situation mC =

∑
gα

with α ∈ R so we analyze the vanishing of αH in the span of Xα, Xβ, Xγ . We compute

αH(Xα, Xβ, Xγ) := 〈[HXα, Xβ]− [Xα, HXβ], QXγ〉
+ 〈−H[Xβ, Xγ ] + [HXβ, Xγ ] + 2[Xβ, HXγ ], QXα〉
+ 〈−H[Xα, Xγ ] + [HXα, Xγ ] + 2[Xα, HXγ ], QXβ〉
= imα,β〈Xα+β, Xγ〉(λγ(vα − vβ) + (λα − λβ)(vα + vβ + 2vγ)).

(18)

Similarly

αH(Xγ , Xα, Xβ) := imγ,α〈Xγ+α, Xβ〉(λβ(vγ − vα) + (λγ − λα)(vγ + vα + 2vβ)).(19)

�

Remark 3. The analogue of the above proposition for generalized flag manifolds has been
obtained in [11].

3.2. A strict KY solution for Fn = SU(n)/S(U(1)n). In the following theorem we
will show that a particular solution on F3 can be extended to give a KY solution on Fn.
According to [], see also[], Fn, n ≥ 4 do not carry invariant Nearly Kähler structures.
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Theorem 3.6. SU(n)/S(U(1)× ...×U(1)), n ≥ 3 admits a non parallel KY solution. The
pair (H,Q) is given by:

(20) HXαjk = (k − j)viXαjk , ∀k > j, v ∈ R

(21) λαjk = (k − j)2λ, λ ∈ R+

In other words vjk is equal to a multiple of the height of the root, and λjk is a multiple of
the square of the height of the root.

Proof. We will prove it by induction. We start with n = 3.

α12 α23

In this case we have the following triple

α12 + α23 − α13 = 0

According to the KY condition, it must be satisfied the following equations:

(v23 − v12)λ13 + (v12 + v23 − 2v13)(λ23 − λ12) = 0

(−v13 − v12)λ23 + (v12 − v13 + 2v23)(λ13 − λ12) = 0

Putting v12 = v23 = v, λ12 = λ23 = λ and v13 = 2v, λ13 = 4λ, one verifies it is a solution
to the previous equations, thus SU(3)/S(U(1)3) carries an invariant solution to the KY
equation. This is one of the solutions considered in....

We proceed next with SU(4)/S(U(1)4). This will give the idea of how to proceed with
the induction in general.

Here we have the following situation

α12α12α12α12α12 α23 α34

with simple roots : α12, α23, α34, then the positive roots are α12, α23, α34, α13, α24, α14

and triples of roots given by

α12 + α23 − α13 = 0

α23 + α34 − α24 = 0

α13 + α34 − α14 = 0

α12 + α24 − α14 = 0

Remember that su(4) = {A ∈ gl(4,C) : A + A∗ = I ∧ Tr(A) = 0}, then m =


0 z1 z2 z3
−z1 0 z4 z5
−z2 −z4 0 z6
−z3 −z5 −z6 0


 and t =




ai 0 0 0
0 bi 0 0
0 0 ci 0
0 0 0 di

 : a+ b+ c+ d = 0

.

Notice that the positive roots α12, α23, α13 correspond to one SU(3) and α23, α34, α24 to
other SU(3) inside SU(4) where a solution was found. Thus one needs to consider only the
last two equations involving the longest root α14.

Applying ......., from the last two triples one has four equations on v′s and λ’s to be
satisfied:
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(v34 − v13)λ14 + (v13 + v34 − 2v14)(λ34 − λ13) = 0

(−v14 − v13)λ34 + (−v14 + v13 + 2v34)(λ14 − λ13) = 0

(v24 − v12)λ14 + (v24 + v12 − 2v14)(λ24 − λ12) = 0

(−v14 − v12)λ24 + (−v14 + v12 + 2v24)(λ14 − λ12) = 0

Replacing v12 = v23 = v hence v23 = v34 = v; λ12 = λ23 = λ34 = λ, v13 = v24 = 2v,
λ13 = λ24 = 4λ that are the solutions corresponding to both SU(3), the above equations
become

(−v)λ14 + (3v − 2v14)(−3λ) = 0

(−v14 − 2v)λ+ (−v14 + 4v)(λ14 − 4λ) = 0

(v)λ14 + (3v − 2v14)(3λ) = 0

(−v14 − v)4λ+ (−v14 + 5v)(λ14 − λ) = 0

and v14 = 3v, λ14 = 9λ gives a solution.
We are considering the following situation that is easy to see in the Dynkin diagram. We

note that if we separate in two dynkin diagram we have the dynkin diagram with simples
roots {α12, α23, α34}

α12α12α12α12α12 α23 α34

0 ∗ ∗ ∗
0 ∗ ∗

0 ∗




Assume the theorem holds on SU(n)/S(U(1)n) and we will prove it holds on SU(n +
1)/S(U(1)n+1).

diagrama An+1

α12 α23 αn−1 n αn n+1

0 ∗ ∗ ... ∗ ∗
0 ∗ ... ∗ ∗

0 ... ∗ ∗
0 ∗ ∗

0 ∗
0







12 CECILIA HERRERA AND ISABEL G. DOTTI

In the n + 1 case the simple roots are given by Σ = {α12, ..., αn−1 n, αn n+1}. Split
Σ = {α12, ..., αn−1 n}∪{α23, ..., αn n+1} = Σ1∪Σ2. The positive roots coming from Σ1 and
from Σ2 give two SU(n) inside SU(n+ 1) where the theorem holds. The intersection of the
two system is the case n− 1, where the theorem also holds.

Thus the only triples we need to consider are the ones which the root α1 n+1 is involved:

α12 + α2n+1 − α1n+1 = 0

α13 + α3n+1 − α1n+1 = 0

.......................................

α1j + αjn+1 − α1n+1 = 0

.......................................

α1n + αnn+1 − α1n+1 = 0

Each triple give rise to two equations (??

(vj(n+1) − v1j)λ1(n+1) + (v1j + vj(n+1) − 2v1(n+1))(λj(n+1) − λ1j) = 0

(−v1(n+1) − v1j)λj(n+1) + (v1j − v1(n+1) + 2vj(n+1))(λ1n+1 − λ1j) = 0

By the inductive hypothesis, if j > 1, one has v1j = (j − 1)v, vj(n+1) = (n+ 1− j)v and

λ1j = (j − 1)2λ, λj(n+1) = (n+ 1− j)2λ. Replacing these values in the above equation
�

3.3. An additional example: SO(5)/T . The complex simple Lie group SO(5) is defined
as SO(5) =

{
A ∈ GL(5,C)/AAT = I y det(A) = 1

}
, its Lie algebra so(5) is the set of

complex skew symmetric matrix of order 5 with zero trace.
The system of roots of B2 = so(5) is given by R = {±e1,±e2,±(e1 − e2),±(e1 + e2)}.

If we take Σ = {e1 − e2, e2} as the set of simple roots, then the set of positive roots is
{e1, e2, e1 − e2, e1 + e2}. We call α1 = e1 − e2, α2 = e2, α3 = e1 and α4 = e1 + e2.

The Dynkin diagram of this example is:

α1 α2

The following identities define the only two possibles triples for this case:

e1 = (e1 − e2) + e2 = α1 + α2

e1 + e2 = ((e1 − e2) + e2) + e2 = α1 + α2 + α2

Hence

α1 + α2 − α3 = 0, α2 + α3 − α4 = 0

Thus, there are only two possibles triples in this case and a KY solution will be the inter-
section of the solutions of each triple.

The tangent space TeTSO(5)/T descomposes as m = mα1⊕mα2⊕mα3⊕mα4 and dimm =
8.

Given H, a Ad(T )-invariant skew symmetric, invertible and KY endomorphism on m =
mα1 ⊕mα2 ⊕mα3 ⊕mα4 we apply equations ?? and ?? to obtain the following
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(λ2 − λ1 − λ3)v1 + (λ3 + λ2 − λ1)v2 − 2(λ2 − λ1)v3 = 0

(λ3 − λ1 − λ2)v1 + 2v2(λ3 − λ1) + (λ1 − λ2 − λ3)v3 = 0

(−λ4 − λ2 + λ3)v2 + (λ4 + λ3 − λ2)v3 + 2(λ2 − λ3)v4 = 0

(λ4 − λ3 − λ2)v2 + 2(λ4 − λ2)v3 + (−λ3 − λ4 + λ2)v4 = 0

where the first two equation corresponds to the first triple and the last two to the second
triple.

The above system has infinitely many solutions. Two curves of solutions are given by

Q = (λ, λ, 3/2λ, 3/2λ), H = (v, v, 1/3v, 1/3v).

Q = (λ, λ, 2/3λ, 2/3λ), H = (v, v,−3v, 3v).

Sakane [19] classify all the Ricci Einstein metrics for this example, they are:
2λ1 = 2, λ2 = 3, λ3 = 1, λ4 = 4 λ1 = 4, λ2 = 3, λ3 = 1, λ4 = 2 λ1 =

2, λ2 = 1, λ3 = 3, λ4 = 4 λ1 = 4, λ2 = 1, λ3 = 3, λ4 = 2 λ1 = λ4 =
24± 4

√
6

15
, λ2 =

7± 2
√

6

5
The first four metrics are Kähler metrics. By direct calculation one can verify that the

fifth metric do not admit a solution to the KY equation.
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