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ABSTRACT. Riemannian manifolds carrying 2-forms satisfying the Killing-Yano equation
are natural generalizations of nearly K&hler manifolds. In this article we exhibit new
solutions of these equations on flag manifolds.

1. INTRODUCTION

We consider Riemannian manifolds (M?", g, H) where H is a (1,1) tensor satisfying
g(HX,Y) = —g(X,HY) for every X,Y vector fields on M. When H? = —I we have an
almost Hermitian manifold. Notice that when H is invertible, associated to (M?",g, H)
one has an almost Hermitian manifold (M?",g,J) by considering a polar decomposition
H = PJ, P a positive definite (1, 1) tensor.

Let V denote the Levi Civita connection associated to g. A result of Peter Petersen [17]
asserts that when H is invertible and parallel, that is, (VxH)Y = 0 for any X,Y vector
fields on M and M is irreducible then H = ¢.J, with ¢ € R and (M?", g, J) Kéhler. This
happens in the case of a Riemannian homogeneous space M = G/K of maximal rank, for
example full flag manifolds, since they are irreducible by a result of [10].

If one requires (VxH)X = 0 for all X, the analog of the nearly K&hler condition when
H is an almost complex structure, then the associated 2-form w(X,Y) = g(HX,Y) satisfies
the Killing Yano equation.

Killing Yano forms were first introduced by K. Yano [23], who showed that they give rise
to quadratic first integrals of the geodesic equation. This was first used by R. Penrose and
M. Walker ([16]) to integrate the equation of motion.

In 1952 K. Yano considered the generalization of Killing 1-forms (duals of Killing vector
fields) defining Killing tensors of order p. They are p-forms 7 on M such that

(1) VXU(Za Ylvyév' . '7}/])*1) + VZ??(X> Ylayéa .. '7}/])71) =0

is satisfied for all vector fields X, Z,Y1,Ys,...,Y,_1. In many references these forms are
known as Killing-Yano p-forms. They satisfy the Killing-Yano equation:

1
L
p+1

Observe that the covariant derivative is totally skew symmetric.

(2) Vxn=

(X)dn.
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In the case of Killing 2-forms w on a Riemannian manifold (M, g) one can consider the
associated skew-symmetric tensor H : TM — T'M defined by w(X,Y) = g(HX,Y). In this
case the 2-form w is KY if and only if

(VxH)Y + (VyH)X =0,

or equivalently,
(VxH)X =0, forall X eX(M).

As a particular case, if (M,g,J) is an almost Hermitian manifold with Kéhler form
w(X,Y) = g(JX,Y) then w is a Killing-Yano 2-form if and only if (VxJ)X = 0, equiva-
lently (M, g, J) is nearly Kéhler.

In [4] the authors showed that a compact simply connected symmetric space carries a
non-parallel Killing p-form if and only if it is isometric to a Riemannian product S* x N,
where S¥ is a round sphere and k > p.

In this note we will consider non degenerate homogeneous solutions to equation (5). We
analyse G-invariant Killing-Yano tensors on reductive homogeneous spaces G/K. As an
application we study the Killing-Yano equation on generalized flag manifolds and we give
examples of invariant Killing-Yano tensors on full flag manifolds of dimension six, eight and
twelve. In all cases, we look at the behaviour of the associated almost complex structures
and we study their inherited properties.

In section 3 we will prove that the full flag F,, = SU(n)/S(U(1)"),n > 3 carries an
invariant non degenerate solution to the Killing Yano equation. In the case of F3 =
SU(3)/S(U(1)?) we provide families of solutions. As an 8-dimensional example we show
that SO(5)/T, T a maximal torus also carries solutions to equation 5. The last example
toghether with Fj,n > 4 do not carry invariant nearly K&hler structures (see [|, []). In the
case of F3 non degenerate and degenerate solutions are given. The above examples show
that on flag manifolds, which may be thought of as the opposite extreme to a symmetric
space, there are plenty of invariant solutions to the Killing-Yano equation.

2. PRELIMINARIES

M a differentiable manifold, f : M — M a diffeomorphism, X a vector field on M.
With X/ we will denote the vector field X/ f = df X. If V is an affine connection on M, a
diffeomorphism f : M — M is affine if (VxY)/ = V Y/ for all X, Y vector fields on M.

If (M, g) is a riemannian manifold , V the Levi Civita connection and X,Y, Z are Killing
vector fields on M then

(3) Q(VXK Z) = 1/2(9([X7 Y]7Z) —i—g([Y, Z]7X) —l—g([X, Z],Y)).

If f: M — M is an isometry and X is a Killing vector field on M then X7 is also a Killing
vector field on M.

Let (M, g) be a Riemannian manifold, and H : TM — TM a skew-symmetric endomor-
phism of the tangent bundle TM of M with its associated 2-form w given by w(X,Y) =
g(HX,Y) for all X,Y vector fields on M.

Let Ng be the Nijenhuis tensor of H It is defined by

(4) Ny(X,Y):=|HX,HY| - H(X,HY] + [HX,Y]) + H*[X,Y].
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The endomorphism H is called integrable when Ny = 0, and the tensor field H is called
parallel with respect to V when VH = 0, that is, (VxH)Y = 0 for all X,Y vector fields
on M.

The endomorphism H is called Killing-Yano (or KY) if the associated 2-form w, w(X,Y) =
g(HX,Y) satisfies the Killing-Yano equation,

(5) (Vxw)(Y,Z)+ (Vyw)(X,Z) =0,

where V is the Levi-Civita connection and X,Y, Z are arbitrary vector fields on M (see
[23]). Equivalently

for all X,Y, Z vector fields on M. When the endomorphism H is parallel, it is clearly KY.
If the endomorphism H is KY and not parallel we will say it is Killing Yano strict.

If H is Killing-Yano and also integrable then it is parallel with respect to V ([2] for a
proof).

Note that if (J,¢) is an almost Hermitian structure, then the fundamental 2 form w
given by w(X,Y) = (JX,Y) is Killing-Yano if and only if (/, g) is nearly Kéhler. Also, an
integrable nearly Kéhler structere is Kahler, that is parallel.

2.1. Homogeneous Riemannian manifolds. Let M = G/K be a homogeneous space
where G is a connected Lie group and K is a closed subgroup of G. If z € G, left invariant
translations L, on G, induce diffeomorphisms 7(z) on G/K in such a way that 7(z)m = 7L,
where 7 stands for the projection G — G/K. If g™ is a G -invariant metric on M = G/K,
that is 7(x) are isometries, for all x € G we will say that M is a riemannian homogeneous
space. We may assume the action of G on G/K given by 7 is effective, that is, 7(x) = I, I
the identity map implies = e, e the identity of the group G.
If VM stands for the associated Levi Civita connection then

dr (@) n () (VAY V) = (VAY)T @) oty = (VY

T :z:_l
Xr(rl)y ( ))w(e)’

thus the Levi Civita connection VM is determined by its value at 7(e).

Given a G-invariant (1,1)-tensor H on M, that is, Hdr(z) = d7(x)H then Hy() is an
endomorphism of Ty commuting with d7 (k) ) for all & € K and conversely. Also, if
X,Y are vector fields on M then

AT(2™ ) n(e) (VXN H) Yy = d7 (37 ) () (VX HY ) () — d7(2 ) () (HVXY ) ()

(v%@_lxﬂm =

((ng(:c_l) ) 1)

thus, VA H is also determined by its value at (e).

Let g be the Lie algebra of left invariant vector fields on G and .’f( ) M) the space of all vector
fields on M. Each x € g gives a vector field 2* € X(M) defined by 27\ = d/dt;—oexptz.7(g).
Notice that [z*,y*] = —[z,y]* and :E’:r(g) = dmgxy where z = d/dtt oexptz.g is the right
invariant vector field defined by x € g.

vM m(z7h)
me) — H(V X‘F(ﬂv_l)Yw(e)

) (
) (

w(e)s



4 CECILIA HERRERA AND ISABEL G. DOTTI

The vector fields z* are Killing vector fields and they give, in a neighborhood U of 7 (e)
a basis of all vector fields X(U). Therefore, from 3 the Levi Civita connection is given by

(1) g™ (V" 2)ne) =1/2(™ ([0, 0], 25 )mie) + 9™ (W55 2*] 2 ) me) — 9™ (125, 271, 4" m(e)
(8) = 1/2(9M([x5 y]*’ Z*)ﬂ'(e) - gM([ya Z]*vx*)ﬂ(e) + gM([Z7$]*a y*)w(e)'

Homogeneous spaces M = G/K carrying a G-invariant metric are reductive, that is, the
Lie algebra g of G decomposes g = £ & m where £ is the Lie algebra of K and m is an
Ad(K)-invariant complement. Choosing one such a complement m and identifying with
Tr(eyM via d(m)e, the isotropy representation of K on T ()M is identified with the adjoint
representation of K on m.

The G- invariant metrics on reductive homogeneous M are in one to one correspondence
with Ad(K)-invariant inner products on m. More generally, there is a one to one correspon-
dence between G- invariant (r,s) tensor fields on M and Ad(K)-invariant tensors on the
vector space m.

Given an Ad(K)-invariant inner product (, ) on m corresponding to the G-invariant metric

gM on M and z,y,z € m, 7 becomes

gM(v;]t\{y*7 Z*)ﬂ'(e) = 1/2(_([$7y]m7 Z) + ([Z,y]m, l‘) + ([Z’ :E]m7y))'

(Compare [7] Proposition 7.28).

Another basis of vector fields in a neighborhood of 7(e) is given by the analogues of left
invariant vector fields as considered in [15]. Notice that left invariant vector fields on G do
not descend to vector fields on M but restricting to a convenient subset of G do so. Indeed,
there exists a neighborhood V of e in G homeomorphic to a product N x Kj such that
7y is an homeomorphism onto a neighborhood N, of m(e). Every x € m induces a vector
field on N, given by (74)r() = d7(c)r(e)dpic)r where c € N. Since 7(c) are isometries and
(s, x| = ([, y]m)« it follows that,for x,y, z € m one has

QQM(VXZ/*? z*)ﬂ(e) = gM(([x7y]m)*7 z*)ﬂ(e) - gM(([y7 Z]m)*’ x*)w(e) + gM(([Z>$]m)*>y*)7r(e)'

Therefore, for a given Ad(K)-invariant inner product (,) on m, the Levi Civita connection
on M for the corresponding G-invariant metric is given by the mapping A : m — so(m):

A(z)y =1/2[z,y] + U(z,y),
where
2U(z,y),2) = (([2, ym, ) + ([2; 2]m, Y))-

The correspondence is given by dr.A(z)y = (VY Y« )r(e)- Moreover, the mapping A : m —
so(m) is Ad(K)-invariant and satisfies

Az)y — Ay)z = [z, ylm,  (A@)y,2) + (Ay)z, 2) = 0.

G-invariant endomorphisms on G/ K are determined by Ad(K)-invariant endomorphisms
of m. Such endomorphisms commute with ad, for all x € ¢. The adjoint representation
ad : € — gl(m) gives an orthogonal decomposition of m into mutually orthogonal irreducible
subspaces, such that each subspace is ad, invariant for all = € €.
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3. THE KILLING-YANO EQUATION ON HOMOGENOUS MANIFOLDS

Let M be a homogeneous Riemannian space (M = G/K, g™) where G/K is a homoge-
neous reductive space with reductive decomposition g = €@ m , G is a connected Lie group,
K is a closed subgroup of G, 7 stands for the projection G — G/K and g is a G-invariant
metric. The corresponding Ad(K)-invariant inner product on m will be denoted by (, ).

There is a one to one correspondence between homogeneous (1,1) tensors H on M which
are skew symmetric with respect to ¢™ and linear endomorphisms H on m which commute
with Ad (K) and are skew symmetric with respect (,) on m. Examples of this kind of
structures are given by almost Hermitian homogeneous spaces and by metric Lie groups
carrying skew symmetric endomorphism at g.

The following proposition gives an algebraic condition that ensure the fulfillment of the
Killing-Yano equation (5) on homogeneous reductive spaces. It generalizes to arbitrary
isotropy the one obtained in Proposition 1.4 of [3].

Proposition 3.1. The G-invariant skew-adjoint endomorphism H of TM, where M =
G/K is a homogeneous riemannian manifold with reductive decomposition g = tdm satisfies
(VMH)Y =0 for all vector fields X,Y on M if and only if By (z,y,2) = 0 for allz,y,z € m
where

B (x,y,2) = ([2, HYlw, 2) + ([2, 2lm; Hy) + ([2, HYlwm, 2) + ([, Y], H2)+

(9) + ([Hz, 2w, y) + ((H2, Y, ).

It satisfies the Killing Yano equation (V%H)X = 0 for all vector fields X on M if and only
if ag(x,y,z) =0 for all x,y,z € m where

aH(x,y,z) = 5(x7y7z) + /B(y,$,2) =
(10) ([Hz,ylm — [2, HY|m, 2) + (=H[y, 2]m + [HY, 2]m + 2[y, Hz|m, ©)
+ (—H[x, 2|m + [Hz, 2] + 2[2, Hz]m, y)-

It is integrable, N (X,Y) = 0, for all vector fields X, Y on M if and only if yg(z,y) =0
for all x,y € m where

(11) 7H($7 y) = [qu Hy]m - H([xa Hy]m + [Hl’,y]m) + H2[HT, y]m
Moreover, the following identities hold:
(1) BH(xayaZ) = *,BH(C'%Z»?/),
2 H(l‘ayv Z) = O[H(y,.’E,Z)
H(xa y,l’) = ﬁH(xvyax)
Bu(z,y,2) =0 if Hy = az and Hz = —ay.
aH(x,y, Z) + aH(ya Z7$) + aH(Z7$7y) =0.

(2) @

(3) @

(4)
()

Proof. If g™ is a G-invariant metric on M = G/K and V™ stands for the associated Levi

Civita connection then H is parallel if and only if g™ (V¥ H)Y, Z )r(e) = 0. As considered in

[15], there exists a neighborhood V' of e in G' homeomorphic to a product N x K7 such that

7 is an homeomorphism onto a neighborhood N, of m(e). Every x € m induces a vector
field on N, given by (24)r () = d7(¢)x(eydmer where ¢ € N . Notice that (z4)r() = dmex|n
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and [z4, 9] = ([x,y]m)«. Thus, H is parallel if and only if gM((V%H)y*,z*)ﬂ(e) = 0, for
T,Y,z €em.
Since g™ (VM y,,2)r(e) = (A(z)y, 2) and Hy, = (Hy), it follows that H is parallel if
and only if (A(z)Hy, z) — (HA(x)y,z) = 0 and this is equivalent to S (x,y, z) = 0 for all
T,Y,z €m.
H satisfies the Killing-Yano equation if and only if gM((V%H)y*, z*)ﬂ(e)—i—gM((VéVfH)az*, Za)n(e) =
0 hence, if and only if Sy (x,y, z) + Bu(y, =, 2) = ag(x,y,z) =0 for all z,y,z € m.
Finally, the Nijenhuis tensor is also G- invariant thus, H is integrable if and only if
Np (24, Ys)r(ey = 0 for all x,y € m. Since

Nu (22, ys)m(€) =[Has, Hyulr(e) = H([2s, Hyaln(€) + [Haw, yuln(e)) + H?[4, vl (e)
=(dm)evu (7, Y)

and yg(x,y) € m the last assertion follows.
The last identities can be easily verified.
O

Remark 1. Tt follows from Sy (x,y,z) = —fu(z,z,y) that Sy vanishes on span{z,y, z} if
and only if

ﬁH(xv Y, Z) = 5H(y7 Zy CL‘) = BH(Zv xz, y) =0.
Furthermore, from ag(x,y,2) = ag(y,z, 2z) and ag(z,y, 2) + ag(y, z,2) + ag(z,z,y) =0
it follows that a vanishes on span{z,y, z} if and only if

OéH(x,y,Z) = OZH(Z,LU,Z/) =0

Definition 3.2. If a G-invariant skew-adjoint endomorphism H of TM, where M = G/K
is a homogeneous riemannian manifold with reductive decomposition g = ¢ & m satisfies
(VM H)X = 0 for all vector fields X in M, equivalently, ap(z,y,2) = 0 for all z,y,2 € m
where in m the Ad(K)-invariant inner product corresponding to the G—invariant metric on
M is considered then we will say it is Killing Yano (KY for short). When (VY H)Y = 0 for
all vector fields X,Y in M, equivalently, Sy (x,y,z) = 0 for all x,y,z € m we will say it is
a parallel skew adjoint endomorphism.

In the case of a symmetric space G/K with canonical decomposition g = ¢@p every skew
symmetric isomorphism H which is Ad(K) invariant is integrable, v (z,y,z) = 0 for all
x,y,z € p, because [p,p] C €. If moreover H satisfies the Killing-Yano equation then it is
parallel. Hence symmetric spaces do not carry invariant solutions (non parallel) to the KY
equation. But, according to [?], spheres do so (of course not invariant).

All the examples known to us of homogeneous skew symmetric endomorphisms H of T'M
satisfying the Killing-Yano equation occur on Lie groups with a left invariant metric. In
the following section we will present homogeneous solutions to equation (5) on various flag
manifolds.

When the isotropy is trivial we obtained in [3] an algebraic characterization of non-
degenerate Killing-Yano 2-forms on 2-step nilpotent Lie groups. They cannot be parallel,
according to Theorem 5.1 in [2]. Furthermore, in [2] a method is shown to build Killing-Yano
2-forms on Lie groups with left invariant metrics, starting with a Lie group equipped with
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such a tensor and a suitable representation of its Lie algebra. Choosing appropriate repre-
sentations of the nilpotent Lie algebras obtained in [3] and applying the referred method
one may produce many non parallel KY endomorphisms on Lie algebras ( not necessarily
nilpotent).

If M has dimension 4 there are no non parallel solutions to equation (5)

Theorem 3.3. Let M = G/K be a 4-dimensional homogeneous reductive space with a G-
invariant metric and let H be a G-invariant skewsymmetric endomorphism of TM. If H
satisfies the Killing Yano equation then it is parallel.

Proof. We have to prove that when m is 4-dimensional oy = 0 implies S = 0. It is im-
mediate that By (z,y,2) = —fu(x, z,y). From ag(z,y,z) = 0 it follows that Sy (x,y,z) =
—Br(y,x,z). Thus By is totally skew symmetric. Using B(z,y,2) = 0 if Hy = az and
Hz = —ay and that m is 4— dimensional the assertion follows.

Il

Remark 2. More generally, it was proved in [1] that on a 4-dimensional Riemannian mani-
fold, any Killing-Yano 2-form of constant length is parallel.

As a consequence of results in [10] and [17] one has

Theorem 3.4. Let M be a homogeneous riemannian manifold M = G/T with a G-
inwvariant metric g, where G is a compact, connected and simple Lie group and T is a max-
imal torus. If H is an invertible endomorphism of TM satisfying g(HX,Y) = —g(X, HY)
for every X, Y wector fields on M then H = c¢J with J a Kdahler structure with respect to g
and c € R,c # 0.

Proof. 1f G is a compact connected Lie group and 7' is a maximal torus of G then x(G/T) >
0 ( see for example [?] for a proof ). Moreover, homogeneous Riemannian manifolds with
G compact and simple and Euler characteristic # 0 are irreducible as Riemannian manifold
([10]). Hence, if H is an invertible parallel endomorphism which is skew-symmetric with
respect to the G-invariant metric g then, according to Theorem 10.3.2 in [17], H = ¢J with
J a Kéhler structure with respect to g and ¢ € R, ¢ # 0.

O

It follows from the Theorem above that in maximal flags parallel invertible (1, 1)-tensors
are multiples of a Kéhler structure.

3.1. Invariant Killing Yano endomorphisms on flag manifolds. In this section we
obtain explicit invariant solutions to the Killing Yano equation on full flag manifolds.

We write next the Killing-Yano equation on a flag manifold and we present three examples
carrying non parallel KY structureon SU(n)/S(U(1)"),n > 3 and on SO(5)/T.

There exist many equivalent definitions of flag manifolds. We will use the Lie theoretic
approach.

Let g be a complex semisimple Lie algebra and G a connected complex Lie group such
that Lie(G) = g. We fix a Cartan subalgebra h of g. For a € h*, denote by g, the following
subspace of g:

0o ={X €g:[H,X|=a(H)X forall H € h}.
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«a € b* is called a root if a # 0 and the subspace g, is nonzero. If R is the set of all roots,
g decomposes as follows:
g= b€92539a~

We choose a system X of simple roots and denote by Rt C R the set of positive roots.

Then
b=h® > ga

a€ERt
is a Borel subalgebra of g. Let G be the simply connected complex Lie group with Lie
algebra g. We denote by B the connected Lie subgroup of G with Lie algebra b, which is
the normalizer of b in G. We call the homogeneous space F := G/B a full (or maximal)
flag manifold.

We denote by (-,-) the Killing form of g. Its restriction to h is non degenerate, hence,
for each o € R, there exists a unique h, € h such that a(-) = (hq, ). We will work with a
Cartan-Weyl basis X, € go, a € R, satisfying:

4 Cxarx;a>::L
o [h,X,] =a(h)X,,Vh € b,
4 LX@,)(_Q]:Zha,
o [Xo, Xg] =mqpXqyipif a4+ € R, and zero otherwise,
e my3 €Qand mypg=-—m_q_g.
For each o € R we set: Ay := Xo — X_q, Sa := Xy + X_,. It follows that

u:= Span{A4,, iS4, bR }aecp+

is a compact real form of g, unique up to inner automorphisms, where hr = spang{h, : a €
R}.

Let U = exp(u) be the connected Lie subgroup of G with Lie algebra u. U is a compact
real form of G. The intersection T'= U N B is a maximal torus of U. U acts transitively
on F, hence F = G/B = U/T. Denote by 7 : G — G/B (resp 7 : U — U/T) and by 7(e)
the origin of the homogeneous spaces

Let m be the orthogonal complement (with respect to the Killing form) of t. m is multi-
plicity free as a t-module under the adjoint representation and identifies naturally with

m= Z Span{Ag, S, } = Z My,
acR acR
where mg, o € R are the irreducible components.

The complex tangent space m© identifies with > ack Ja- A U-invariant metric on F is
determined by (-,-)g = —(Q-,-), where Q € GL(m) is symmetric, positive definite and
commutes with Ad(k) Vk € T. The inner product (-, ) admits a natural extension to a
symmetric bilinear form on m® that we denote again (. Since the inner product on m is
Ad(T) invariant, the elements of the standard basis {A,,7S,, a € R} are eignvectors of
() with the same eigenvalue. In the complex tangent space one has QX, = Ao Xo,a € R,
with Ay, > 0 and A_, = A,. A U-invariant endomorphism H of the tangent bundle T'(U/T)
skew symmetric with respect to a U-invariant metric correponds to H : m — m an Ad(7T)-
invariant skew-symmetric endomorphism with respect to the inner product (:,-)g, where
(+,-) is the Killing form. On each component m, we have
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(12 Hilo = | 0 o

«

In the complex tangent space one has H X, = iv, Xy, € R, with a € R and v_, = —v,.

We will call triple of roots to the roots «, 3, v € R such that a + 5+ v = 0. We denote
{o, 8,7}

Proposition 3.5. Let H € GL(m) be Ad(T)-invariant and skew-symmetric with respect to
(-,)@- Then H is KY if and only if the following equations are satisfied V o, B, v € R such
that o+ B+~ =0:

(13) (v8 — Vo) Ay + (Mg — Aa) (v + v + 2v4) =0,

(14) (Uy = va)Ag + (Ay — Aa) (Vo + vy + 205) = 0;

H is parallel if and only if the following equations are satisfied ¥V «, B, v € R such that
a+p+v=0:

(15) (vg +0y)(Ay +Ag = Aa) =0
(16) (va +0y)(Ay = A+ Aa) =0
(17) (V5 +va)(=Ay +As +Aa) = 0

Proof. According to Proposition 3.1, H satisfies the Killing-Yano equation if and only if
ag = 0 on m if and only if ay = 0 on mC. Observe that ay = 0 on the span of z,y, z if
and only if ag (2,9, 2) = 0 and ag(z,z,y) = 0 (see Remark 1). In our situation m® = 3" g,
with oo € R so we analyze the vanishing of a7 in the span of X, Xz, X,. We compute

(XouXﬂ’ ) <[HXa7XB] [XaaHXﬁ] QX >
2[

(18) + (—H[Xp, X3] + [H X, X3 + 2[X5, HX,], @Xa)
+(—H[Xo, X5 + [HXo, X, + 2[ X0, HX, |, QX3)
= 1Ma,5{Xatp, Xy) (A (va = v5) + (Aa = Ag)(va + v + 205)).
Similarly

(19)  an(Xy, Xa, Xg) 1= imy,a(Xyra, Xg)(Ag(vy — va) + (Ay = Aa)(vy + va + 205)).
O

Remark 3. The analogue of the above proposition for generalized flag manifolds has been
obtained in [11].

3.2. A strict KY solution for F, = SU(n)/S(U(1)"). In the following theorem we
will show that a particular solution on F3 can be extended to give a KY solution on Fj,.
According to [], see also|], Fy,,n > 4 do not carry invariant Nearly Ké&hler structures.



10 CECILIA HERRERA AND ISABEL G. DOTTI

Theorem 3.6. SU(n)/S(U(1) x ... x U(1)),n > 3 admits a non parallel KY solution. The
pair (H, Q) is given by:

(20) HXO‘jk - (k' - j)UiXOg]'k7 Vk > j,'U € R

(21) Aaj, = (k= 7P\ A e RT

In other words vji, is equal to a multiple of the height of the root, and \j is a multiple of
the square of the height of the root.

Proof. We will prove it by induction. We start with n = 3.
3
In this case we have the following triple
a1z +ag — a3 =0
According to the KY condition, it must be satisfied the following equations:
(v23 — v12) M3 + (V12 + v23 — 2v13)(A23 — A12) =0
(—v13 — v12) A3 + (v12 — V13 + 2v23) (A3 — A12) =0

Putting v1o = v93 = v, A12 = Aoz = A and wviz = 2v, A13 = 4\, one verifies it is a solution
to the previous equations, thus SU(3)/S(U(1)3) carries an invariant solution to the KY
equation. This is one of the solutions considered in....

We proceed next with SU(4)/S(U(1)*). This will give the idea of how to proceed with
the induction in general.

Here we have the following situation

062 Oé%% 0434O

with simple roots : «q2, as3, 34, then the positive roots are s, aos, aiza, 13, og, 14
and triples of roots given by

a2 + agg — a3 =0
Qg3+ agq — g =0
a13+agg — a1y =0
a2 +agg —ayy =0
Remember that su(4) = {A € gl(4,C) : A+ A* =1 ATr(A) = 0}, then m =

0 21 Z9 23 at 0 0 O
—21 0 24 25 . 0 b 0 O . .
% -z 0z and t = 0 0 ¢ 0 ta+b+e+d=0
—7zZ3 —2z5 —z¢ O 0O 0 0 dt

Notice that the positive roots ai2, ans, a3 correspond to one SU(3) and aas, agq, aiag to
other SU(3) inside SU(4) where a solution was found. Thus one needs to consider only the
last two equations involving the longest root aq4.

Applying ....... , from the last two triples one has four equations on v's and \’s to be
satisfied:
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(v34 — v13)A14 + (V13 + V34 — 2v14)(A34 — A13) =0
(—v1a — v13)A34 + (—v14 + v13 + 2034) (Mg — A13) =0
(vog — vi2)A1a + (v2a + v12 — 2v14)(A2a — A12) =0
(—v14 — v12)A24 + (—v14 + v12 + 2024) (A4 — Ai12) =0

Replacing V1 = V23 = U hence V23 = V34 — U; )\12 = )\23 = )\34 = )\, V13 = V4 = 2’0,
A13 = Agq4 = 4 that are the solutions corresponding to both SU(3), the above equations
become

(—v)A1a + (Bv = 2014)(—=3X) =0
(—v1a — 20)A + (—v14 + 4v)(A1g — 4N =0
(v)A14 + (3v — 2v14)(3X) =0
(—v1g4 —0)AN + (—v14 +50)(Ag — A) =0
and vi4 = 3v, A4 = 9 gives a solution.
We are considering the following situation that is easy to see in the Dynkin diagram. We

note that if we separate in two dynkin diagram we have the dynkin diagram with simples
roots {12, ao3, 34}

@12 Q923 Q34
S 8 o

Assume the theorem holds on SU(n)/S(U(1)") and we will prove it holds on SU(n +
1)/SU@)™*).
diagrama A;, 11

12 Q23 On—1n Ap nt1
@) —O0
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In the n + 1 case the simple roots are given by ¥ = {2, ...,an—1 n,pn ny1}. Split
Y ={og, ey an—1 n}U{a23, ...,y nt1} = X1 U9, The positive roots coming from ¥; and
from Y9 give two SU(n) inside SU(n + 1) where the theorem holds. The intersection of the
two system is the case n — 1, where the theorem also holds.

Thus the only triples we need to consider are the ones which the root a; 41 is involved:

12 + aopg1 — aipe1 =0
13 + a3pg1 — aip41 =0

Qlp + Qpptl — Aptl = 0
Each triple give rise to two equations (77

(Vitnt1) — V1) M (1) + (V15 + Vjmg1) = 2010041)) V1) — Aj) =0
(—V1(n41) = V1) Nj(nt1) + (V15 = Vigng1) + 205 m+1)) Mg — Arj) =0
By the inductive hypothesis, if j > 1, one has vi; = (j — 1)v, vj@41) = (n + 1 — j)v and

A= (= 1)2, Ajng1y = (n+1— 7)?X. Replacing these values in the above equation
Il

3.3. An additional example: SO(5)/T. The complex simple Lie group SO(5) is defined
as SO(5) = {Ae€ GL(5,C)/AAT =1y det(A) =1}, its Lie algebra so(5) is the set of
complex skew symmetric matrix of order 5 with zero trace.

The system of roots of By = s0(5) is given by R = {4e1, *eq, +(e1 — e2),+(e1 + €2)}.
If we take ¥ = {e; — eg,ea} as the set of simple roots, then the set of positive roots is
{e1,e2,e1 —eg,e1 +ea}. We call a; = e — e, ag = €9, ag = e and oy = e + es.

The Dynkin diagram of this example is:

——%
The following identities define the only two possibles triples for this case:
e1 = (e1—e2) +e2=a;+a
e1+ex=((e1 —e2)+ea) +ea=ar+as+a
Hence
art+ar—a3=0, ar+az3—ag=0

Thus, there are only two possibles triples in this case and a KY solution will be the inter-
section of the solutions of each triple.

The tangent space T.7SO(5)/T descomposes as m = m,, Bm,, Bm,, Bm,, and dimm =
8.

Given H, a Ad(T)-invariant skew symmetric, invertible and KY endomorphism on m =
Mg, O My, O My, G m,, we apply equations 7?7 and 77 to obtain the following
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(A2 — A1 — A3)v1 + (A3 + A2 — A\)ve — 2(Aa — Ap)us
(A3 — A1 — Ao)v1 + 20a(A3 — A1) + (A1 — Ao — A3)us
(—)\4 — Ao + )\3)1)2 + (/\4 + A3 — )\2)’03 + 2()\2 — /\3)
()\4 — A3 — )\2)’02 + 2()\4 — )\2)1)3 -+ (—)\3 — M+ /\2)1)4 =0
where the first two equation corresponds to the first triple and the last two to the second

triple.
The above system has infinitely many solutions. Two curves of solutions are given by

Q= (\AN3/2)0,3/2)\), H = (v,v,1/3v,1/3v).

Q= (\A2/3)\2/3)), H = (v,v,—3v,3v).
Sakane [19] classify all the Ricci Einstein metrics for this example, they are:
201 =2, o =3, A3=1, My =4 A =4, =3, A3=1, 4y =2 X =
2, da=1, A3 =3, Ms=4 M =4 =1, A3=3, 4 =2 M\ =M\ =
24 + 4/6 N 21/6
5 7775
The first four metrics are Kahler metrics. By direct calculation one can verify that the
fifth metric do not admit a solution to the KY equation.

0
0
0

Vg

2
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