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Abstract. In this paper we study fractional type operators with more than one kernel,
defined by

Tα,mf(x) =

∫
Rn

k1(x−A1y)k2(x−A2y) . . . km(x−Amy)f(y)dy,

where, for 1 ≤ i ≤ m, each ki satisfies a fractional size condition and generalized fractional
Hörmander condition, and Ai are invertibles matrices. We obtain weighted Coifman type
estimates, strong and weak type inequalities and BMO estimates for this operator. We also
present some examples different from those in the literature.

1. Introduction

The classical integral operators, for example the Calderón-Zygmund operator or the frac-
tional integral Iα, have kernels with only one possible singularity. For the study of integral
operators with more that one singularity in the kernel, we write the kernel as product of
functions where each function has only one possible singularity.

In [18], Ricci and Sjögren obtain the Lp(R, dx) boundedness, p > 1, for a family of maximal
operators on the three dimensional Heisenberg group. Some of these operators arise in the
study of the boundary behavior of Poisson integrals on the symmetric space SLR3/SO(3).
To get the principal result, they study the boundedness on L2(R) of the operator

Tαf(x) =

∫
R
|x− y|−α|x+ y|α−1f(y)dy, (1.1)

for 0 < α < 1. Later, in [12], Godoy and Urciuolo study a generalization of (1.1) for Rn.

More recently, in [19] the second author and Urciuolo analyze the following generalization
of these operators. Let 0 ≤ α < n and m ∈ N. For 1 ≤ i ≤ m, let Ai be matrices such that

Ai is invertible and Ai −Aj is invertible for i 6= j, 1 ≤ i, j ≤ m. (H)

For any f ∈ L∞loc(Rn), they define

Tα,mf(x) =

∫
Rn
K(x, y)f(y)dy, (1.2)

where

K(x, y) = k1(x−A1y)k2(x−A2y) . . . km(x−Amy), (1.3)

and ki is a fractional rough kernel defined is the following way, let 1 < qi < ∞ such that
n
q1

+ · · · + n
qm

= n − α. Let Σ the unit sphere in Rn, Ωi ∈ L1(Σ) homogeneous of degree 0.
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Then they consider

ki(x) =
Ωi(x/|x|)
|x|n/qi

, (1.4)

and proved the weighted Coifman type estimates, strong and weak type inequalities and
BMO estimates for this operator.

During the last years, several authors studied operators of the form (1.2) in different
contexts: weighted Lebesgue and Hardy spaces with constant and variable exponent, also
the endpoint estimates and boundedness in BMO and weighted BMO. See for example
[9, 11, 13, 14, 20, 21, 22, 23, 24, 25, 26, 27].

These operators generalized classical operators as Iα, the fractional integral operator, and
rough fractional and singular operators. In the case of α = 0, T0,m behaves like a singular
integral operator in sense of Lp boundedness. For α > 0, if 1 < p < n/α and 1

q = 1
p −

α
n

then Tα,m is bounded from Lp into Lq. It is well known that if 0 < p < 1 the operator Iα is
bounded from Hp into Hq, for some q. In several cases the operators consider in this paper
are not bounded from Hp into Hq, but instead are bounded from Hp into Lq, 0 < p < 1
and some q (see [23, 24]).

In this paper, we consider the operator Tα,m defined by (1.2) and (1.3) with the matrices Ai
satisfying the condition (H). Let 0 ≤ αi < n, 1 ≤ i ≤ m such that α1 +· · ·+αm = n−α, and
assume that ki satisfies a fractional size condition and a generalized fractional Hörmander
condition. The definition of spaces and objets involved in this paper are described in section
2.

Our first result is a pointwise estimate that relates the sharp delta maximal function of

Tα,mf , M ]
δ(Tα,mf), 0 < δ ≤ 1, with a generalized fractional maximal function of f . This

estimate is a fundamental key to obtain weighted inequalities for the operator Tα,m. These
inequalities are developed in section 3. These weighted inequalities are the Coifman type
estimates, the endpoint estimates and strong type estimates with Ap,q weights and bump
conditions.

In the section 4, we present new examples of this type of operators different than the ones
described above. In section 5 we present the weak type (1,1) estimate with respect to the
Lebesgue measure for T0,m. In section 6 we give the proofs of the results.

2. Preliminaries

In this section we present some notions about Young function, Luxemburg average and
weights that will be fundamental throughout all this work.

Young Function and Luxemburg average. For more details of this topic see [16]
or [17]. A function Ψ : [0,∞) → [0,∞) is said to be a Young function if Ψ is continuous,
convex, no decreasing and satisfies Ψ(0) = 0 and lim

t→∞
Ψ(t) =∞.

The average of the Luxemburg norm of a function f induced by a Young function Ψ in
the ball B is defined by

‖f‖Ψ,B := inf

{
λ > 0 :

1

|B|

∫
B

Ψ

(
|f |
λ

)
≤ 1

}
.

Observe that if Ψ(t) = tr, r ≥ 1, ‖f‖Ψ,B = ‖f‖r,B =
(

1
|B|
∫
B |f |

r
)1/r

.
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Each Young function Ψ has an associated complementary Young function Ψ satisfying
the generalized Hölder inequality

1

|B|

∫
B
|fg| ≤ 2‖f‖Ψ,B‖g‖Ψ,B.

Remark 2.1. Observe that if you see the proof of this last inequality in [16], the ball B can
be replaced by any measurable set E such that |E| <∞.

If Ψ1, . . . ,Ψm, φ are Young functions satisfying that for some t0 > 0, Ψ−1
1 (t) · · ·Ψ−1

m (t)φ−1(t) ≤
ct, for all t ≥ t0, then

‖f1 · · · fmg‖1,B ≤ c‖f1‖Ψ1,B · · · ‖fm‖Ψm,B‖g‖φ,B. (2.1)

The function φ is called the complementary of the functions Ψ1, . . . ,Ψm.
Given f ∈ L1

loc(Rn) and 0 ≤ α < n, the fractional maximal operator associated to the
Young function Ψ is defined as

Mα,Ψf(x) := sup
B3x
|B|α/n‖f‖Ψ,B.

Now we compile some examples of maximal operators related to certain Young functions.

• If Ψ(t) = t then Mα,Ψ = Mα, the classical fractional maximal operator.

• Ψ(t) = tr with 1 < r <∞. In this case Mα,Ψ = Mα,r, where M0,rf = M(f r)1/r.
• Ψ(t) = exp(t)− 1. Then, Mα,Ψ = Mα,exp.

• If β ≥ 0 and 1 ≤ r < ∞, Ψ(t) = tr log(e + t)β is a Young function then Mα,Ψ =
Mα,Lr(logL)β .

• If α = 0 and k ∈ N, Ψ(t) = t log(e + t)k it can be proved that MΨ ≈ Mk+1, where
Mk+1 is M iterated k + 1 times.

Remark 2.2. Observe that if Ψ(t) = tr then a simple computation show that

Mα,rf = (Mαr|f |r)1/r .

Fractional size and fractional Hörmander conditions. Now we present the frac-
tional size condition and a generalized fractional Hörmander condition. For more details of
these objects see [2] or [10].

Let Ψ be a Young function and let 0 ≤ α < n. Let us introduce some notation: |x| ∼ s
means s < |x| ≤ 2s we write ‖f‖Ψ,|x|∼s = ‖fχ|x|∼s‖Ψ,B(0,2s).

The function Kα is said to satisfies the fractional size condition and we set Kα ∈ Sα,Ψ, if
there exists a constant C > 0 such that

‖Kα‖Ψ,|x|∼s ≤ Csα−n.

When Ψ(t) = t we write Sα,Ψ = Sα. Observe that if Kα ∈ Sα, then there exists a constant
c > 0 such that ∫

|x|∼s
|Kα(x)|dx ≤ csα.

The function Kα satisfies the Lα,Ψ-Hörmander condition and we set K ∈ Hα,Ψ, if there
exists cΨ > 1 and CΨ > 0 such that for all x and R > cΨ|x|,

∞∑
m=1

(2mR)n−α‖Kα(· − x)−Kα(·)‖Ψ,|y|∼2mR ≤ CΨ.
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We say that Kα ∈ Hα,∞ if Kα satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in place
of ‖ · ‖Ψ,|x|∼2mR.

When Φ(t) = tr, 1 ≤ r < ∞, we recover the fractional Lr-Hörmander condition and
simply write Hα,r instead of Hα,Ψ.

Weights. We say that a function w is a weight if w is a non negative function in L1
loc(Rn).

Let 0 ≤ α < n, 1 ≤ p, q ≤ ∞, we say that a weight w belong to the class Ap,q if

[w]Ap,q = sup
B
‖w‖q,B‖w−1‖p′,B <∞.

If 1 ≤ p <∞, Ap denotes the classical Muckenhoupt class of weights. Note that w ∈ Ap,p
is equivalent to wp ∈ Ap. We recall that A∞ = ∪p≥1Ap, and the statement w ∈ A∞,∞ is
equivalent to w−1 ∈ A1.

The fractional Bp condition, which is denote by Bα
p was introduced by Cruz-Uribe and

Moen in [5]: Let 0 ≤ α < n, 1 < p < n/α, 1
q = 1

p −
α
n and φ be a Young function, we say

φ ∈ Bα
p if ∫ ∞

1

φ(t)q/p

tq
dt

t
<∞.

They proved, in Theorem 3.3 in [5], that if φ ∈ Bα
p then Mα,φ : Lp(dx)→ Lq(dx) and

‖Mα,φ‖Lp→Lq ≤ c

(∫ ∞
1

φ(t)q/p

tq
dt

t

)1/q

.

We will consider the following bump conditions: let 1 < q < ∞ and Ψ be a Young
function, then a weight w ∈ Aq,Ψ if

[w]Aq,Ψ = sup
Q
‖w‖q,Q‖w−1‖Ψ,Q <∞.

Given a function f ∈ L1
loc(Rn), the sharp maximal function is defined by

M#f(x) = sup
B3x

1

|B|

∫
B

∣∣∣∣f − 1

|B|

∫
B
f

∣∣∣∣ .
A locally integrable function f has bounded mean oscillation (f ∈ BMO) if M#f ∈ L∞

and the norm ‖f‖BMO = ‖M#f‖∞
Observe that the BMO norm is equivalent to

‖f‖BMO = ‖M#f‖∞ ∼ sup
B

inf
a∈C

1

|B|

∫
B
|f(x)− a|dx.

There is also a weighted version of BMO, this is denoted by BMO(w), and it is described
by the seminorm

‖|f |‖w = sup
B
‖wχB‖∞

(∫
B

∣∣∣∣f(x)− 1

|B|

∫
B
f

∣∣∣∣ dx) .
It is easy to check that

‖|f |‖w ' ‖wM#f‖∞.
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3. Main results

In this section, we present the main results of this paper. We start with the pointwise
estimates of the sharp delta maximal function.

Theorem 3.1. Let 0 ≤ α < n, m ∈ N and let Tα,m be the integral operator defined by (1.2).
For 1 ≤ i ≤ m, let Ψi be a Young function and let 0 ≤ αi < n such that α1+· · ·+αm = n−α.
Let ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi and let the matrices Ai satisfy the hypothesis (H).
If α = 0, suppose T0,m be of strong type (p0, p0) for some 1 < p0 <∞.
If φ is the complementary of the functions Ψ1, . . . ,Ψm, then there exists C > 0 such that,
for 0 < δ ≤ 1 and f ∈ L∞c (Rn) (f a bounded function with compact support)

M ]
δ |Tα,mf |(x) := M ]

(
|Tα,mf |δ

)
(x)1/δ ≤ C

m∑
i=1

Mα,φf(A−1
i x). (3.1)

Remark 3.2. Observe that in Theorem 3.1 if α = 0 then m > 1. Indeed α = 0 and m = 1
imply α1 = n. So T0,1 is a singular integral operator and the size condition has no sense.
Nevertheless the result of the Theorem is still true, see [15].

For the weighted estimates we need an extra condition for the weights. There exists c > 0
such that

w(Aix) ≤ cw(x), (3.2)

a.e.x ∈ Rn and for all 1 ≤ i ≤ m.

Theorem 3.3. Let 0 ≤ α < n and m ∈ N and let Tα,m be the integral operator defined by
(1.2). For 1 ≤ i ≤ m, let Ψi be Young functions, 0 ≤ αi < n such that α1 + · · ·+αm = n−α.
Also suppose ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi and that matrices Ai satisfy the hypothesis (H).
If α = 0, suppose T0,m be of strong type (p0, p0) for some 1 < p0 <∞.
Let 0 < p < ∞. If φ is the complementary of the functions Ψ1, . . . ,Ψm, then there exists
C > 0 such that, for f ∈ L∞c (Rn) and w ∈ A∞,∫

Rn
|Tα,mf(x)|pw(x)dx ≤ C

m∑
i=1

∫
Rn
|Mα,φf(x)|pw(Aix)dx, (3.3)

whenever the left-hand side is finite.
Futhermore, if w satisfies (3.2), then∫

Rn
|Tα,mf(x)|pw(x)dx ≤ C

∫
Rn
|Mα,φf(x)|pw(x)dx.

By (3.3), the Coifman type estimate, we can obtain weighted inequalities for Tα,m. To
obtain these inequalities we need a relationship between MΦ and Mr. Caldarelli, Lerner and
Ombrosy in [3], and Di Plinio and Lerner in [7], proved the following

Lemma 3.4. [3, 7] Let Φ be a Young function. For all x ∈ Rn and r > 1,

MΦf(x) ≤

(
2 sup
t≥Φ−1(1/2)

Φ(t)

tr

)1/r

Mrf(x) =: κrMrf(x).

It follows, in analogous way, that,

Mα,Φf(x) ≤ cκrMα,rf(x). (3.4)

First, we get a weighted BMO estimate for weights in the class A( nαr ,∞).



6 G. H. IBAÑEZ FIRNKORN AND M. S. RIVEROS

Theorem 3.5. Let Tα,m be as in Theorem 3.3. Suppose there exists r > 1 such that κr <∞.
If wr ∈ A( nαr ,∞) and satisfies (3.2), then there exists C > 0 such that for f ∈ L∞c (Rn),

‖|Tα,mf |‖w ≤ C‖fw‖Ln/α .
In [19] it is proved a result analogous to the weighted BMO estimate for Tα,m, so we omit

the proof.

Theorem 3.6. Let Tα,m be as in Theorem 3.3. Let 1
q = 1

p −
α
n . Suppose there exists

1 < r < p such that κr <∞. If wr ∈ A(1, n
n−αr ) and satisfies (3.2) then there exists C > 0

such that for f ∈ L∞c (Rn),

sup
λ>0

λ(w
rn

n−αr {x ∈ Rn : |Tα,mf(x)| > λ})
n−αr
rn ≤ C

(∫
|f(x)|rwr(x)dx

)1/r

.

The strong type inequality follows from the boundedness of Mα,φ, Theorem 2.6 in [1].

Theorem 3.7. Let Tα,m be as in Theorem 3.3. Let 1 ≤ r < p < n/α and 1
q = 1

p −
α
n . Let η

and ϕ be Young functions such that η−1(t)t
α
n . ϕ−1(t) for every t > 0. If ϕ1+ sn

n−α ∈ B sn
n−α

for every s > r(n− α)/(n− αr) and wr ∈ A(pr ,
q
r ),

‖Tα,mf‖Lq(wq) ≤ C‖f‖Lp(wp).

Observe that Theorems 3.5 and 3.6 depend on an auxiliary exponent r. These exponents
r give rise to a class of weights that is sufficient to prove a boundedness condition.

Taking a class of weights satisfying bump condition that does not depend on the exponent
r, we are able to prove another weighted strong inequality. Indeed, we first recall Theorem
5.37 in [6]:

Theorem 3.8. [6] Let 0 ≤ α < n, 1 < p < n/α, let 1
q = 1

p −
α
n . Let φ,B and C be Young

functions such that B−1(t)C−1(t) ≤ cφ−1(t), t ≥ t0 > 0. If C ∈ Bα
p and w ∈ Aq,B, then

there exits c > 0 such that for every f ∈ Lp(wp),∫
(Mα,φf)qwq ≤ c

∫
|f |pwp.

Now, from Theorem 3.8 we obtain

Theorem 3.9. Let Tα,m be as in Theorem 3.3. Let 1
q = 1

p −
α
n . Let φ, B and C be Young

functions such that B−1(t)C−1(t) ≤ cφ−1(t), t ≥ t0 > 0. If C ∈ Bα
p and w ∈ Aq,B, then

there exists c > 0 such that for every f ∈ Lp(wp),
‖Tα,mf‖Lq(wq) ≤ c‖f‖Lp(wp).

4. Examples

Now we present some examples of this type of operator. For 1 ≤ r < ∞, let r′ be the
conjugate exponent of r.
Let Ψ1(t) = tr,Ψ2(t) = exp(t)− 1 and φ(t) = tr log(e+ t)r

′
. Observe that

Ψ−1
1 (t)Ψ−1

2 (t)φ−1(t) ' t1/r log(e+ t)
t1/r

′

log(e+ t)
= t

then φ is the complementary function of Ψ1,Ψ2.
For βi > 0, i = 1, 2, we define

k̃i(t+ 4) = Ψ−1
i

(
1

t(1− log(t))1+βi

)
χ(0,1)(t).
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By Theorem 5 in [15], we have k̃i ∈ HΨi . For the size condition, observe that∫
R

Ψi(k̃i(t))dt =

∫ 1

0

1

t(1− log(t))1+βi
dt =

1

βi
<∞.

If s > 1, then k̃iχs<|x|≤2s ≡ 0. If s < 1,

‖k̃i‖Ψi,|x|∼s = ‖k̃iχs<|x|≤2s‖Ψi,B(0,2s) ≤ 1 +
1

4s

∫ 2s

s
Ψi(k̃i(t))dt ≤ 1 +

1

4s

(
1

βi

)
≤ 1

s

(
1 +

1

4βi

)
.

Then, we get k̃i ∈ SΨi .
Let 0 < α,α1, α2 < 1 such that α1 + α2 = 1− α. By Proposition 4.1 in [2], we know that

if ki(t) = t1−αi k̃i(t) then ki ∈ H1−αi,Ψi ∩ S1−αi,Ψi . We define the operator,

Tf(x) =

∫
k1(x−A1y)k2(x−A2y)f(y)dy, (4.1)

where ki are defined as above and A1, A2 are invertibles matrices such that A1−A2 is invert-
ible. This operator satisfies the hypothesis of the Theorem 3.3 and we have the following

Theorem 4.1. Let 0 < α < 1. Let T be the operator defined by (4.1). Then,

(a) For all 1 < q <∞ and w ∈ A∞,∫
Rn
|Tf(x)|qw(x)dx ≤ C

2∑
i=1

∫
Rn
|Mα,Lr′ logLr′f(x)|qw(Aix)dx.

(b) Let 1 < p < 1/α and 1
q = 1

p − α. If w satisfies (3.2) and wr
′ ∈ A p

r′ ,
q
r′

then∫
Rn
|Tf(x)|qwq(x)dx ≤ C

∫
Rn
|f(x)|pwp(x)dx.

(c) κr′+1 <∞ and if wr
′+1 ∈ A( 1

α(r′+1) ,∞) and satisfies (3.2) then

‖|Tf |‖w ≤ C‖fw‖L1/α(dx).

(d) Let s = r′+1
1−α(r′+1) . If wr

′+1 ∈ A(1, s
r′+1) and satisfies (3.2) then

sup
λ>0

λ(ws{x ∈ Rn : |Tf(x)| > λ})
1
s ≤ C

(∫
|f(x)|r′+1wr

′+1(x)dx

)1/(r′+1)

.

Remark 4.2. Observe that to prove (b), we can use Theorem 2.3 in [1]. This result asserts
that Mα,Lr logLγ is bounded from Lp(wp) into Lq(wq) if and only if wr ∈ A p

r
, q
r
.

5. Auxiliaries results

In this section, we obtain an auxiliary lemma and the weak type (1, 1) estimate for the
case α = 0 with respect to the Lebesgue measure. These results are used in the proof of the
main results.

Lemma 5.1. Let Tα,m be as in Theorem 3.3. Let n−α
n < q <∞ and ν ∈ As for some s > 1.

If f ∈ L∞c (Rn) then Tα,mf ∈ Lq(ν).

Remark 5.2. Let 1 < p < ∞ and 1
q = 1

p −
α
n . If wr ∈ A(pr ,

q
r ) for some 1 < r < ∞, then

wq ∈ As with s = q
n(n− α).

Let Ψ be a Young function and w ∈ Ap,Ψ. If tq
′ ≤ cΨ(t) then wq ∈ Aq. On the other

hand, if tp
′ ≤ cΨ(t) then w ∈ Ap,q.
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Theorem 5.3. Under the hypothesis of Theorem 3.1 for α = 0, T0,m is weak type (1, 1)
respect to the Lebesgue measure, in other words

|{x ∈ Rn : |T0,mf(x)| > λ}| ≤ c

λ

∫
Rn
|f |,

for all f ∈ L1(Rn).

6. Proofs of the results

6.1. Proofs of main results. In the proof of Theorem 3.1, we follow the idea of Theorem
2.2 in [19].

Proof of Theorem 3.1. Les us consider the case m = 2. The general follows in an analogous
way.

Let f ∈ L∞c (Rn) and 0 < δ ≤ 1. Let x ∈ Rn and let B = B(cB, R) be a ball that contains

x, centered at cB with radius R. We write B̃ = B(cB, 2R) and for 1 ≤ i ≤ 2, set B̃i = A−1
i B̃.

Let f1 = fχ∪2
i=1B̃i

and f2 = f − f1.

Suppose that a := Tα(f2)(cB) <∞. Then,

(
1

|B|

∫
B
|Tαf(y)− a|δdy

)1/δ

≤
(

1

|B|

∫
B
|Tαf(y)− a|δdy

)1/δ

≤ C
(

1

|B|

∫
B
|Tα(f1)(y)|δdy

)1/δ

+ C

(
1

|B|

∫
B
|Tα(f2)(y)− Tα(f2)(cB)|δdy

)1/δ

= C(I + II). (6.1)

First, we consider the case 0 < α < n. For I, using Jensen inequality we have,

I ≤ 1

|B|

∫
B
|Tα(f1)(y)|dy

≤ 1

|B|

∫
B

∫
B̃1∪B̃2

|K(y, z)||f1(z)|dzdy

≤
2∑
i=1

1

|B|

∫
B̃i

|f1(z)|
∫
B
|K(y, z)|dydz. (6.2)

Let us estimate the first summand, i.e. z ∈ B̃1. The case z ∈ B̃2 is analogous.
Now,∫
B
|K(y, z)|dy ≤

∫
{y∈B:|y−A1z|≤|y−A2z|}

|K(y, z)|dy +

∫
{y∈B:|y−A2z|≤|y−A1z|}

|K(y, z)|dy.

(6.3)
For j ∈ N, let consider the set

C1
j := {y ∈ B : |y −A1z| ≤ |y −A2z|, |y −A1z| ∼ 2−j−1R}.

Observe that if y ∈ B and z ∈ B̃1 then |y −A1z| ≤ 3R < 4R and so B ⊂ B(A1z, 4R).
Then, by Hölder’s inequality∫
{y∈B:|y−A1z|≤|y−A2z|}

|K(y, z)|dy ≤
∞∑

j=−2

∫
C1
j

|K(y, z)|dy
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≤
∞∑

j=−2

|B(A1z, 2
−jR)|

|B(A1z, 2−jR)|

∫
B(A1z,2−jR)

|K(y, z)|χC1
j
dy

≤ C
∞∑

j=−2

|B(A1z, 2
−jR)|‖k1(· −A1z)‖Ψ1,|y−A1z|∼2−j−1R‖k2(· −A2z)‖Ψ2,|y−A1z|∼2−j−1R.

Observe that of y ∈ C1
j then |y −A2z| ≥ |y −A1z| > 2j−1R. Then, since k2 ∈ Sn−α2,Ψ2

‖k2(· −A2z)‖Ψ2,|y−A1z|∼2−j−1R ≤
∑
k≥0

‖k2(· −A2z)‖Ψ2,|y−A2z|∼2−j+k−1R

≤
∑
k≥0

‖k2(·)‖Ψ2,|y|∼2−j+k−1R

≤
∑
k≥0

(2−j+kR)−α2 = c(2−jR)−α2 . (6.4)

Inequality (6.4) and the fact that k1 ∈ Sn−α1,Ψ1 , gives

∫
{y∈B:|y−A1z|≤|y−A2z|}

|K(y, z)|dy ≤ C
∞∑

j=−2

(2−jR)n−α1−α2 = CRα.

In analogous way, we get∫
{y∈B:|y−A2z|≤|y−A1z|}

|K(y, z)|dy ≤ CRα. (6.5)

Then, by (6.2) and (6.5), we have

I ≤ CRα
2∑
i=1

1

|B|

∫
B̃i

|f(z)|dz ≤ CRα
2∑
i=1

1

|B̃i|

∫
B̃i

|f(z)|dz

≤ C
2∑
i=1

Mαf(A−1
i x) ≤ c

2∑
i=1

Mα,ϕf(A−1
i x).

For II, by Jensen inequality

II ≤ 1

|B|

∫
B
|Tα(f2)(y)− Tα(f2)(cB)|dy

≤ 1

|B|

∫
B

∫
(B̃1∪B̃2)c

|K(y, z)−K(cB, z)||f2(z)|dzdy

≤ 1

|B|

∫
B

2∑
l=1

∫
Zl
|K(y, z)−K(cB, z)||f2(z)|dzdy,

where

Z l = (B̃1 ∪ B̃2)c ∩ {z : |cB −Alz| ≤ |cB −Arz|, r 6= l, 1 ≤ r ≤ 2}.
For y ∈ B and z ∈ Z l, let estimate

|K(y, z)−K(cB, z)| ≤|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)|
+ |k1(cB −A1z)||k2(y −A2z)− k2(cB −A2z)|. (6.6)
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For simplicity we control the first summand of (6.6), the other summand follows in ana-
logous way. For j ∈ N, let

Dl
j = {z ∈ Z l : |cB −Alz| ∼ 2j+1R}.

Observe that Dl
j ⊂ {z : |cB −Alz| ∼ 2j+1R} ⊂ A−1

l B(cB, 2
j+2R) =: B̃l,j and Z l =

⋃
j∈ND

l
j .

Using generalized Hölder inequality we get∫
Zl
|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)||f(z)|dz

≤
∞∑
j=1

∫
Dlj

|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)|f(z)|dz

≤
∞∑
j=1

|B̃l,j |
|B̃l,j |

∫
B̃l,j

[
χDlj
|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)||f(z)|

]
dz

≤
∞∑
j=1

|B̃l,j |‖(k1(y −A1·)− k1(cB −A1·))χDlj‖Ψ1,B̃l,j
‖k2(y −A2·)χDlj‖Ψ2,B̃l,j

‖f2‖ϕ,B̃l,j

≤ c
∞∑
j=1

|B̃l,j |‖(k1(y −A1·)− k1(cB −A1·))χDlj‖Ψ1,B̃l,j
‖k2(y −A2·)χDlj‖Ψ2,B̃l,j

‖f2‖ϕ,B̃l,j .

If y ∈ B and z ∈ Z l then |cB − Alz|/2 ≤ |y − Alz| < 2|cB − Alz| and if z ∈ Dl
j then

2jR ≤ |y −Alz| ≤ 2j+2R.
For the case l = 1, observe that if z ∈ D1

j then |cB − A2z| ≥ |cB − A1z| ≥ 2j+1R. So we

decompose D1
j =

⋃
k≥j

(D1
j )k,2 where

(D1
j )k,2 = {z ∈ D1

j : |cB −A2z| ∼ 2j+1R}.

Note that (D1
j )k,2 ⊂ {z : |cB −A2z| ∼ 2k+1R}. As k2 ∈ Sn−α2,Ψ2 , then

‖k2(y −A2·)χD1
j
‖Ψ2,B̃1,j

≤
∑
k≥j
‖k2(y −A2·)χ(D1

j )k,2
‖Ψ2,B̃2,k

≤
∑
k≥j
‖k2(·)‖Ψ2,|x|∼2kR + ‖k2(·)‖Ψ2,|x|∼2k+1R

≤ c
∑
k≥j

(2kR)−α2 = c(2jR)−α2 .

Finally using k1 ∈ Hn−α1,Ψ1 and since A−1
1 x ∈ B̃1,j we get∫

Z1

|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)||f2(z)|dz

≤ c
∞∑
j=1

(2jR)n−α2‖(k1(y −A1·)− k1(cB −A1·))χD1
j
‖Ψ1,B̃1,j

‖f‖ϕ,B̃1,j

≤ cMα,ϕf(A−1
1 x)

∞∑
j=1

(2jR)n−α2−α‖(k1(y −A1·)− k1(cB −A1·))χD1
j
‖Ψ1,B̃1,j

≤ cMα,ϕf(A−1
1 x).
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The case l = 2 follows the same argument with minimals changes. As k2 ∈ Sn−α2,Ψ2 , we
get

‖k2(y −A2·)χD2
j
‖Ψ2,B̃2,j

≤ c(2jR)−α2 .

Then, as above∫
Zl
|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)||f(z)|dz

≤ c
∞∑
j=1

|B̃2,j |‖(k1(y −A1·)− k1(cB −A1·))χD2
j
‖Ψ1,B̃2,j

‖f2‖ϕ,B̃2,j

≤ cMα,ϕf(A−1
2 x)

∞∑
j=1

(2jR)n−α2−α‖(k1(y −A1·)− k1(cB −A1·))χD2
j
‖

Ψ1,B̃
j
2

≤ cMα,ϕf(A−1
2 x)

∞∑
j=1

(2jR)n−α2−α‖(k1(y −A1·)− k1(cB −A1·))χD2
j
‖

Ψ1,B̃
j
2

≤ cMα,ϕf(A−1
2 x)

∞∑
k=1

 k∑
j=1

(2−α1)k−j

 (2kR)α1‖(k1(y −A1·)− k1(cB −A1·))χ(Dlj)k,1
‖Ψ1,B̃k1

≤ cMα,ϕf(A−1
2 x)

∞∑
k=1

(2kR)α1‖(k1(y −A1·)− k1(cB −A1·))χ(Dlj)k,1
‖Ψ1,B̃k1

≤ cMα,ϕf(A−1
2 x),

where the last inequality holds since k1 ∈ Hn−α1,Ψ1 .
So,

2∑
l=1

∫
Zl
|k1(y −A1z)− k1(cB −A1z)||k2(y −A2z)||f(z)|dz ≤ c

2∑
l=1

Mα,ϕf(A−1
l x),

and

II ≤ c
2∑
l=1

Mα,ϕf(A−1
l x).

For the case α = 0, proceed as in (6.1). The estimate for I follows, since T0,2 is of weak-
type (1, 1) with respect to the Lebesgue measure (see Lemma 5.3). Using Kolmogorov’s
inequality (see Lemma 5.16 in [8]), we get

I ≤ C

|B|

∫
Rn
|f1(y)|dy =

2∑
i=1

C

|B|

∫
B̃i

|f(y)|dy ≤ C
2∑
i=1

Mf(A−1
i f(x)).

The term II is analogous to the case 0 < α < n, and so the theorem follows in this
case. �

Proof of Theorem 3.3. By the extrapolation result Theorem 1.1 in [4], estimate (3.3) holds
for all 0 < p < ∞ and all w ∈ A∞ if, and only if, it holds for some 0 < p0 < ∞ and
all w ∈ A∞. Therefore, we will show that (3.3) is true for p0, which is taken such that
n−α
n < p0 <∞.
Let w ∈ A∞, then there exists r > 1 such that w ∈ Ar. Let 0 < δ < 1 such that

1 < r < p0/δ, thus w ∈ Ap0/δ. Then, by Lemma (5.1), we have ‖Tα,mf‖Lp0 (w) < ∞, and

‖(Tα,mf)δ‖Lp0/δ(w) <∞.
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Applying Fefferman-Stein inequality (see Lemma 7.10 in [8], p. 144) and Theorem 3.1 we
get

∫
Rn
|Tα,mf(x)|p0w(x)dx ≤

∫
Rn
|M(Tα,mf)δ(x)|p0/δw(x)dx

≤
∫
Rn

(M ]
δ(Tα,mf)(x))p0w(x)dx

≤ C
m∑
i=1

∫
Rn

(Mα,φf(A−1
i x))p0w(x)dx.

Hence, for all w ∈ A∞, (3.3) holds for p0, that is∫
Rn
|Tα,mf(x)|p0w(x)dx ≤ C

m∑
i=1

∫
Rn

(Mα,φf(A−1
i x))p0w(x)dx. (6.7)

Thus, as mentioned, using the extrapolation results obtained in [4], (3.3) holds for all
0 < p <∞ and w ∈ A∞.

If w satisfies (3.2), we have∫
Rn
|Tα,mf(x)|pw(x)dx ≤ C

m∑
i=1

∫
Rn

(Mα,φf(A−1
i x))pw(x)dx = C

m∑
i=1

∫
Rn

(Mα,φf(x))pw(Aix)dx

≤ C
m∑
i=1

∫
Rn

(Mα,φf(x))pw(x)dx.

�

6.2. Proof of weighted inequalities.

Proof of Theorem 3.6. Let t > 1 such that 1
t = 1

r−
α
n = n−αr

rn , by Theorem 3.3 and inequality
(3.4) we have

(wt{x ∈ Rn : |Tα,mf(x)| > λ})
1
t ≤ C(wt{x ∈ Rn :

m∑
i=1

Mα,φf(A−1
i x) > cγλ})

1
t

≤ C(wt{x ∈ Rn :

m∑
i=1

Mα,rf(A−1
i x) > cγλ})

1
t

≤ C(wt{x ∈ Rn :

m∑
i=1

Mαr|f |r(A−1
i x) > λr})

1
t ,

where the last inequality holds by Remark 2.2.
Since w satisfies (3.2), we have

sup
λ>0

λ(wt{x ∈ Rn : |Tα,mf(x)| > λ})
1
t ≤ Csup

λ>0
λ(wt{x ∈ Rn : Mαr|f |r(x) > λr})

1
t

≤ C
(∫
|f |r(x)wr(x)dx

)1/r

,

where the last inequality follows since wr ∈ A1, n
n−αr

and Mαr is of weak type (1, n
n−αr ) in

other words of weak type (1, t/r). �
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Proof of Theorem 3.7. Since κr < ∞ and wr ∈ A p
r
, q
r
, by Lemma 5.1 we have that if f ∈

L∞c (Rn) then Tα,mf ∈ Lq(wq). Now, from Theorem 3.3 and Theorem 2.6 in [1], we obtain(∫
Rn
|Tα,mf(x)|qwq(x)dx

)1/q

≤ C
(∫

Rn
|Mα,φf(x)|qwq(x)dx

)1/q

≤ C
(∫

Rn
|f(x)|pwp(x)dx

)1/p

.

�

6.3. Proof of the Auxiliaries results.

Proof of Lemma 5.1. Let M = max
1≤j≤2

‖Aj‖∞. Suppose suppf ⊂ B(0, R). If |x| > 2MR and

y ∈ suppf , then for 1 ≤ i ≤ 2, |Aiy| ≤MR < |x|
2 and

|x|
2
≤ |x| −RM ≤ |x−Aiy| ≤ |x|+ |Aiy| <

3

2
|x|.

Analogous to the proof of Theorem 3.1,

|Tf(x)| = |
∫
B(0,R)

k1(x−A1y)k2(x−A2y)f(y)dy|

≤ |
∫
y∈B(0,R):|x−A2y|≤|x−A1y|

k1(x−A1y)k2(x−A2y)f(y)dy|

+ |
∫
y∈B(0,R):|x−A1y|≤|x−A2y|

k1(x−A1y)k2(x−A2y)f(y)dy|.

We only estimate the first summand the other is analogous. Let

Z = {y ∈ B(0, R) : |x−A1y| ≤ 4|x|} ⊂ B(0, R).

By Hölder’s inequality∣∣∣∣ ∫
y∈B(0,R):|x−A2y|≤|x−A1y|

k1(x−A1y)k2(x−A2y)f(y)dy

∣∣∣∣
≤ |Z|
|Z|
‖f‖L∞

∫
y∈B(0,R):|x−A2y|≤|x−A1y|

|k1(x−A1y)k2(x−A2y)|dy

≤ ‖f‖L∞ |Z|‖k1(x−A1·)χ{y:
|x|
2
≤|x−A1y|< 3

2
|x|}‖Ψ1,Z‖k2(x−A2·)χ{y:

|x|
2
≤|x−A2y|< 3

2
|x|}‖Ψ2,Z

≤ c‖f‖L∞ |Z||x|−α1−α2

≤ c‖f‖L∞ |B(0, R)||x|α−n

≤ c|x|α−n.

Hence, if |x| > 2MR, then |Tf(x)| ≤ c|x|α−n.
On the other hand, if |x| < 2MR, |x−Aiy| ≤ |x|+ |Aiy| < 3MR. Then, we proceed just as
above to get |Tf(x)| ≤ cRα−n and for 1 ≤ s <∞,∫

B(0,2MR)
|Tf(x)|sdx < C.

The rest of the proof follows the same steps as the proof of Lemma 3.2 in [19]: if ν ∈ As
for some s > 1, we get ∫

|Tf(x)|qν(x)dx ≤ C.

�
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Proof of Theorem 5.3. We consider T = T0,2.
Let f be a function in the Schwartz space and λ > 0. By the Calderón-Zygmund decompo-
sition for f at the height λ, we get Ωλ = ∪jQj , where Qj are disjoint dyadic cubes in Rn.

Then there exist g and h =
∑

j hj functions such that f = g + h, ‖g‖p0 ≤ cnλ
1/p0

′‖f‖1/p0

1 ,

supp(hj) ⊂ Qj and
∫
hj = 0. Thus,

|{x ∈ Rn : |Tf(x)| > λ}| ≤ |{x ∈ Rn : |Tg(x)| > λ/2}|+ |{x ∈ Rn : |Th(x)| > λ/2}|
= I + II.

For I, using that T is of weak type (p0, p0), we obtain

I = |{x ∈ Rn : |Tg(x)| > λ/2}| ≤ c 2p0

λp0
‖g‖p0

p0
≤ c 2p0

λp0
‖f‖1λp0−1 =

c

λ

∫
Rn
|f |.

For II, let Q̃j,i the cube with center Aicj and l(Q̃j,i) = 4Ml(Qj), where M = max
1≤i≤2

‖Ai‖∞,

II = |{x ∈ Rn : |Th(x)| > λ/2}|

≤ |{x ∈
⋃
j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}+ |{x 6∈
⋃
j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}

≤ |
⋃
j

(Q̃j,1 ∪ Q̃j,2)|+ |{x 6∈
⋃
j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}.

For the first term, we have

|
⋃
j

(Q̃j,1 ∪ Q̃j,2)| ≤
∑
j

|Q̃j,1|+ |Q̃j,2| = 2
∑
j

(4Ml(Qj))
n

= 2(4M)n
∑
j

l(Qj)
n = 2(4M)n|

⋃
j

Qj |

≤ c

λ

∫
Rn
|f |.

For the second term

|{x 6∈
⋃
j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}| ≤ 2c

λ

∫
(
⋃
j(Q̃j,1∪Q̃j,2))c

|Th(x)|dx

≤ 2c

λ

∑
j

∫
(
⋃
j(Q̃j,1∪Q̃j,2))c

∫
Qj

|K(x, y)−K(x, cj)||hj(y)| dy dx

=
2c

λ

∑
j

∫
Qj

|hj(y)|
∫

(Q̃j,1∪Q̃j,2)c
|K(x, y)−K(x, cj)| dx dy.

If we have ∫
(Q̃j,1∪Q̃j,2)c

|K(x, y)−K(x, cj)|dx ≤ C, (6.8)

then

|{x 6∈
⋃
j

(Q̃j,1 ∪ Q̃j,2) : |Th(x)| > λ/2}| ≤ C

λ

∑
j

∫
Qj

|hj(y)|dy ≤ C

λ
‖f‖1.

Hence, T is of weak-type (1, 1).
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Now, let us prove (6.8). Observe that Bj,i = B(Aicj , 2Ml(Qj)) ⊂ Q̃j,i, then∫
(Q̃j,1∪Q̃j,2)c

|K(x, y)−K(x, cj))|dx ≤
2∑
l=1

∫
Zl
|K(x, y)−K(x, cj)|dx,

where
Z l = (Bj,1 ∪Bj,2)c ∩ {x : |x−Aly| ≤ |x−Ary|, r 6= l, 1 ≤ r ≤ 2}.

Let estimate

|K(x, y)−K(x, cj)| ≤|k1(x−A1y)− k1(x−A1cj)||k2(x−A2y)|
+ |k1(x−A1cj)||k2(x−A2y)− k2(x−A2cj)|. (6.9)

We only study the first summand, the second one follows in analogous way. For t ∈ N,

Dl
t = {x ∈ Z l : |x−Alcj | ∼ 2tl(Qj)}.

Observe that Dl
t ⊂ {x : |x−Alcj | ∼ 2tl(Qj)} ⊂ B(Alcj , 2

t+1l(Qj)) =: B̃l
t. Using generalized

Hölder inequality we get∫
(Q̃j,1∪Q̃j,2)c

|k1(x−A1y)− k1(x−A1cj)||k2(x−A2y)|dx

≤
2∑
l=1

∞∑
t=1

∫
Dlt

|k1(x−A1y)− k1(x−A1cj)||k2(x−A2y)|dx

≤
2∑
l=1

∞∑
t=1

|B̃l
t|

|B̃l
t|

∫
B̃lt

χDlt
|k1(x−A1y)− k1(x−A1cj)||k2(x−A2y)|dx

≤ C
2∑
l=1

∞∑
t=1

|B̃l
t|‖k1(· −A1y)− k1(· −A1cj))χDlt

‖Ψ1,B̃lt
‖k2(· −A2y)χDlt

‖Ψ2,B̃lt
. (6.10)

For l = 1, since k2 ∈ Sn−α2,Ψ2 and using inequality (6.4), we have

‖k2(· −A2y)χD1
t
‖Ψ2,B̃1

t
≤ c(2tMl(Qj))

−α2 .

Then,
∞∑
t=1

|B̃1
t |‖k1(· −A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t
‖k2(· −A2y)χD1

t
‖Ψ2,B̃1

t

≤ c
∞∑
t=1

(2tMl(Qj))
n−α2‖k1(· −A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t

≤ C
∞∑
t=1

(2tMl(Qj))
α1‖k1(· −A1y)− k1(· −A1cj))χD1

t
‖Ψ1,B̃1

t

≤ C,
where the last inequality holds by k1 ∈ Hn−α1,Ψ1 .

If l = 2, since k2 ∈ Sn−α2,Ψ2 , we obtain

‖k2(· −A2y)χD2
t
‖Ψ2,B̃2

t
≤ c(2tMl(Qj))

−α2 .

Then, proceeding as inequality (6.4), we get
∞∑
t=1

|B̃2
t |‖k1(· −A1y)− k1(· −A1cj))χD2

t
‖Ψ1,B̃2

t
‖k2(· −A2y)χD2

t
‖Ψ2,B̃2

t
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≤ C
∞∑
t=1

(2tMl(Qj))
α1‖k1(· −A1y)− k1(· −A1cj))χD2

t
‖Ψ1,B̃2

t

≤ C.
Hence,∫

(Q̃j,1∪Q̃j,2)c
|k1(x−A1y)− k1(x−A1cj)||k2(x−A2y)|dx

≤ C
2∑
l=1

∞∑
t=1

|B̃l
t|‖k1(· −A1y)− k1(· −A1cj))χDlt

‖Ψ1,B̃lt
‖k2(· −A2y)χDlt

‖Ψ2,B̃lt

≤ C.

Then, we prove (6.8). �
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[6] Cruz-Uribe, D. V., Martell, J. M., and Pérez, C. Weights, extrapolation and the theory of Rubio
de Francia, vol. 215. Springer Science & Business Media, 2011.

[7] Di Plinio, F., and Lerner, A. K. On weighted norm inequalities for the Carleson and Walsh–Carleson
operator. Journal of the London Mathematical Society 90, 3 (2014), 654–674.

[8] Duoandikoetxea Zuazo, J. Fourier analysis, vol. 29. American Mathematical Soc., 2001.
[9] Ferreyra, E. V., and Flores, G. J. Weighted estimates for integral operators on local BMO type

spaces. Mathematische Nachrichten 288, 8-9 (2015), 905–916.
[10] Gallo, A. L., Firnkorn, G. H. I., and Riveros, M. S. Hörmander’s conditions for vector-valued
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