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Abstract
We propose and analyse a regularization method for parameter identification 
problems modeled by ill-posed nonlinear operator equations, where the 
parameter to be identified is a piecewise constant function taking known 
values.

Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise 
constant level set approach is used to represent the unknown parameter, and 
a corresponding Tikhonov functional is defined on an appropriated space of 
level set functions. Additionally, a suitable constraint is enforced, resulting that 
minimizers of our Tikhonov functional belong to the set of piecewise constant 
level set functions. In other words, the original parameter identification 
problem is rewritten in the form of a constrained optimization problem, which 
is solved using an augmented Lagrangian method.

We prove the existence of zero duality gaps and the existence of generalized 
Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al’s 
work (2013 Inverse Problems 29 015003), proving convergence and stability 
of the proposed parameter identification method.

A primal-dual algorithm is proposed to compute approximate solutions 
of the original inverse problem, and its convergence is proved. Numerical 
examples are presented: this algorithm is applied to a 2D diffuse optical 
tomography problem. The numerical results are compared with the ones in 
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Agnelli et al (2017 ESAIM: COCV 23 663–83) demonstrating the effectiveness 
of this primal-dual algorithm.

Keywords: ill-posed problems, regularization, level-set approach,  
augmented Lagrangian method

(Some figures may appear in colour only in the online journal)

1.  Introduction

In this manuscript we consider the inverse problem of identifying an unknown parameter 
function u ∈ X, which is assumed to be a piecewise constant function (taking known values) 
defined on a given bounded domain Ω ⊂ Rd , d = 2, 3. This parameter function is to be recov-
ered from a given set of data y ∈ Y , with the relation between u and y ∈ Y  being described by 
the operator equation

F(u) = y .� (1)

Here F : D(F) ⊂ X → Y  is a possibly nonlinear operator, X = Lp(Ω) for 1 � p < d/(d − 1) 
and Y is a Banach space. The list of applications fitting this framework is considerable and we 
refer the reader to [8, 17, 23, 35] and references therein for some relevant examples.

In real life applications, the data in (1) is obtained by indirect measurements of the param
eter u. Moreover, the exact data y ∈ Y  is not known in general. Instead, only approximate 
measured data yδ ∈ Y  (corrupted by noise) is available. Here we assume that

‖yδ − y‖Y � δ ,� (2)

where the level of noise δ > 0 is either known or can be estimated.
The method discussed in this article is designed for solving the operator equation (1), under 

the special assumption that the parameter u : Ω → R is a piecewise constant function taking 
only two known values, i.e. u(x) ∈ {c1, c2} a.e. in Ω. With this assumption the inverse prob-
lem reduces basically to a shape identification problem.

It is worth mentioning that our method can be extended to the case where the parameter 
function u takes any finite number of (known) values {c1, . . . , cn}. The corresponding conv
ergence analysis requires arguments similar to the ones presented here for the Cartesian prod-
uct topology. However, if the values {c1, c2} are unknown, our approach no longer applies. 
For such inverse problems see [13, 14].

Taking into account the above assumption on the solution u, one concludes that there exists an 
open mensurable set D1 ⊂⊂ Ω such that u(x)  =  c1, x ∈ D1, and u(x)  =  c2, x ∈ Ω \ D1 =: D2. 
Due to this particular structure of the unknown parameter u, it can be represented by means of 
a piecewise constant level set function φ̂ as follows:

• Define φ̂ : Ω → R by φ(x) := i − 1, x ∈ Di; 
• Define the real functions ψ1(t) = 1 − t, ψ2(t) = t; 
• Note that the characteristic functions of Di satisfy χDi(x) = ψi(φ̂(x)), i = 1, 2; 
• The parameter function u can be represented in the form

u = c1ψ1(φ̂) + c2ψ2(φ̂) =: Ppc(φ̂) .� (3)

The framework used in (3) to represent the solution u of (1) is known in the literature as 
piecewise constant level set (PCLS) approach (see [12, 15, 32, 35] and the references therein). 
Differently from classical level set approaches (see, e.g. [21, 30]), which are based on smooth 
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level set functions, here the function φ̂ is assumed to be non-smooth (piecewise constant)  
[12, 15, 32, 37].

In what follows, the PCLS approach (3) is used as starting point to define a system of 
operator equations (4) and a corresponding constrained optimization problem (5), which play 
a key role in the new method proposed in this article for obtaining stable solutions of the 
inverse problem under consideration.

First we define the (nonlinear) operator K : φ �→ φ(φ− 1) =: K(φ) , φ ∈ L4(Ω) . 
Since the level set function φ̂ ∈ L4(Ω) and satisfies φ̂(x) := i − 1, x ∈ Di, i = 1, 2, it follows 
K(φ̂) = 0. Reciprocally, if K(φ) = 0 then φ(x) ∈ {0, 1} , a.e. inΩ (see lemma 2 (ii) below). 
Consequently, the inverse problem of solving (1), with data satisfying (2), is equivalent to the 
system of operator equations

F(Ppc(φ)) = yδ , K(φ) = 0.� (4)

Indeed, if φ solves system (4) then, due to the PCLS approach (3), u := Ppc(φ) is a solution of 
the inverse problem under consideration.

A standard way of obtaining approximate solutions to (4) is to consider the following 
(regularized) constrained optimization problem

{
minFα(φ) := ‖F(Ppc(φ))− yδ‖2

Y + αR(φ)

s.t. K(φ) = 0
� (5)

where α > 0 plays the role of a regularization parameter and R(·) represents the regulariza-
tion term (see section 2 for detailed definitions). In this manuscript, solutions φδ

α, α > 0 of (5) 
are computed using an augmented Lagrangian method. Furthermore, such approach defines a 
regularization method suitable for the inverse problem discussed in (1) and (2) with piecewise 
constant solutions (see section 3).

1.1.  Review on level set type methods for inverse problems

Level set methods for solving inverse problems were introduced in the seminal paper [34]. 
Later, during the late 90s and early 2000s, the level set framework was the basis for designing 
solution methods for ill-posed problems with piecewise constant solutions [7, 21, 30]. Several 
applications can be found in the literature, among which we mention: image reconstruction [8, 
17, 34, 35], inverse potential problem [12, 21], elliptic inverse problems [9, 29, 32] electrical 
impedance tomography [10, 26, 35], inverse scattering [16, 31], optimal design [8, 35], semi-
conductors [28], optical diffusion tomography [2] and crack detection [3, 17]. We also refer 
the reader to the review papers [8, 35] for further applications.

Level set type methods as the one in [34] are iterative methods, where a smooth level 
set function is used to represent the unknown parameter. The evolution of this function is 
described by a Hamilton–Jacobi equation, and aims to minimize a quadratic functional of the 
residual [8, 17, 31].

The so called standard level set methods (SLS) for (1) consist in representing the piecewise 
constant parameter function u by a smooth level set function; the relation between these two 
functions being described by a discontinuous projection operator (e.g. the Heaviside projec-
tor) [9, 30]. Convergence and stability analysis can be found in [21]. On the other hand, 
problems where two or more piecewise constant parameters (taking only two values) are to be 
reconstructed, can also be solved by these methods [2].

J P Agnelli et alInverse Problems 34 (2018) 125003
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Multiple level set methods (MSLS) are a variation of the SLS type methods, where several 
level set functions are used to represent the piecewise constant parameter function u, which is 
allowed to take more than two distinct constant values [13, 14, 35].

It is worth mentioning the family of piecewise constant level set methods (PCLS) [12, 15, 
32, 35], where the piecewise constant parameter function u is described by a discontinuous 
level set function. The relation between these two functions being described by a smooth pro-
jection operator (as in (3)). The discontinuity of the level function is enforced by a constraint 
(as in (4)).

1.2.  Remarks on augmented Lagrangian type methods

	 –	�Penalty and classical Lagrangian methods are well-known techniques [22, 33] for 
solving constrained optimization problems as in (5). Moreover, duality theory (existence 
of Lagrange multipliers) obtained through the classical Lagrangian and its use for con-
strained convex optimization problems is also well established (see, e.g. [22, 25, 33] and 
the references therein).

	 –	�When the primal problem is not convex, a duality gap (the difference between the optimal 
primal value and the optimal dual value) may occur when the classical Lagrangian is 
used [22, 33]. In such cases, it is necessary to search for other kinds of Lagrangian form
ulations, which are able to provide efficient algorithms for solving broader families of 
constrained optimization problems including (5) (see, e.g. [5, 33]).

	 –	�The augmented Lagrangian approach followed here can be understood as a combination 
of the penalty function method with the classical Lagrangian multiplier method; and is 
able to eliminate many disadvantages associated with either method alone (see, e.g. [33]).

	 –	�In connection with inverse problems, numerical applications of augmented Lagrangian 
(coupled with level set methods) can be found in the literature, e.g. in Electrical impedance 
tomography [35] and in Elliptic inverse problems [9, 32]. Moreover, numerical applica-
tions of augmented Lagrangian (without level sets) were used for parameter identification 
in imaging, e.g. [27, 36].

		� In [20], a convergence analysis (with rates) of a non-stationary augmented Lagrangian 
method for linear inverse problems in Hilbert spaces is derived.

		� In [15], an augmented Lagrangian method is coupled with the PCLS method (3) for 
solving nonlinear parameter identification problems with discontinuous solutions. There, 
existence of generalized Lagrange multipliers and zero duality gap is proven (from what 
follows that (5) can be solved as an unconstrained optimization problem for the aug-
mented Lagrangian proposed in [15]).

1.3.  Main contributions of this article

	 –	�We extend and complete the analysis (both theoretical and numerical) initiated in [15], 
where PCLS type approaches for solving ill-posed problems are considered in connection 
with augmented Lagragian methods (see remark 1).

	 –	�We follow the PCLS approach used in [15] with a different Tikhonov functional in order 
to formulate the constrained optimization problem (5) (the constraint and the regulariza-
tion term used in this paper differ from the ones proposed in [15]).

		 For such formulation, we are able to prove existence of a zero duality gap and existence 
of generalized Lagrangian multipliers, analogue to the results proved in [15].

J P Agnelli et alInverse Problems 34 (2018) 125003
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		 Additionally, we extend the convergence analysis presented in [15] proving convergence 
and stability for φδ

α (solutions of (5)). These results do characterize our solution method 
as a regularization method in the sense of [18].

	 –	�The numerical algorithm discussed in [15] is improved. Here we propose a primal-dual 
iterative method for computing approximate solutions of (5); convergence of this algo-
rithm is proven (see theorem 7).

	 –	�We apply our numerical algorithm to a 2D diffuse optical tomography (DOT) benchmark 
problem [2, 4, 23]. In [2] numerical experiments using SLS were shown for this param
eter identification problem; we use here the same numerical setting as in [2] and compare 
there numerical results with the ones obtained in this article. It is worth mentioning that in 
[2] a splitting strategy was used in the reconstruction of the unknown pair of parameters 
(a similar splitting strategy is also used here). However, due to the augmented Lagrangian 
formulation used here, the number of iterations required for the convergence of our 
method is much smaller than the one in [2].

1.4.  Outline of the paper

In the Introduction we discussed the PCLS approach used here to represent the solution of 
the inverse problem (1) and (2). Moreover, we derived the constrained optimization problem 
(5), which is the basis of our solution method. In section 2 we discuss the main assumptions 
used in this manuscript, and introduce the augmented Lagrangian approach for solving (5). In 
section 3, we present convergence analysis results. First, the existence of a zero-duality gap 
and an exact penalty representation for the primal-dual strategy are proved. Then, these prop-
erties are employed to show that the proposed solution method is convergent and stable with 
respect to the noise level in the data. In section 4 a primal-dual algorithm is derived, aiming 
to compute approximate solutions of (5). A convergence proof is provided. In section 5 sev-
eral numerical experiments are conducted. Three distinct parameter identification problems 
related to the DOT problem are solved and the results are compared with the ones obtained in 
[2]. Section 6 is devoted to final remarks and conclusions. The DOT problem is briefly revised 
in appendix A, while the algorithm used in the numerical experiments is described in details 
in appendix B.

2.  An augmented Lagrangian method and the PCLS approach

In this section we discuss an augmented Lagrangian type method for solving the constrained 
optimization problem (5), with the functional Fα : L4(Ω) ∩ BV(Ω) → R+, the operator 
K : L4(Ω) → L2(Ω) and the penalization functional R : L4(Ω) ∩ BV(Ω) → R+ defined by

R(φ) := ‖φ‖4
L4
+ β|Ppc(φ)|BV ,� (6)

where β > 0 is a scaling factor. It is worth mentioning that the L4–norm act as a penalization 
for the level set function on the space L4(Ω), whereas the BV-seminorm is well known for 
penalizing the length of the Hausdorff measure of the boundary of the level sets of Ppc(φ), see 
[19]. Furthermore, these two terms imply the coercivity of R.

Due to lack of convexity of the Tikhonov functional Fα classical Lagrange multiplier meth-
ods [33] cannot be applied in a straightforward way to solve problem (5), since it is not clear 
that in general one can prove a zero duality gap property. Following the ideas in [15], we 
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propose an augmented Lagrangian method based on the abstract convexity framework intro-
duced in [33] to obtain a regularized solution to (5).

We consider the augmented Lagrangian functional Lα, which is formally defined by

Lα(φ;λ,µ) := ‖F(Ppc(φ))− yδ‖2
Y + αR(φ) + 〈λ ,K(φ)〉L2(Ω) + µ‖K(φ)‖L2(Ω) ,

�
(7)

where φ ∈ L4(Ω) ∩ BV(Ω), λ ∈ L2(Ω) can be interpreted as a ‘generalized’ Lagrange multi-
plier and the scalar µ > 0 is a penalty factor that allows one to establish a duality relation for 
problems of non-convex type (here 〈·, ·〉 denotes the inner product in L2). This particular aug-
mented Lagrangian functional is known as the sharp Lagrangian [33, chapter 11, section K*].

In the sequel the main assumptions are presented. These are assumed to hold for the 
remaining of this article.
Main assumptions:

	(A1) �Ω ⊆ Rd , d = {2, 3}, is bounded with boundary ∂Ω Lipschitz.
	(A2) �The operator F : D(F) ⊂ X = Lp(Ω) → Y  is continuous on D(F) with respect to the 

Lp-topology, where 1 � p < d/(d − 1).
	(A3) �α, β denote positive parameters and |c1 − c2| � ĉ > 0.
	(A4) �There exists û ∈ BV(Ω) ∩ L∞(Ω) satisfying F(û) = y. Moreover, there exists a function 

φ̂ ∈ BV(Ω) ∩ L4(Ω) such that Ppc(φ̂) = û and K(φ̂) = 0.

In the following definition we introduce some notation and functions related to the aug-
mented Lagrangian approach that are necessary for the forthcoming analysis.

Definition 1.  Let Fα and K be defined as above.

	 1.	�A function φ is called admissible if φ ∈ L4(Ω) ∩ BV(Ω).
	 2.	�Γ : L4(Ω) ⇒ L2(Ω) is the set valued function satisfying Γ(z) := {φ ∈ L4(Ω);K(φ) = z}, 

for each z ∈ L2(Ω).
	 3.	�The indicator function of a set A is defined by δA(z) := 0, if z ∈ A and δA(z) := +∞, 

otherwise.
	 4.	�We define F̃α(φ) := Fα(φ), if φ ∈ L4(Ω) ∩ BV(Ω) ∩ Γ(0) and F̃α(φ) := +∞, other-

wise.
	 5.	�A dualizing parametrization function for F̃α is chosen in the following way 

f : L4(Ω)× L2(Ω) → R ∪ {+∞}, with f (φ, z) := Fα(φ) + δΓ(z)(φ) if φ ∈ L4(Ω) ∩ BV(Ω)  
and f (φ, z) = +∞, otherwise. The function f satisfies f (φ, 0) = F̃α(φ), for each 
φ ∈ L4(Ω).

	 6.	�The perturbation function (of the primal problem) related to this duality parametrization 
is given by θ : L2(Ω) → R, where θ(z) := infφ∈L4(Ω) f (φ, z).

	 7.	�The coupling function ρ : L2(Ω)× L2(Ω)× R+ → R is defined by 
ρ(z,λ,µ) := −〈λ, z〉 − µ ‖z‖L2

.
	 8.	�The augmented Lagrangian functional induced by the coupling function ρ reads as

Lα(φ;λ,µ) = infz∈L2(Ω){ f (φ, z)− ρ(z,λ,µ)}.� (8)

	 9.	�The dual function Q : L2(Ω)× R+ → R is defined by Q(λ,µ) := infφ∈L4(Ω) Lα(φ;λ,µ) 
and the dual problem is stated as

maximize Q(λ,µ) subject to (λ,µ) ∈ L2(Ω)× R+.

J P Agnelli et alInverse Problems 34 (2018) 125003
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It follows from item 5 of definition 1 that the functional Lα defined in (7) coincides with 
the functional in (8) (indeed, the dualizing parameter function f satisfies f (φ, z) = +∞ when-
ever φ �∈ Γ(z)). Moreover, Lα(φ;λ,µ) coincides with Fα(φ) in (5) whenever K(φ) = 0.

On the other hand, it follows from item 9 of definition 1 that Q(λ,µ) = 
infz∈L2(Ω){θ(z)− ρ(z,λ,µ)}, where θ is the perturbation function.

Now, denoting by Mp := infφ∈L4(Ω) F̃α(φ) the optimal value of the primal problem, and 
by Md := sup(λ,µ)∈L2(Ω)×R+

Q(λ,µ) the optimal value of the dual problem. It follows from 
the definitions of f and ρ the weak duality property for our scheme, i.e.

Md � Mp .� (9)

We recall that the duality gap is the difference between the values Mp and Md. In the next sec-
tion we shall show that our duality scheme satisfies the zero duality gap property (Mp = Md).

Another important concept related to the augmented Lagrangian is the exact penalty rep-
resentation [5, 33].

Definition 2.  A vector λ̄ ∈ L2(Ω) is said to support an exact penalty representation for the 
problem of minimizing F̃α, if there exists µ̄ > 0 such that for any µ > µ̄

θ(0) = Q(λ̄,µ) and argminφ F̃α(φ) = argminφ Lα(φ; λ̄,µ) .� (10)

Alternatively, such a vector λ̄ is said to support an exact penalty representation for the prob-
lem of minimizing Fα under the constraint K(φ) = 0.

3.  Convergence analysis

This section  is devoted to the analysis of the augmented Lagrangian proposed in (7). We 
state two main results: (a) existence of zero duality gap and existence of an exact penalty 
representation for the duality scheme induced by the augmented Lagrangian function (7); (b) 
well-posednes of the augmented Lagrangian and convergence and stability of approximated 
solutions, that, in particular, imply that the augmented Lagrangian approach is a regularization 
method for ill-posed problems.

3.1.  Existence of an exact penalty representation

The existence of an exact penalty representation (theorem 1) is the key ingredient to prove 
the well-posedness, the convergence and stability of approximate solutions given by the aug-
mented Lagrangian (7). The proof of this theorem follows the lines of the proof of [15, theo-
rem 11] (this is due to the fact that the framework established in definition 1 is analogous to 
the corresponding framework used in [15, section 3]).

Theorem 1.  For any α > 0, let Fα and K be defined as above.

	 (i)	�There exists λ̄ ∈ L2(Ω) supporting an exact penalty representation in the sense of  
definition 2.

	(ii)	�There is no duality gap, i.e. Mp = Md.

Sketch of the proof: Assertion (i): note that the dualizing parametrization function f (φ, ·) is 
lower semi continuous at z  =  0, for every φ ∈ L4(Ω) (see definition 1, item 5). The coupling 
function ρ(·,λ,µ) is lower semi continuous at z  =  0. Furthermore, ρ(z,λ, ·) is monotone 
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decreasing and satisfies ρ(0,λ,µ) = 0 (see definition 1, item-6). The perturbation function 
θ(z) is lower semi continuous at z  =  0. Moreover, from assumption (A4), it follows that the 
set of primal solutions is not empty and, consequently, θ(0) < +∞ (see definition 1, item 6). 
Finally, arguing as in [15, lemmas 7, 8 and 10], we can conclude the existence of (λ,µ) satis-
fying θ(z) � θ(0) + ρ(z,λ,µ), ∀z ∈ L2(Ω).

It now follows from [5, theorem 3.3] that these facts above are equivalent to the assertion 
(i).

To prove assertion (ii), note that assertion (i) implies

Mp = Q(λ̄,µ) � sup(λ,µ) Q(λ,µ) = Md.

This inequality, together with the weak duality property (9), imply Md = Mp.� �

3.2.  Convergence and stability

In this subsection, we prove the well-posedness, convergence and stability of approximated 
solutions given by the (primal) minimizers of the augmented Lagrangian method. Such results 
imply, in particular, that the proposed solution method is a regularization method [18]. We 
start with a lemma that contains some essential tools concerning the operators K and Ppc 
needed to derive the main results of this section.

Lemma 2.  Let K be the operator defined in section 1 and Ppc the operator defined in (3). 
For 1 � p < d/(d − 1), the following assertions hold:

	 (i)	�K is a continuous map from L4(Ω) to L2(Ω). Additionally, the functional ‖K(·)‖L1(Ω), 
defined in L4(Ω), is weakly lower semi-continuous.

	(ii)	�If ‖K(φ)‖L2(Ω) = 0 for some φ ∈ L4(Ω), then φ(x) ∈ {0, 1} a.e. in Ω.
	(iii)	�If {φk} is a sequence of functions such that φk ⇀ φ̄ in L4(Ω) and K(φk) = 0 in L2(Ω), 

then K(φ̄) = 0 a.e. in Ω.
	(iv)	�For every admissible function φ, we have |Ppc(φ)|BV � ĉ|φ|BV.
	 (v)	�Moreover, if φk  is a sequence of admissible functions converging in Lp(Ω) to some admis-

sible function φ, then Ppc(φk) converges to Ppc(φ) in Lp(Ω).
	(vi)	�|Ppc(φ)|BV � lim infk→∞ |Ppc(φk)|BV.
	(vii)	�The L4-norm is weakly lower semi-continuous with respect to L4-convergence.

Proof.  Let us prove item (i). We observe that K(φ)−K(ψ) = (φ− ψ)(φ+ ψ − 1). Hence, 
using Hölder inequality

‖K(φ)−K(ψ)‖2
L2(Ω)

=

∫

Ω

(φ− ψ)2(φ+ ψ − 1)2 dx � ‖φ− ψ‖2
L4(Ω)

‖φ+ ψ + 1‖2
L4(Ω)

and the continuity follows. The last assertion of item (i) follows from [15, lemma 2 (i)].
Assertion (ii) and (iv) follow immediately from the definition of K and Ppc respectively.
To prove assertion (iii), note that, since Ω is bounded, φk ⇀ φ̄ in L4(Ω) implies that φk ⇀ φ̄ 

in L1(Ω). Then, it follows from (i) that 
∥∥K(φ)

∥∥
L1(Ω)

= 0.
Assertions (v) and (vi) follow from [12, lemma 9 items (ii) and (iii)] respectively. Assertion 

(vii) follows from [11, theorem 1.1, p 7] since f(t)  =  t4 is a convex function.� □ 

We are now ready to prove the main results of this section. We begin with an auxiliary 
lemma.

J P Agnelli et alInverse Problems 34 (2018) 125003



9

Lemma 3.  For any α > 0, the functional F̃α attains a minimizer on the set of admissible 
functions satisfying the constraint K(φ) = 0.

Proof.  It follows from assumption (A4) that F̃α is proper. Let {φk} be a minimizing se-
quence of F̃α, i.e. a sequence of admissible functions satisfying F̃α(φk) → inf F̃α =: Υ, 
k → ∞. Since F̃α is proper, we have that Υ < ∞. Therefore, {F̃α(φk)} has a convergent 
subsequence of real numbers (that we denote by simplicity with the same index). Moreover, 
from the definition of F̃α, we obtain that ‖K(φk)‖L2(Ω)

= 0 and that {‖φk‖L4} is a bounded 
sequence of real numbers. Then, there exits a subsequence {φkj} and φ̄ ∈ L4(Ω) such that 
φkj ⇀ φ̄ in L4(Ω). Moreover, from lemma 2(iv), we have that {|φkj |BV} is a bounded sequence 
of real numbers. Then, by [15, lemma 1] we conclude that there exits of a subsequence {φkjl

} 
and φ̃ ∈ BV(Ω) such that {φkjl

} → φ̃ in Lp(Ω) for 1 � p < d/(d − 1). It follows form the 
uniqueness of the weak limit that φ̄ = φ̃ ∈ L4(Ω) ∩ BV(Ω). Moreover, from lemma 2 (iii), we 
conclude that K(φ̄) = 0.

Finally, denoting by simplicity the above subsequence by {φk}, it follows from assumption 
(A2) and lemma 2 (v)–(vii) that

inf F̃α = lim inf
k→∞

F̃α(φk) = lim inf
k→∞

{
‖F(Ppc(φk))− yδ‖2

Y + αR(φk)
}
� F̃α(φ̄),

proving that the admissible function φ̄ minimizes F̃α satisfying K(φ̄) = 0.� □ 

Next we will prove the well-posedness of the constrained optimization problem (5).

Theorem 4.  For any α > 0, the following assertions hold true:

	 (i)	�Problem (5) has a solution on the set of admissible functions.
	(ii)	�Let λ̄α be a vector supporting an exact penalty representation and µα > µ̄α as in defi-

nition 2 (existence of λ̄α, µ̄α follow from theorem 1). Then, the augmented Lagrangian 
Lα(·; λ̄α,µα) has a minimizer on the set of admissible solutions.

	(iii)	�A solution of problem (5) can be obtained by solving the unconstrained optimization 
problem minφ Lα(φ; λ̄α,µα).

Proof.  Assertion (i) follow immediately from lemma 3 and the definition of F̃α (see defini-
tion 1). Assertion (ii) follows from lemma 3 and the identity in (10). Finally, assertion (iii) 
follows from theorem 1 and assertions (i) and (ii).� □ 

In the next theorem we investigate convergence and stability of approximate solutions given 
by the primal solutions of the augmented Lagrangian approach. The proof follows standard 
arguments in the classical theory of Tikhonov regularization [18]. For the sake of complete-
ness we chose to present the details.

Theorem 5 (Convergence).  Assume that we have exact data, i.e. δ = 0 in (2). For eve-
ry α > 0 denote by φα a minimizer of Lα(·, λ̄α,µα) on the set of admissible functions (the  
existence is guarantee in theorem 4). Then, for every sequence of positive numbers {αk} con-
verging to zero, the corresponding sequence {φαk} of minima of Lαk(·, λ̄αk ,µαk) has a sub-
sequence (that we denote by the same index) {φαk} that is strongly convergent in Lp(Ω), for 
1 � p < d/(d − 1). The limit of {φαk} is an admissible solution. Moreover it is a solution of 
(4) with yδ = y.
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Proof.  The existence of a minimum φαk of Lαk(φ; λ̄αk ,µαk) (for the corresponding gener-
alized Lagrange multiplier supporting the exact penalty (λ̄αk ,µαk)) follows from theorem 4. 
Then, from assumption (A4) and the fact that φαk is a minimum of Lαk(φ; λ̄αk ,µαk), we obtain

αkR(φαk) � Lαk(φαk ; λ̄αk ,µαk) � Lαk(φ̂; λ̄αk ,µαk) = αkR(φ̂).� (11)

Hence, {‖φαk‖L4} and {|Ppc(φαk)|BV} are uniformly bounded sequence of real numbers. Con-
sequently, by the same arguments given in the proof of lemma 3, we conclude that there exits 
a convergent subsequence (that we denote with the same index) {φαk} and an admissible limit 
function φ̄ ∈ BV(Ω) ∩ L4(Ω) with φαk → φ̄ in Lp(Ω), for 1 � p < d/(d − 1), and K(φ̄) = 0.

Therefore, we have that form assumption (A2), lemma 2 items (v)–(vii) it follows that

0 � ‖F(Ppc(φ̄))− y‖2
Y � lim inf

k→∞
{‖F(Ppc(φαk))− y‖2

Y + αkR(φαk)}

= lim inf
k→∞

Lαk(φαk λ̄αk ,µαk) � lim inf
k→∞

Lαk(φ̂; λ̄αk ,µαk) = 0.

In the chain of inequalities, we further use the fact that K(φαk) = 0 in the third line, and 
equation  (11) and finally the fact that αk → 0 in the last one. Hence, we conclude that 
y = F(Ppc(φ̄)) as required.� □ 

Next we show that the primal solutions of the augmented Lagrangian are stable w.r.t. noisy 
data.

Theorem 6 (Stability).  Let α = α(δ) be a positive function such that limδ→0 α(δ) = 0 
and limδ→0 δ

2/α(δ) = 0. Moreover, let {δk} a sequence of positive numbers converging to 
zero and {yδk} ∈ Y  be corresponding noisy data satisfying (2). Then, there exists a subse-
quence, denoted again by {δk}, and a sequence {αk := α(δk)} such that the corresponding 
minimizers φαk of Lαk(φ; λ̄αk ,µαk) converge in Lp(Ω), for 1 � p < d/(d − 1) to a solution of 
(4) with yδ = y.

Proof.  Using assumption (A4) and that φαk ∈ argminLαk(φ; λ̄αk ,µαk), we obtain

αkR(φαk) � Lαk(φαk ; λ̄αk ,µαk) � Lαk(φ̂; λ̄αk ,µαk) � (δk)
2 + αkR(φ̂).

� (12)

Now, from (12) and by the assumption on the sequence αk(δk), we have that {R(φαk)} is 
uniformly bounded. Then, as in the proof of theorem 5, we conclude that there exits a conv
ergent subsequence (that we denote with the same index) {φαk} and a limit φ̄ ∈ BV(Ω) ∩ L4(Ω) 
with φαk → φ̄ in Lp(Ω), 1 � p < d/(d − 1) and K(φ̄) = 0. Finally, the assertion follows by 
taking the limit in inequality (12), using assumption (A2), lemma 2 items (v)–(vii).� □ 

We conclude this section relating the above results to the augmented Lagrangian approach 
proposed in [15], as well as, to the double-well potential approach commonly used by the 
community of phase field methods [37].

Remark 1.  In [15] the constraint K(φ) = 0 with K(φ) =
√
|φ||φ− 1| is used (instead of 

K(φ) = 0 adopted here), and the admissible functions are chosen in L2(Ω) ∩ BV(Ω). It is pos-
sible to prove for K results analogous to those stated on lemma 2 (compare with [15, lemma 2]).  
Consequently, the convergence and stability results presented in this section  can also be 
proved within the framework adopted in [15].
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From the numerical point of view, the use of K instead of K is convenient. Since K is dif-
ferentiable everywhere, the numerical implementation becomes more stable (see section 5.1).

Remark 2.  In the phase field methods community (see, e.g. [37]) double-well potentials 
ω(φ) := φ2n(φ− 1)2n, n ∈ N are commonly used in order to formulate a constraint (ω(φ) = 0) 
enforcing the level set function to be piecewise constant. Assuming that the level set functions 
φ are in Lr(Ω) ∩ BV(Ω), with r  =  8n, the convergence and stability results presented in this 
section can also be proved within this framework (i.e. an augmented Lagrangian approach 
with the double-well potentials as constraint can be characterized as a regularization method).

4.  An iterative algorithm

The existence of an exact penalty representation justifies the implementation of a primal-dual 
algorithm to compute approximate solutions of the constrained optimization problem (5). In 
this section, we present the inexact sub-gradient (ISg) algorithm proposed in [6] and prove 
that this is a convergent method for solving the augmented Lagrangian PCLS approach.

The ISg algorithm generates a primal-dual sequence, with the advantage that it accepts an 
inexact solution of each sub-problem (this is in fact the actual situation in numerical imple-
mentations). In what follows the ISg algorithm is presented for the augmented Lagrangian 
PCLS approach.

For each r � 0, we define the set

Ar(λ,µ) := {φ ∈ L4(Ω) : Fα(φ) + 〈λ ,K(φ)〉+ µ‖K(φ)‖L2(Ω) � Q(λ,µ) + r} .

Choose (λ0,µ0) ∈ L2(Ω)× R+ such that Q(λ0,µ0) > −∞. Moreover, choose a prescribed 
tolerance ε∗ > 0, {γk} ⊂ (0, γ) for some γ > 0, {rk} ⊂ R+ with rk → 0 and also two scalars 
ξ > η > 0.

	Step 0.	� Set k := 0.
	Step 1.	� (Update the primal variable and test the stopping criteria)

	 (a)	�Find φk ∈ Ark(λk,µk) ; 
	(b)	�if K(φk) = 0 and rk < ε∗, stop; 
	 (c)	�if K(φk) = 0 and rk � ε∗, then rk := rk

2  and go to (a); 
	(d)	�if K(φk) �= 0, go to Step 2.

	Step 2.	� (Update the dual variables)

	 (a)	�Evaluate ηk := min{η, ‖K(φk)‖L2} and ξk := max{ξ, ‖K(φk)‖L2}; 
	(b)	�Choose a step-size sk ∈ [ηk, ξk]; 
	 (c)	�Define λk+1 := λk + skK(φk) and µk+1 := µk + (γk + 1)sk‖K(φk)‖L2; 
	(d)	�k := k + 1, go to Step 1.

Note that the ISg algorithm has the general form of standard augmented Lagrangian meth-
ods: in Step 1 the primal variable φk  is updated through the approximate solution of an uncon-
strained minimization problem with tolerance rk; then in Step 2 the dual variables (λk,µk) 
are updated through an explicit formula. In the last case moving along a direction of dual 
ascent. The role of the parameters {γk} is to ensure monotonic increase of the dual values. 
Furthermore, since [η, ξ] ⊂ [ηk, ξk] for all k, a constant step-size for all iterations is admissible 
(see [6] for a discussion on other step-size rules).

The following theorem establishes primal convergence results of the ISg algorithm above 
(convergence of the dual sequence generated by the ISg algorithm is proven in [6, theorem 
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3.3]). The proof of theorem 7 follows the lines of the proof of [6, theorem 3.2], together with 
the existence of zero duality gap (guaranteed by theorem 1). In order to simplify the notation, 
we write Qk := Q(λk,µk) for all k.

Theorem 7.  Consider the primal sequence {φk} generated by ISg algorithm. Take the 
parameter sequence {γk} satisfying γk � γ̄, for some γ̄ > 0. Then {φk} is bounded. Moreo-
ver, all its weak accumulation points are primal solutions, and {Qk} converges to the optimum 
value Mp.

Sketch of the proof:
Let {λk,µk} be the dual sequence generated by the Step 2 of ISg algorithm. This sequence 

may be bounded or not. In either case, one follows the steps of the proof of [6, theorem 3.2] to 
conclude that ‖K(φk)‖L2(Ω)

→ 0 (and consequently K(φk) ⇀ 0 in L2(Ω)).
Therefore, due to the monotonicity of rk, the weak duality property (that implies Qk � Mp, 

∀k ) and the fact that φk ∈ Ark(λk,µk), we conclude that {Fα(φk)} is uniformly bounded (see 
[6, lemma 3.4]). Consequently {φk} is bounded in L4(Ω) ∩ BV(Ω).

Arguing as in the proof of lemma 3, one proves the existence of a weak acumulation point 

φ̃ ∈ L4(Ω) ∩ BV(Ω) of {φk}. Since Fα(·) is weak lower semicontinuity, φ̃  minimizes Fα(·).
Now the existence of zero duality gap (item (ii) of theorem 1) together with the monotonic-

ity of the sequence {Qk} (see [6, lemma 3.4]) imply the convergence of Qk to the optimum 
value Mp.� �

5.  Numerical experiments

In this section, we implement the ISg numerical algorithm based on the level set approach 
derived in the previous sections, for the 2D diffuse optical tomography (DOT) benchmark 
problem. The DOT problem consists in the identification of the diffusion and absorption coef-
ficients from a finite set of optical tomography data. For a detailed description of DOT see 
appendix A.

We conduct three types of experiments: (1) in section  5.2, we assume that the absorp-
tion coefficient c is known and focus on the identification of the diffusion coefficient a; (2) 
in section 5.3, we assume that a is known and consider the identification of the absorption 
coefficient c; (3) the simultaneous identification of both coefficients (a, c) is investigated in 
section 5.4.

The same setup of experiments was considered in [2]. This allow us to compare the results 
obtained using the approach proposed in this article, with the results obtained using the meth-
odology derived in [2].

In all the numerical experiments presented below, we considered Ω = (0, 1)× (0, 1). 
Furthermore, we have a vector of four (� = 4) measured Dirichlet data {ym}4

m=1, corresponding 
to four different Neumann boundary conditions gm ∈ L2(∂Ω) (inputs). Each function gm is 
supported at one of the four sides of ∂Ω, e.g.

g1(x1, 0) =
{

1 , x1 ∈ ( 1
4 , 3

4 )

0 , x1 ∈ (0, 1
4 ) ∪ ( 3

4 , 1)

(g1 is defined on Γ1 := {(x1, 0); x1 ∈ (0, 1)}). The other inputs g2(x1, 1), g3(0, x2) and 
g4(1, x2) are defined analogously.

The exact data y = F(u) is obtained by solving the elliptic boundary value problem in (A.1) 
(we use a finite element type method implemented in MATLAB). In order to avoid inverse 
crimes, the direct problem was solved at a uniform grid with 100 nodes at each boundary side. 
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However, in the numerical implementation of the level set method, all boundary value prob-
lems are solved at a uniform grid with 50 nodes at each boundary side.

5.1.  Implementation issues

In general, the convergence of augmented Lagrangian algorithms is fast at the beginning and 
then it slows down when the solution is close to the true minimizer. In order to speed up the 
algorithm, in [32] the authors proposed a signed binary level set method where a modification 
of the level set function when computing u = Ppc(φ) is introduced. Instead of applying the 
level set functions φ directly, they suggest to replace this function by

φ̃(x) =
{

1 , ifφ(x) � 0.5
0 , ifφ(x) < 0.5

.

However, in the numerical implementation it is advisable to replace φ̃ by a smoothed approx
imation. Following the ideas given in [32], we chose

φ̃(x) =
1
2

(
φ(x)− 0.5√

(φ(x)− 0.5)2 + εs
+ 1

)
,

where εs is a small positive number. According to the suggestion given in [32], and also cor-
roborated in some numerical experiments, it is convenient to start with a large value of εs and 
then decrease its value during the iterations.

Another advantage of this modification is that it helps to avoid local minima. Since, no 
restriction was imposed in the admissible set and by the lack of uniqueness in the case of finite 
measurements, a situation may occur in which a level set function with K(φ) �= 0 produces 
an incorrect value of u but very similar data y. Equilibria of these kind of points should theor
etically be avoided by the constraint K(φ) = 0; however, numerically, it may cause trouble. 
The suggested implementation, where φ is replaced by φ̃, helps to considerably reduce this 
problem.

On the other hand, following the approach in [32], a solution of the minimization problem 
corresponding to Step 1(a) (see algorithm in section 4) was obtained by solving the optimality 
condition

∂

∂φ
Lα(φ;λ,µ) = 0 .� (13)

In order to solve this optimality condition, an artificial time variable t is introduced and the 
PDE

∂φ

∂t
=

∂

∂φ
Lα(φ;λ,µ) ,

is solved until it reaches a steady solution (this strategy was used in [21] for solving optimality 
conditions related to optimization problems involving level set functions, and proved to be a 
stable one). This steady solution is also a solution of the optimality condition (13). We used 
the forward Euler method for calculating a steady solution of the above PDE.

It is worth mentioning that, in order to compute the optimality condition (13), the BV- 

seminorm should be approximated by the relaxed functional B(w) =
∫
Ω

√
|∇w|2 + εb dx , 

where εb > 0 ensures smoothness. The choice of B(·) is motivated by the fact that this relaxed 
functional has numerical advantages, such as differentiability when ∇w = 0  (see [1] for 
details).
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In a similar way, the term corresponding to the L2-norm is approximated by the functional 
N(w) = ‖

√
K(w)2 + εn‖L2, where εn > 0. In both cases, it is desirable to start with a rather 

large value of εi, i = b, n, and then decrease its value during the iterations. Finally, we remark 
that here the election of K(t) = t(t − 1) instead of K(t) =

√
|t||t − 1| (as in [15]) is useful, 

since the operator K is smooth everywhere whereas K is not even Lipschitz at t  =  0 and t  =  1.

5.2.  Identification of the diffusion coefficient

In what follows, we consider the identification of the diffusion coefficient a assuming that the 
absorption coefficient c is known. The values for exact coefficients in all the experiments are

a∗(x) =
{

10 , inside blue inclusion
1 , elsewhere

, c∗(x) =
{

10 , inside red inclusion
1 , elsewhere.

as shown in figure 1. For this first example the exact solution is depicted in figure 1(a).
In all the experiments of this section, we chose 1 as the initial value for εi, i = s, b, n and 

then decreased it by a factor of 0.9 in each iteration until the value reaches a lower bound equal 
to 10−6. Additionally, when exact data were considered for the reconstruction (i.e. δ = 0) we 
tested the iterative algorithm without the regularization term |Ppc(φ

j)|BV, i.e. β = 0 (see [21, 
remark 5.1]). The regularization parameter α was chosen a priori: α = 10−3 (we experimented 
several different values for α, and this choice produced the best observed results). Moreover, 
we chose a constant step size sk = s = 10−2, a constant γk = γ = 10−3, rk = 10−1 × 0.99k, 
an Euler stepsize ∆ = 5 × 10−4 and prescribed tolerances τ = 10−3 and ε∗ = 10−2. The pen-
alty factor µ0 and the generalized Lagrange multiplier λ0 are initially set to zero. For details 
see algorithm in appendix B.

As initial guess, we chose a0 = P(φa
0), where φa

0(x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2 + 0.5. 
Other initial conditions were tested as well; the corresponding results obtained using distinct 
initial conditions were similar to the ones presented here. We point out that, the number of 
iterations necessary to achieve the same quality of reconstruction depends on choice of the 
initial guess. This situation is in agreement with the fact that the identification problem for the 
diffusion coefficient is known to be nonlinear and severely ill-posed [18, 24].

According to the obtained results the proposed method is able to identify the diffusion 
coefficient. The difference between the exact solution a* and the approximated solution a300 is 
plotted in figure 2(a). The evolution of the iteration error ‖a∗ − ak‖L1 is shown in figure 2(b). 
We can observe that the iteration stagnates after approximately 300 iterations.

Figure 1.  (a) Exact coefficients for the experiment presented in section  5.2 and 
the second experiment considered in section  5.3. (b) Exact coefficients for the first 
experiment in section 5.3. (c) Exact coefficients for all experiments in section 5.4.
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It is worth mentioning that the same experiment was performed in [2] considering a SLS 
approach. In order to achieve an iteration error ‖a∗ − ak‖L1 ≈ 0.1, circa 5000 iterations were 
needed using the SLS approach in [2]. On the other hand, with the current PCLS approach, 
approximately 300 iterations are needed in order to get a similar precision (see figure 2(b)). 
Therefore, the current approach significantly reduces the number of iterations compared with 
the methodology proposed in [2].

5.3.  Identification of the absorption coefficient

In this subsection, we consider the identification of the absorption coefficient c. Two different 
experiments are performed. First, the identification of a coefficient c with connected support 
and then the identification of a coefficient c with non-connected support. The exact solutions 
of these experiments are shown in figures 1(a) and (b), respectively. In both cases the diffusion 
coefficient a is assume to be known.

Different initial level set functions φc
0 and corresponding initial conditions c0 were con-

sidered and, in all cases, the results were similar. In the experiments presented here we use 
c0 = P(φc

0) where φc
0 = φa

0 defined in section 5.2. The stepsize used in the Euler method is 
∆ = 2.5 × 10−3. The remaining parameters are the same as in section 5.2 (see algorithm in 
appendix B).

We start with the identification of an absorption coefficient c with connected support. We 
can observe from figures 3(a) and (b) that the proposed augmented Lagrangian PCLS method 
is able to identify the shape of the absorption coefficient c. The corresponding difference 
between the exact solution c* and the final iterate c300 is plotted in figure 3(a). The evolution 
of the iteration error ‖c∗ − ck‖L1 is shown in figure 3(b).

Now, we turn to a more complex case: the identification of an absorption coefficient whose 
support is a non-connected proper subset of Ω. Once again the proposed methodology is able 
to identify the shape of the coefficient (see figures 4(a) and (b)). Despite that our initial guess 
was a level set function with connected support, the augmented Lagrangian PCLS method was 
able to identify both inclusions.

Let us note that the same experiment was performed in [2] considering a SLS approach. In 
that case, in order to achive an error ‖c∗ − ck‖L1 ≈ 0.2, around 2250 iterations were needed. 

Figure 2.  Experiment in section  5.2: identification of the diffusion coefficient a* 
(absorption coefficient c* is known). (a) Difference a∗(x)− a300(x) between the 
exact and computed coefficient. (b) Evolution of the iteration error ‖a∗ − ak‖L1, 
k = 0, . . . , 500.
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On the other hand, with the current PCLS approach we needed approximately 1250 iterations 
(see figure 4(b)). Therefore, once again the proposed method reduces the number of iterations.

5.4.  Identification of the diffusion and absorption coefficient

In this last set of experiments, we focus on the simultaneous identification of the pair of coef-
ficient (a, c) in figure 1(c). First, we concentrate on the identification of both coefficient using 
exact data. Then, in a second experiment we consider the case of noisy data.

Motivated by the fact that the identification of coefficient c is a mildly ill-posed problem 
whereas the reconstruction of coefficient a is a severely ill-posed problem, a split strategy 
was proposed in [2]. It consists in freezing a  =  a0 and first iterating with respect to c up to 
the iteration stagnate (this is an indicator that the iteration error ‖ck1 − c∗‖L1 is small). Then, 
keep c = ck1 and start iterating with respect to a until stagnation of the iteration. Finally, once 

Figure 3.  Experiment in section 5.3: identification of the absorption coefficient c* with 
connected support (diffusion coefficient a* is known). (a) Difference c∗(x)− c300(x) 
between the exact and computed coefficient. (b) Evolution of the iteration error 
‖c∗ − ck‖L1, k = 0, . . . , 500.

Figure 4.  Experiment is section  5.3: identification of the absorption coefficient 
c* with non-connected support (diffusion coefficient a* is known). (a) Difference 
c∗(x)− c1500(x) between the exact and approximated solutions. (b) Evolution of the 
iteration error ‖c∗ − ck‖L1, k = 0, . . . , 1500.
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adequate approximations for both parameters are available, start iterating with respect to both 
coefficients.

This 3-stage numerical strategy allows the computation of accurate approximations for 
both coefficients. Moreover, it contributes to the reduction of the computational effort. Here, 
this strategy is coupled to the augmented Lagrangian PCLS method.

It is worth noticing that the calculation of the optimal transition indexes k1, k2 between the 
three stages could be a difficult task. However, taking into account the previous experiments 
in sections 5.2 and 5.3, we concluded that (in both cases) circa 150 iterations are enough to 
compute acceptable approximations of a* and c*. Therefore, in the next examples we take 
k1 = k2 = 150.

5.4.1.  Exact data.  We consider the identification problem with exact solution shown in  
figure 1(c). The stepsizes used in the Euler method are ∆a = 2.5 × 10−4 for the coefficient a 
and ∆c = 5 × 10−4 for the coefficient c. The remaining parameters and initial guess φa

0 and 
φc

0 are the same as the ones described in sections 5.2 and 5.3 (see algorithm in appendix B).
The results of the first stage are plotted in figures 5(a) and (c). The difference between 

the exact coefficient c* and the approximated solution ck1 is shown in figure 5(a) while the 
evolution of the iteration error corresponding to the first k1  =  150 steps can be observed in 
figure 5(c). Note that ‖ak − a∗‖L1 remains constant for k = 0, . . . , k1, see figure 5(f).

Once the first stage is concluded, we freeze ck = ck1 and iterate only with respect to ak. 
This characterizes the second stage of the method. The corresponding evolution of the itera-
tion error can be observed in figures 5(c) and (f). Note that now ‖ak − a∗‖L1 starts to decrease 

Figure 5.  Experiment in section 5.4: simultaneous identification of both coefficients 
using exact data y. (a)–(c) Identification of the absorption coefficient c*. (a) Difference 
c∗(x)− c150(x), end of the first stage of the split algorithm (k1  =  150). (b) Difference 
c∗(x)− c750(x). (c) Evolution of the error ‖c∗ − ck‖L1, k = 0, . . . , 750. (d)–(f) 
Identification of the diffusion coefficient a*. (d) Difference a∗(x)− a300(x), end of 
the second stage of the split algorithm (k2  =  300). (e) Difference a∗(x)− a750(x). (f) 
Evolution of the error ‖a∗ − ak‖L1, k = 0, . . . , 750.
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significantly, while ‖ck − c∗‖L1 remains constant for k = k1, . . . , k2 = 300. The difference 
ak2 − a∗ is plotted in figure 5(d).

After the termination of the second iteration stage, the pair (ak2 , ck2) is a good approx
imation of (a∗, c∗) (see figures 5(a) and (d)). As a matter of fact, this approximation is so good 
that proceeding with the iteration simultaneously with respect to both coefficients, the itera-
tion errors ‖ak − a∗‖L1 and ‖ck − c∗‖L1 are decreasing. The final difference between the exact 
and the approximated coefficients are plotted in figures 5(b) and (e).

Let us remark that same experiment, with an identical set-up, was performed in [2] con-
sidering a SLS approach. Again, to achieve the same error, the proposed PCLS methodology 
requires close to half of the iterations needed using the SLS approach.

5.4.2.  Noisy data.  We consider the identification problem with exact solution shown in  
figure  1(c). This time we consider noisy data yδm obtained by adding to the exact data 
ym = Fm(u) random generated noise of 5%.

For this experiment with noisy data, the augmented Lagragian PCLS method was tested 
with the BV regularization term taking β = 10−3. The initial guesses φa

0 and φc
0 and the remain-

ing parameters are the same as the ones used in the above experiment with exact data.
We applied again the 3-stage strategy described before. The results of the first stage are 

plotted in figures 6(a) and (c), where the difference between the exact solution c* and the 
approximated solution ck1 and the evolution of the iteration error corresponding to the first 
k1  =  150 steps can be observed, respectively. Note that ‖ak − a∗‖L1 remains constant for 
k = 0, . . . , k1 while ‖ck − c∗‖L1 starts to decrease.

Figure 6.  Experiment in section 5.4: simultaneous identification of both coefficients 
using noisy data yδ. (a)–(c) Identification of the absorption coefficient c*. (a) Difference 
c∗(x)− c150(x), end of the first stage of the split algorithm (k1  =  150). (b) Difference 
c∗(x)− c750(x). (c) Evolution of the error ‖c∗ − ck‖L1, k = 0, . . . , 750. (d)–(f) 
Identification of the diffusion coefficient a*. (d) Difference a∗(x)− a300(x), end of 
the second stage of the split algorithm (k2  =  300). (e) Difference a∗(x)− a750(x). (f) 
Evolution of the error ‖a∗ − ak‖L1, k = 0, . . . , 750.
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After the first iteration stage, we freeze ck = ck1 and iterate only with respect to ak. The 
evolution of the iteration error can be observed again in figure 6(f) where one can see that 
‖ak − a∗‖L1 starts to decrease. The difference between the exact solution a* and the approxi-
mated solution ak2 is plotted in figure 6(d).

Finally, we proceed to iterate simultaneously with respect to both coefficients. The itera-
tion errors ‖ck − c∗‖L1 and ‖ak − a∗‖L1 are decreasing as can be seen in figures 6(c) and (f), 
respectively. The difference between the exact and the approximated coefficients, after 750 
iterations are plotted in figures 6(b) and (e).

6.  Conclusions

We proposed and analysed a method for solving ill-posed nonlinear operator equations  in 
Lp-spaces. The goal is to identify the level sets of a parameter function, which is known to be 
piecewise constant and takes known values.

The original parameter identification problem was rewritten in the form of a constrained 
optimization problem, which turns out to be non-convex. Therefore, classical Lagrange mul-
tiplier methods cannot be applied. Following [15], we used an augmented Lagrangian method 
known in the literature as sharp Lagrangian.

We proved for our method similar results to those obtained in [15]; namely, the existence 
of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we 
extended the analysis initiated in [15], proving convergence and stability of our novel param
eter identification method (i.e. the solution method is a regularization method in the sense of 
[18]).

A convergent primal-dual iterative method was proposed to compute approximate solu-
tions, and was tested for a 2D diffuse optical tomography benchmark problem, with consists 
in the simultaneous identification of the diffusion and absorption coefficients from boundary 
measurements of the solution of an elliptic equation. Several experiments were conducted in 
order to compare the performance of our algorithm with the standard level set SLS method 
proposed in [2].

The numerical results indicate that the proposed method is able to identify the absorp-
tion and diffusion coefficients with the same quality than the SLS method employed in [2]. 
Moreover, in all the conducted experiments, our iterative method requires a smaller number of 
iterations when compared with the iterative method in [2].
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Appendix A.  Diffuse optical tomography

Diffusive optical tomography (DOT) is a non-invasive image methodology that uses light in 
the near-infrared spectral region to measure the optical properties of a physical body. DOT 
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has demonstrated to be a powerful technique to obtain relevant physiological information of 
tissues in a non-invasive manner [4].

Denoting the photon density by w, the following model is used for representing the under-
lying physical phenomena (see, e.g. [4])

−∇ · (a(x)∇w) + c(x)w = 0 in Ω, a(x)∇w · ν = g on ∂Ω,�
(A.1)

where Ω ⊂ Rd  is bounded domain with Lipschitz boundary, a(x) is the diffusion coefficient, 
c(x) represents the absorption coefficient and g ∈ H−1/2(∂Ω) is the Neumann boundary data. 
Such boundary condition can be interpreted as the exitance on ∂Ω.

Since the optical properties within tissue are determined by the values of the diffusion and 
absorption coefficients, the problem of interest in DOT is the simultaneous identification of 
both coefficients (a, c) from measurements of near-infrared diffusive light along the tissue 
boundary.

Let us state the inverse problem for DOT in terms of the notation used in this manuscript. 
For each input g ∈ H−1/2(∂Ω) in (A.1), we define the parameter-to-measurement forward 
map

Fg := F : D(F) → H1/2(∂Ω), Fg(a, c) = y := w|∂Ω,� (A.2)

where w = w(g) is the unique solution of (A.1), given the boundary data g and the pair (a, c) 
in the parameter space D(Fg) := {(a, c) ∈ L1(Ω)× L1(Ω) : 0 < m1 � a(x), c(x) � m2}. 
Here m1 and m2 are given positive real numbers.

It is a well established fact [23] that the full Neumann-to-Dirichlet map is needed to prove 
unique identification of the parameters (a, c) in (A.1). Here, as in real life applications, we 
assume that only a finite number � ∈ N of experiments is available. The inverse problem under 
consideration consists in the simultaneous reconstruction of (a, c) in (A.1) from a finite num-
ber of inputs gm = a∂wm

∂ν |∂Ω and corresponding (measured) data ym = wm|∂Ω, i.e.

Fgm(a, c) = ym , m = 1, . . . , � ,

where Fgm  is defined as in (A.2), for each m ∈ {1, . . . , �}.
The next result guarantees that the parameter-to-measurement Fg satisfies the assumptions 

(A2). For a proof we refer the reader to [2, theorem 2.5].

Proposition A.1.  For each g ∈ H−1/2(∂Ω) the corresponding operator 
Fg : D(Fg) −→ H−1/2(∂Ω) is continuous w.r.t. the L1(Ω)× L1(Ω)-topology.

In terms of the notation used in section 1, we shall consider u = (a, c) and X = L1(Ω)× L1(Ω). 
As a consequence, two level set functions (φa,φc) are needed: one to parameterize the dif-
fusion coefficient a = Ppc(φ

a), and another one to parameterize the absorption coefficient 
c = Ppc(φ

c).
The constrained optimization problem (5) becomes

{
min
φa,φc

Fα(φ
a,φc) := ‖Fg(Ppc(φ

a), Ppc(φ
c))− yδ‖2

Y + α
[
R(φa) +R(φc)

]

s.t. K(φa) = 0 and K(φc) = 0.

The corresponding augmented Lagrangian functional reads

Lα(φ
a,φc; λa,µa,λc,µc) := Fα(φ

a,φc) + 〈λa ,K(φa)〉L2(Ω) + µa‖K(φa)‖L2(Ω)

+〈λc ,K(φc)〉L2(Ω) + µc‖K(φc)‖L2(Ω).
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Note that the admissible pairs (φa,φc) as well as all other functions/functionals in definition 
1 can be adapted accordingly to the above cartesian product setup. A careful inspection of 
sections 3 and 4 shows that the results in lemma 3 and theorems 1 and 4–7 remain valid in the 
above framework. Consequently, the method discussed in this article can be used to simultane-
ously identify the coefficients (a, c).

Appendix B.  Algorithm used in the numerical experiments

In this appendix we describe in detail the algorithm used in the numerical experiments pre-
sented in section 5 (see table B1). We remark that for the identification of the diffusion coef-
ficient a (DOT model in sections  5.2 and 5.4) and for the identification of the absorption 
coefficient c (DOT model in sections 5.3 and 5.4), item (ii) in table B1 is computed using the 
formulas
(
∂Fgm(Ppc(φ

a
n))

∂φa
n

)∗

ξn,m = −∇wn,m ·∇vn,m,
(
∂Fgm(Ppc(φ

c
n))

∂φc
n

)∗

ξn,m = − wn,m vn,m,

respectively. Here wn,m ∈ H1(Ω) is the unique solution of problem (A.1) and vn,m ∈ H1(Ω) is 
the unique solution of the boundary value problem

−∇ · (an(x)∇v) + cn(x)v = 0 in Ω, an(x)∇v · ν = ξn,m on ∂Ω.

Table B1.  Algorithm used in the numerical experiments.

Take an initial condition φ0 and set λ0 = 0∈ L2(Ω) and µ0 = 0 ∈ R.

Fix sk = s > 0, γk = γ > 0, {rk} ⊂ R+ with rk → 0, τ > 0, ε∗ > 0.
Let k := 0
   1. Update primal variable φk:

   1.1 Inner iteration : choose ∆ > 0, set φ̄0 = φk andn = 0;

         (i) Evaluate the residual [ξn,m]
�
m=1 := [Fgm(Ppc(φ̄n))− yδm]

�
m=1;

       (ii) Evaluate
[(

∂Fgm (Ppc(φ̄n))
∂φ

)
∗ ξn,m

]�
m=1

;

     (iii) Evaluate ∂R(φ̄n)
∂φ ;

       (iv) If ‖ ∂
∂φLα(φ̄n;λk,µk)‖ �

√
10−1rk  then

                φ̄n+1 = φ̄n −∆ ∂
∂φLα(φ̄n;λk,µk);

                n := n+ 1; go to (i);
              else
                  n*:  =  n;
   1.2 Stopping criteria:

             if ‖K(φ̄n∗)‖ < τ then

                if rk < ε∗ then

                        stop;
                  else
                          rk := rk

2  and go to 1.1;
             else

            φk+1 := φ̄n∗;
   2 Update dual variables:
     λk+1 := λk + sK(φk+1),    and    µk+1 := µk + (γ + 1)s‖K(φk+1)‖
    Define k := k + 1 and go to 1.
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