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Abstract. In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys.

34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for

a set of quadratic one dimensional functions known as the Benedicks-Carleson

maps. They obtained a variational formula for the dimension spectrum of

Birkhoff averages. In this article we try to complete the analysis studying the

spectrum of quotients of Birkhoff averages.
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1. Introduction

Let (X, f) , be a topological dynamical system, with X a compact metric space

and f a continuous map. The multifractal decomposition of the phase space X in

level sets Kα is done in the form

(1) Kα = {x ∈ X : F (x) = α} ,
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where F is a real valuated function defined on X. The Multifractal Analysis treats

with the problem of describing these level sets by mean of a function defined on

sets. In the area of Dimension Theory of Dynamical Systems the functions used are

characteristic dimensions like Hausdorff dimension or topological entropy.

The irregular part, or historic set, of the multifractal spectrum is the set

(2) K̂ = {x ∈ X : F (x) is not defined} .

The Birkhoff spectrum corresponds to the following decomposition: if ϕ : X → R

then consider the statistical sums

(3) Sn (ϕ) (x) =
n−1∑
k=0

ϕ
(
fk(x

)
)

and set

(4) Kα,ϕ =

{
x ∈ X : lim

n→∞

1

n
Sn (ϕ) (x) = α

}
.

These equations motive to introduce the terminology ”sets of points with historic

behavior” or, simply, ”historic set”, for the irregular part. The name has to do with

the fact that the divergence points of the Birkhoff averages describes the history of

the system and may be interpreted as the changes in the ”epochs” of the system.

It is very interesting to study regularity properties of the multifractal maps. So, in

some cases, the map α 7→ dimH Kα,ϕ is analytic. This happens when the dynamics

are hyperbolic and the potentials ϕ are H
..
older continuous. In some other cases,

the multifractal map is continuous. The notable thing of these cases is that the

decomposition of the phase space in multifractal level sets, even having a complex

structure, can be described by functions with a good behavior. Another observed

phenomena is that even the irregular part of the spectrum have zero measure.

Multifractal formalisms to study the dimension spectrum were developed for

systems with uniform hyperbolicity or without critical points[10],[12],[4],[5],[9]. In

reference [8], Moo- Chung and Takahashi obtained a variational description of the

dimension spectrum, where the dynamics are maps with critical points. More specif-

ically, in this theory a family of quadratic maps, called the Benedicks and Carleson

maps (BC maps), is considered:
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(5) fa : X → X, X = [−1, 1] , defined by fa (x) = 1− ax2, 0 < a ≤ 2.

The following facts were proved by Benedicks and Carleson[1] and Benedicks and

Young[3].

For a0 < 2, there is set ∆ ⊂ (a0, 2) , with full Lebesgue measure such that for

any a ∈ ∆:

(C1) f = fa.

(C2) |Dfn(0)| ≥ exp(λn), λ =
9

10
log 2, n ≥ 0.

(C3) There is abundance of parameters near to 2 such that

|fn(0)| ≥ exp(
1

100

√
n), n ≥ 1.

(C4) f is topologically mixing in
[
f2(0), f(0)

]
.

Also was established that there exists a set of values ∆ ⊂ (0, 2) , with Lebesgue

measure, such that for every a ∈ ∆ the map fa has not attractive cycles. Due to

the presence of the critical point x0 = 0 it must be designed a particular technique

to obtain a symbolic representation of the maps. This is done by the method of

towers or induced schemes. The problem of the construction of towers is known as

liftability problem. It is well known that for hyperbolic systems Markov partitions

can be constructed. The fundamental idea in [8] is the construction of induced

systems with a special property of recurrence. In the seminal work of Benedicks and

Carleson is studied the types of return of the orbits fna (0) to an interval I∗ = (−δ, δ)
with δ = exp (−

√
a) , the interval I∗ is divided in subintervals Iγ , and are considered

three types of orbits called free, bound and inessential. The ideas of Benedicks and

Carleson in references [1] and [2] are followed and conveniently adapted by Moo-

Chung and Takahashi to analyze the growing of the derivative of the maps fa outside

a small neighborhood of the critical point x0 = 0. The binding argument presented

in [1] and [2] is also modified in [8] to estimates the return times of the orbits and

how close are to the critical point. In reference [8] their authors proved that the BC

maps are uniformly expanding outside a neighborhood of x0 = 0. To estimate the

return times the pieces Iγ in which is subdivided the neighborhood I∗ = (−δ, δ), are

treated independently and in each subinterval are constructed dynamical partitions

which lead to the desired towers. We shall recall a bit more explicitly the techniques

of [8] in the next section. For more details see that article or reference [7].
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Our objective in this paper is to describe the spectrum of quotients of Birkhoff

averages for BC maps, i.e. given potentials ϕ,ψ : X → R, obtain a variational

formula for the multifractal decomposition

(6) Kα,ϕ,ψ =

{
x : lim

n→∞

Sn (ϕ (x))

Sn (ψ (x))
= α

}
.

In ref.[6], Iommi and Jordan have analyzed the problem of the multifractal de-

scription of spectrum of quotients of Birkhoff averages for countable Markov maps

(EMR maps). These kind of maps are defined on a countable union of intervals

in [0, 1] and are topologically conjugate to a shift with a countable alphabet. The

Gauss map falls in this class: The potentials for the Birkhoff averages are functions

uniformly bounded by below and with summable variation. The partition used to

conjugate the EMR maps with a shift is a partition by cylinders. Thus the symbolic

representation is more direct.

Here we consider the potentials within a class C of maps, which we will do explicit

later. For ϕ,ψ ∈ C, denote

αϕ,ψ := sup

{
lim
n→∞

Sn (ϕ (x))

Sn (ψ (x))

}
(7a)

αϕ,ψ := inf

{
lim
n→∞

Sn (ϕ (x))

Sn (ψ (x))

}
.(7b)

Within this context, the main result to be proved in this work reads:

Theorem 1: Let us consider a set of parameters a such that f = fa, where

fa is a family of Benedicks-Carleson maps. Let ϕ,ψ ∈ C, and with ψ such that

Sn (ψ (x)) > ηn, for some η > 0, then for any α ∈
(
aϕ,ψ, aϕ,ψ

)
holds

(8) dimH Kα,ϕ,ψ = lim
ε→0

sup

{
hµ (f)

λ (µ, f)
:

∫
ϕdµ∫
ψdµ

∈ (α− ε, α+ ε)

}
,

where hµ (f) and λ (µ, f) are respectively the entropy and the Lyapunov exponent

of f with respect to the measure µ and the supremum is taking over the all the

f -invariant measures µ with
∫
ψdµ <∞ (this class will be denoted M0

inv(X, f).

The analysis of the continuity of the spectrum can be done in a similar way that

in [6], once the variational formula for the dimension spectrum be estalished. Thus

A. MESÓN AND F. VERICAT



MULTIFRACTAL SPECTRUM OF ... — JDSGT VOL. 16 , NUMBER 1 (2018) 21

like in [6], consider sets

Aϕ,ψ := sup

{
α : ∃ (xn) , with xn → 0 and lim sup

n→∞

ϕ (xn)

ψ (xn)
= α

}
(9a)

Aϕ,ψ := inf

{
α : ∃ (xn) , with xn → 0 and lim inf

n→∞

ϕ (xn)

ψ (xn)
= α

}
.(9b)

Set I =
(
αϕ,ψ.αϕ,ψ

)
−
[
Aϕ,ψ.Aϕ,ψ

]
, and prove that the map α ∈ I 7→ D (α) :=

dimH Kϕ,ψ is continuous. For completeness we outline the proof.

Let {αn} be a sequence in I converging to α0, firstly we prove that

inf

{
lim
k→∞

D
(
αn(k)

)}
≥ D (α0) ,

with the infimum taken over all the subsequences
{
αn(k)

}
of {αn} . Let {µn} be

a sequence of measures in Minv(X, f) with
∫
ψdµn < ∞ such that

hµn
(f)

λ (µn, f)
>

D (α0) − ε and lim
n→∞

∫
ϕdµn∫
ψdµn

= α0. By [6] there are sequence of numbers (rn) ,

(Cn) such that if (µn) in a sequence of measures in Minv(X, f) with
∫
ψdµn <∞

such that if

∫
ϕdµn∫
ψdµn

∈ Brn (αn) then
∫
ψdµn ≤ Cn. Let us choose subsequences{

ν1
n(k)

}
,
{
ν2
n(k)

}
of the sequences

{
ν1
n

}
,
{
ν2
n

}
such that

(10)

∫
ϕdν1

n(k)∫
ψdν1

n(k)

≤ αn(k) ≤
∫
ϕdν2

n(k)∫
ψdν1

n(k)

.

We can take convex combinations of

∫
ϕdµn∫
ψdµn

and

∫
ϕdν1

n(k)∫
ψdν1

n(k)

or

∫
ϕdν2

n(k)∫
ψdν1

n(k)

, thus we

have adequate values 0 ≤ pn ≤ 1, such that

αn(k) = pn(k)

∫
ϕdµn(k)∫
ψdµn(k)

+ (1− pn)

∫
ϕdν1

n(k)∫
ψdν1

n(k)

or

αn(k) = pn(k)

∫
ϕdµn(k)∫
ψdµn(k)

+ (1− pn)

∫
ϕdν2

n(k)∫
ψdν2

n(k)

,

according to the position of αn. From this convex combinations of measures we can

define

ν
n(k)

= pn(k)µn(k) + (1− pn) ν1
n(k) and ν

n(k)
= pn(k)µn(k) + (1− pn) ν2

n(k).

Therefore
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D
(
αn(k)

)
= D

(
pn(k)

∫
ϕdµn(k)∫
ψdµn(k)

+ (1− pn)

∫
ϕdν1

n(k)∫
ψdν1

n(k)

)
or

D
(
αn(k)

)
= D

(
pn(k)

∫
ϕdµn(k)∫
ψdµn(k)

+ (1− pn)

∫
ϕdν2

n(k)∫
ψdν2

n(k)

)
,

so that D
(
αn(k)

)
≥

hµn(k)
(f)

λ
(
µn(k), f

) > D (α0)−ε, for n enough large and pn → 1 (since

αn → α0).

To prove that sup

{
lim
k→∞

D
(
αn(k)

)}
≤ D (α0) , the argument is similar. We

consider measures {µn} such that lim
n→∞

hµn (f)

λ (µn, f)
> D (α0) and convex combinations

of these measures with subsequences of
{
ν1
n

}
,
{
ν2
n

}
.

After proving that the spectrum is continuous in I we have

(11) dimH Kα,ϕ,ψ = sup

{
hµ (f)

λ (µ, f)
:

∫
ϕdµ∫
ψdµ

= α

}
,

for any α ∈ I.

2. Preliminaries

Let us recall the definition of Hausdorff dimension, let (X, d) be a metric space

and Z ⊂ X, let Bε be a cover of Z with diam Bε < ε. For any s > 0.the s−Hausdorff

measure of Z is defined by

(12) MH (Z, s) = lim
ε→0

inf
Bε

{∑
U∈Bε

diam (U)
s

}
.

The Hausdorff dimension of Z is defined as

(13) dimH Z = sup {s : MH (Z, s) = +∞} = inf s : MH (Z, s) = 0

The point-wise dimension of a measure µ, denoted Dµ (x), is defined as:

(14) Dµ (x) = lim
r→0

µ (Br (x))

log r
,

where Br (x) is the ball of centre x and radius r.

A. MESÓN AND F. VERICAT
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ByM(X) we denote the space of probability measures on X, and byMinv(X, f)

the space of f−invariant measures on X. By ME
inv(X, f) is denoted the set of

ergodic measures of Minv(X, f) .

The space M(X) is endowed the weak ∗− topology, and if X is compact then

M(X) is compact in the weak ∗− topology.

Volume lemma[11]: Let Z ⊂ X, α ∈ R, and µ ∈M(X), if for any x ∈ Z holds

Dµ (x) ≥ α then dimH Z ≥ α.
Let fa : [−1, 1] → [−1, 1] a family of Benedicks and Carleson maps with pa-

rameter values sufficiently close to 2, accordingly to condition (C1) we can consider

f = fa..

If µ ∈Minv([−1, 1] , f) then the Lyapunov exponent of µ is

(16) λ (µ, f) =

∫
|Df | dµ.

The phase space X will be the interval [−1, 1] .

Now we display a sketch of the constructions of [1], [2],[8],[7] which allows to

produce a horseshoe and symbolic dynamics. Let p > 0, recall that the techniques

of Benedicks-Carleson essentially consist in subdividing a neighborhood (−δ, δ) of

the critical point and treating any segment independently, let 0 < ε << 1, N >> 1,

set

(17) δp =

√√√√exp(−εp)
10

(
p−1∑
i=0

Df i(0)

f i+1(0)

)−1

,

thus if δp < |x| < δp−1, x ∈ X, then |Dfp(x)| ≥ exp((λ/3) p), with λ = λ (µ, f) and

p > N [8]. Let x̂ be a fixed point of f in [−1, 1] and set X̂ = [−x̂, x̂] , a sequence

P̂=
(
P̂n
)
n

of partitions of X̂ in intervals is constructed in such a way that holds a

bounded distortion property for the map on members of the partition whose iter-

ations are ”free” (see [8] for definition of free and bound states). The construction is

inductive with the process beginning with P̂0 = ([−x̂,−δ] , [δ, x̂] ∪ Ip,j)j=1,2,..,[exp(3εp],

where Ip,j are the subintervals in which any Ip,j is subdivided. It holds that for

any pair p, j there exist a x ∈ Ip,j such that |fn(x)| ≥ δN exp(−εn) for n > 1/ε.

So these points return slowly to the critical point 0, these points are used for the

partition. Let Λ+ = IN,1 and Λ− = −Λ+ and set Λ = Λ+ ∪ Λ−, from the sequence
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of partitions P̂=
(
P̂n
)
n

is defined inductively a new partition by intervals Q and

a time return map R : Q →N. The function is defined in the following way: for

A ∈ P̂n | Λ := {A ∩ Λ : A ∈ A } , such that fn (A) free (see [8]) and 3Λ+ ⊂ fn (A)

(or 3Λ− ⊂ fn (A)) set A∩f−n (Λ+) ⊂ Q or A∩f−n (Λ−) ⊂ Q and in this case

define R(A) = n. The parts fn (A) − Λ+ and fn (A) − Λ− are iterated and the

map is defined following the same procedure. The iteration fR(A) is difeomorphism

between A and Λ+ or Λ−. Then is defined the tail set

(18) {R > n} :=
⋃
A∈Q

R(A)>n

A

From
(
P̂n | {R > n}

)
n

another new partition P = (Pn)n is defined inductively

by gluing elements of P̂n. In this case the inductive process begins with P0 =

(Λ−,Λ+) . The iteration of the members of the partition returns quickly to Λ.

For the construction of towers proceeds in the following way: let R : Q →N the

time-return map and let ∆ = {(x, `) : x ∈ Λ, ` = 0, 1, ..., R(x)− 1} and consider

the induced function on ∆

(19) f̃ (x, `) =

{
(x, `+ 1) if `+ 1 < R(x)(
fR(x), 0

)
if `+ 1 = R(x)

.

This map is interpreted like a climbing in the first case and a falling down in the

second of any pair (x, `) .

Let ∆` = {(x, `) ∈ ∆ : R(x) > `}, the partition P` of {R > `} can be carried to

a partition of ∆` via the natural identification of any point x with R(x) > ` with

the element (x, `) ∈ ∆`. This partition is also denoted by P`. If D =
⋃
`≥0

P` then D

is a Markov partition. For a partition A = {A1, A2, ..., Ak} of a space X, the name

of a point x ∈ X of length n, with respect to A and a ,map f : X → X, is the string

(a0, a1., , , an−1) accordingly fai ∈ Aai . The partition of X by sets with the same

name of length n is a refinement of A which is denoted by An. Let us consider, for

each n, the partitions Dn, and denote their members by Dn, i.e. each Dn is formed

by points with the same name of length n with respect to D, f̃ . Now consider

(20) Dn0 =

{
Dn ⊂ ∆0 :

∣∣∣∣Sn (ϕ (x))

Sn (ψ (x))
− α

∣∣∣∣ < ε for some x ∈ Dn

}
.

A. MESÓN AND F. VERICAT
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In [8] is proved that there exists an integer r such that from this partition is gener-

ated a horseshoe for F = fr. This means that there exists a collection of intervals

J = {I1, I2, ..., IM} , contained in Λ, such that

F |Ij : Ij → X̂ = [−x̂, x̂] is a diffeomorphism for any j = 1, 2, ...,M. The horseshoe

is constructed as

(21) H (J ) =

∞⋂
j=1

F−j

(
M⋃
i=1

Ii

)
.

The intervals are extracted from the partition Dn0 . From the above horseshoe can

be obtained a code map which conjugates Λ with a full subshift ΣM with alphabet

{1, 2, ...,M} and such that F = fr is uniformly expanding on each interval Ii ∈ J .
The code map is given by

π : ΣM → Λ(22)

π (x = `0`1...) =

∞⋂
i=1

F−i (I`i) .

We are now in condition to specify the class of potentials C considered for the

theorem. A potential ϕ : X → R belongs to the class C if there is a number K > 0

such that for n > N for any x, y ∈ A ∈ Pn holds

(23) |Sn (ϕ (x))− Sn (ϕ (y))| < K.

3. Proof of the theorem

To obtain the upper bound are considered, like in [8], the following decomposition

sets

(24) Kk,α,ε =

{
x ∈ Λ :

∣∣∣∣Sn (ϕ (x))

Sn (ψ (x))
− α

∣∣∣∣ < ε, for any n > k

}
.

We have that Kϕ,ψ∩Λ ⊂
⋃
k≥n

Kk,α,ε, for any n ≥ 0. Any set Kk,α,ε is covered by the

partitions Dn0 , with n > k. If sn = inf

{
s :

∑
A∈Dn

0

|A|s ≤ 1

}
then, by definition of
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Hausdorff dimension, we have dimH Kk,α,ε ≤ lim
n→∞

sn. Thus to establish the upper

bound this limit must be related with measures supported on the horseshoe H (J ) .

The following lemma is useful for this purpose.

Lemma: Let ϕ,ψ ∈ C, and with ψ such that Sn (ψ (x)) > ηn, for some η > 0,

then for x, y ∈ A ∈ Pn

(25)

∣∣∣∣Sn (ϕ (x))

Sn (ψ (x))
− Sn (ϕ (y))

Sn (ψ (y))

∣∣∣∣ < ε,

for n > N.

Proof: Let K1 = K1 (ϕ) and K2 = K2 (ψ) be the constants for ϕ and ψ in the

class C. If x, y ∈ A ∈ Pn then

Sn (ϕ (y))−K1

Sn (ψ(y)) +K2
≤ Sn (ϕ (x))

Sn (ψ (x))
≤ Sn (ϕ (y)) +K1

Sn (ψ(y))−K2
.

Thus since Sn (ψ (x)) > ηn, for some η > 0 the result follows. �

According to ref.[8] we define a sequence of measures {νk} supported on the

horseshoe as follows: if I`0`1...`k = I.`k ∩ F−1 (I`1) ∩ ... ∩ F−k (I`k) then set

νn = νn,s =
1

Zk,s

∑
`0`1...`n

|I`0`1...`n |
s

∑
x∈Pn+1(F )

δx,

where Pn+1(F ) are the n + 1- periodic points of F on I`0`1...`n and Zn,s is the

normalization factor Zn,s =
∑

`0`1...`n

|I`0`1...`n|
s
. Let ν be an ∗-weak accumulation

point of the sequence{νn,s}
By [8] is valid that for any γ > 0 there exists a n0 such that for n ≥ n0 holds

(26)
M∑
i=1

|Ii|s ≥ exp(−3
√
γn)

∑
A∈Dn

0

|A|s ,

and the integer r such thatH (J ) generates a horseshoe for fr satisfies r ≥ (1− γ)n.

Let s be a number such that
∑

A∈Dn
0

|A|s > 1, and ε > 0,we shall see that for any

γ > 0 there exists a measure m such that

∫
ϕdm∫
ψdm

∈ (α− 2ε, α+ 2ε) and such that

A. MESÓN AND F. VERICAT
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hm (f)

λ (m, f)
− γ > s . Let

mn =
1

r

r∑
i=1

(
f i
)
∗ (νn) ,

and let m be an ∗−weak accumulation point of the sequence {mn} , i.e. m =
1

r

r∑
i=1

(
f i
)
∗ (ν). We claim that this measure satisfies the above conditions. Let us

assume that at
hm (f)

λ (m, f)
< s+ γ then, by [8],[7], it holds

lim sup
k→∞

1

k
log

∑
`0`1...`k

|I`0`1...`k |
s ≤ hν (F )− sλ (ν, F ) (F = fr),

and

lim sup
k→∞

1

k
log

∑
`0`1...`k

|I`0`1...`k |
s ≥ log

∑
A∈Dn

0

|A|s − s logM.

Thus

r (hm (f)− sλ (m, f)) ≥ log
∑
A∈Dn

0

|A|s− s logM ≥ log
∑
A∈Dn

0

|A|s−4
√
γns− s logM.

Since we are assuming that r ≥ (1− γ)n and
hm (f)

λ (m, f)
< s+ γ we obtain

−rγλ (m, f) ≥ log
∑
A∈Dn

0

|A|s − 4
√
γsn+ s logM

and

[− (1− γ) γλ (m, f) + 4
√
γs]n+ s logM ≥ log

∑
A∈Dn

0

|A|s .

So, for n sufficiently large, log
∑

A∈Dn
0

|A|s ≤ −γλ (m, f) < 0, or
∑

A∈Dn
0

|A|s < 1, con-

tradicting the election of s. The fact that

∫
ϕdm∫
ψdm

∈ (α− 2ε, α+ 2ε) follows from

the lemma, since for n enough large is∫
Sn (ϕ (x)) dνn
Sn (ψ(x) dνn

∈ (α− 2ε, α+ 2ε) .

Therefore

s ≤ sup

{
hµ (f)

λ (µ, f)
: µ ∈Minv(X, f),

∫
ϕdµ∫
ψdµ

∈ (α− 2ε, α+ 2ε)

}
.
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Thus, lim sup
n→∞

∣∣∣∣sn − hmm
(f)

λ (mn, f)

∣∣∣∣ = 0 and
∫ Sn (ϕ (x)) dmn

Sn (ψ(x) dmn
∈ (α− 2ε, α+ 2ε). From

this we get

(27) dimH Kα,ϕ,ψ ≤ lim
ε→0

sup

{
hµ (f)

λ (µ, f)
:

∫
ϕdµ∫
ψdµ

∈ (α− ε, α+ ε)

}
.

For the lower bound we use the constructions of [8] to obtain a fractal set F and

also consider a specific sequence of measures {µn} ⊂ M(X) such that

(28) lim
n→∞

hµn
(f)

λ (µn, f)
= t,

where

(29) t := lim
ε→0

sup

{
hµ (f)

λ (µ, f)
: µ ∈M0

inv(X, f),

∫
ϕdµ∫
ψdµ

∈ (α− ε, α+ ε)

}
.

To do this we must find a sequence of measures {µn} such that lim
n→∞

∫
ϕdµn∫
ψdµn

= α,

and such that for any measure µ with

∫
ϕdµ∫
ψdµ

= α,
∫
ψdµ <∞ and hµ (f) <∞ holds

lim
n→∞

hµn (f)

λ (µn, f)
=

hµ (f)

λ (µ, f)
. Let A be generating partition and An be the induced par-

tition by names of length n, let us consider the measures ςn (An) = µ (An) then like

in[6] we introduce the (ergodic) family of measures µn :=
1

n

n−1∑
i=0

f∗ (ςn) . As generat-

ing partition may be used the ”cylinders” I`0`1...`k . Now we have lim
n→∞

∫
ϕdµn∫
ψdµn

= α,

lim
n→∞

hµn (f)

λ (µn, f)
=

hµ (f)

λ (µ, f)
and then lim

n→∞

hµn (f)

λ (µn, f)
= t.

The next step is to find a measure ν such that Dν (x) ≥ t.
Any ergodic measure with positive entropy can be approximated for a horseshoe.

This means that for any n there is a sequence of numbers (jn) , closed intervals (Ln)

and disjoint intervals In contained in the interior of Ln such that

1. For any I ∈ In holds f jn (I) = Ln.

2. For any x ∈
⋃
I∈In

I and αn :=

∫
ϕdµn∫
ψdµn

there exists a sequence (jn) such that∣∣∣∣Sj (ϕ (x))

Sj (ψ(x))
− αn

∣∣∣∣ < 1

n
, for j > jn.

3.
1

jn
log card In ≥ hµn

(f)− 1

n
(Katok formula)
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Let k ≥ 1 and numbers n = n(k) , r = r(k) and γi such that

k =

n∑
i=1

ki + r, with 0 ≤ r < kn+1,

where {kn} is a sequence inductively defined in [8]. If (I1, I2, ..., Ik) denotes an

element belonging to I(k) := Ik11 ×I
k2
2 ×...×Iknn ×Irn+1 then by [8], can be associated

an interval J (I1, I2, ..., Ik) such that for I ∈ I1, set J (I) = I. and, inductively, if

J (I1, ..., Ik) is supposed constructed, the J (I1, ..., Ik, Ik+1) is defined as

(30)

J (I1, ..., Ik, Ik+1) :=

{
(f t | J (I1, ..., Ik))

−1
(Ik+1) if r < kn+1 − 1

(f t | J (I1, ..., Ik))
−1

(fsj | Ik+1) (In+1) if r = kn+1 − 1

for some t = tn(k),r =
n∑
i=1

(jiki + γi) + jn+1r.

Let

(31) F (k) =
{
J (I1, ..., Ik) : (I1, ..., Ik) ∈ I(k)

}
,

we have that

{ ⋃
I∈ F (k)

I

}
is a nested sequence of closed intervals, so it can be

defined the non-empty set

(32) F :=

∞⋂
k=1

⋃
I∈ F (k)

I.

For any I we associate a point xI ∈ F ∩ I. Let Mk =
{
x = xI : I ∈ F (k)

}
, it can

be defined a sequence of measures equidistributed on F by setting

(33) νk =
1

card Mk

∑
x∈Mk

δx.

If ν is the weak ∗− limit of the sequence {νk} then ν (F ) = 1.

Recall that the point-wise dimension of a measure ν is given by Dν (x) =

lim
η→0

ν (Bη(x))

log η
, where Bη(x) is the ball with centre in x and radius η (Eq.14).

We must to estimate ν (Bη(x)) , for x ∈ F and apply the volume lemma for the

point-wise dimension of a measure. Let t`,r =
∑̀
i=1

(jiki + γi) + jn+1r, ` = 2, ..., n,

r = 0, 1, , ..., k`−1. Hence for any x ∈ F, I ∈ I(k) such that x ∈ I and f t`,r (x) ∈ I,
we have by 2. and since αn → α, as j →∞, that

lim
j→∞

Sj (ϕ (x))

Sj (ψ(x))
= α, for any x, ν − a.e.
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Let J ∈ F (k), recall that

(34) νk (J) =
card {Mk ∩ J}

card Mk
,

for any t ≥ k, this can be rewritten as

(35) νt (J) =
card

{
I ∈ F (t) : I ⊂ J

}
card F (t)

.

Therefore

(38) lim
t→∞

νt (I) =
1

card F (k)
, for any I ∈ F (t).

To estimate ν (Bη(x)) , for x ∈ F and for a small η, card { J ∩Bη(x)} must be

bounded for any J ∈ F (k). This is done by the computations in [8]. It holds

(37) card F (k) ≥ (card In)
kn (card In+1)

r
, for n = n(k), r = r(k).

Like in [8], can be chosen k such that the radius η satisfies

(38) η > exp

[
jnkn

(
λ (µn) +

2

n

)
− jn+1

(
λ (µn + 1) +

2

n+ 1

)]
for n = n(k), r = r(k) and

(39) η < exp

[
jnkn

(
λ (µn) +

2

n

)
− jn+1

(
λ (µn + 1) +

1

n+ 1

)]
for n = n(k − 1), r = r(k − 1).

From [8] and the Katok formula to approximate the entropy we have

card
(
Bη(x) ∩ F (k)

)
≤ 2 exp

[
jn+1r

(
2

n
− 1

n+ 1

)]
for any x ∈ F

and

(card In)
kn (card In+1)

r ≥

exp

[
jnkn

(
hµn (f)− 1

n

)]
exp

[
jn+1

(
hµn+1

(f)
)
− 1

n+ 1

]
.

These equations, together with Eqs. (27), (34) and (35), get

ν (Bη(x)) ≤ 2

card F (k)
exp

[
−jnkn

(
hµn (f)− 1

n

)
− jn+1r

(
hµn+1 (f)− 2

n

)]
.

Hence

A. MESÓN AND F. VERICAT
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log ν (Bη(x))

log η
≥

log

(
2

card F (k)
exp

[
−jnkn

(
hµn (f)− 1

n

)
− jn+1r

(
hµn+1 (f)− 2

n

)])
[
jnkn

(
λ (µn) +

2

n

)
− jn+1

(
λ (µn + 1) +

1

n+ 1

)] .

Then taking lim
η→0

, so n→∞ we get

(40) Dν (x) ≥ lim
n→∞

hµn
(f)

λ (µn, f)
= t.

Therefore by the volume lemma

(41)

dimH Kϕ,ψ ≥ t = lim
ε→0

sup

{
hµ (f)

λ (µ, f)
: µ ∈M0

inv(X, f),

∫
ϕdµ∫
ψdµ

∈ (α− ε, α+ ε)

}
and the lower bound is obtained �
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