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• A relation between statistics and creation and annihilation operators is proposed.
• The relation is first derived for Gentile statistics and extended to other cases.
• It may be interpreted as the introduction of an activity coefficient.
• An application of ewkon’s statistics to dark energy is included.
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a b s t r a c t

A procedure to derive the partition function of non-interacting particles with exotic
or intermediate statistics is presented. The partition function is directly related to the
associated creation and annihilation operators that obey some specific commutation or
anti-commutation relations. The cases of Gentile statistics, quons, Polychronakos statistics,
and ewkons are considered. Ewkons statistics was recently derived from the assumption
of free diffusion in energy space (Hoyuelos and Sisterna, 2016); an ideal gas of ewkons has
negative pressure, a feature that makes them suitable for the description of dark energy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Relations between creation and annihilation operators determine the statistical properties of quantumsystems composed
by non-interacting particles. Canonical examples are the Bose–Einstein distribution for the commutation relation [a, a†

] = 1
and the Fermi–Dirac distribution for the anti-commutation relation {a, a†

} = 1. Starting from the pioneer works of
Gentile [1] and Green [2], many different distributions have been proposed as extensions that go beyond or interpolate
the statistics of bosons and fermions; see, for example, [3–19]. Although, according to the Standard Model, fermions and
bosons are enough to describe nature from first principles, there are situations in which a description in terms of exotic
statistics is more useful; see [20, ch. 1] for several examples, and references cited therein including experimental results for
some cases.

The total energy is the simple sum E =
∑

iniϵi, where ni is the number of identical particles in energy level i, and ϵi is
the corresponding one-particle energy. The starting point is the grand partition function written in terms of the number of
different many-body states or statistical weightW ({ni}):

Z =

∑
{ni}

W ({ni}) exp

[
−β

∑
i

(ϵi − µ)ni

]
, (1)
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where β = 1/kBT and µ is the chemical potential. A frequent approach to obtain the statistical distribution of ni for exotic
statistics is maximizing lnW with the constraints of constant total energy and total number of particles, and taking the
thermodynamic limit to make some approximations [10,14].

Since each energy level can be taken as an independent system, the total grand partition function is written in terms of
the single level grand partition functions Zϵ as

Z =

∏
{ϵ}

Zϵ (2)

(subindex i in ϵ is omitted to simplify the notation); the product is performed on all energy levels, taking into account a
possible degeneracy by repetition of the product. Here, I focus on the grand partition function for a single level given by

Zϵ = tr e−β (ϵ−µ)n̂ (3)

where n̂ is the number of particles operator. An exotic statistics originated by some specific relations between creation
and annihilation operators should manifest itself both in (1) and in (3). The questions that I wish to address are: how does
(3) depend on the creation and annihilation operator relations, and how this dependence, when explicitly stated, could be
extended to include exotic statistics without making approximations or appealing to the thermodynamic limit.

As usual, the most convenient base to evaluate the trace in (3) is the set of eigenstates of the number operator:

Zϵ =

∑
n

e−β (ϵ−µ)n (4)

In Section 2, a counting operator is introduced, with eigenstates |n⟩ and eigenvalues 0 or 1, in order to restrict the sum
in (4) to the values of n allowed by some commutation relations. It can be seen that the only possible extension of Eq. (4)
beyond fermions and bosons is Gentile statistics; this is one of the main results of Ref. [17]. In order to get other statistics,
for example quantum Boltzmann statistics for aa†

= 1 [5,6], the eigenvalues of the counting operator should be different
from 0 and 1. In the next sections this situation is analyzed for several exotic statistics: quons in Section 3, Polychronakos
statistics in Section 4 and ewkons in Section 5. I present the conclusions in Section 6.

2. Gentile statistics and the counting operator

The creation and annihilation operators determine the number of elements of the Fock space and restrict the sum in
Eq. (4) to the allowed values of n. Then, if n takes the values 0 or 1, we have fermions, if it takes any value between 0 and ∞,
we have bosons, and if it takes values between 0 and ν we have an intermediate Gentile statistics. We can define

x = e−β (ϵ−µ) (5)

in order to simplify the notation. The number distribution is given by

n̄ = x
∂ lnZϵ

∂x
=

1
x−1 − 1

−
ν + 1

x−(ν+1) − 1
. (6)

It reduces to the Fermi–Dirac distribution for ν = 1 and to the Bose–Einstein distribution for ν → ∞. In this and the next
Section 1 consider creation and annihilation operators whose action on number states is written as

a†
|n⟩ = λ∗

n+1|n + 1⟩
a|n⟩ = λn|n − 1⟩, (7)

with the vacuum condition a|0⟩ = 0; therefore λ0 = 0. For Gentile statistics we have that (see, e.g., [3])

λn =
√
n for 1 ≤ n ≤ ν

λν+1 = 0. (8)

The anticommutation relation for fermions that gives a2 = 0 is generalized to

aν+1
= 0. (9)

This relation is of central importance for the ideas that follow; its justification is further developed in Appendix A. If Fν is the
Fock space represented by the set {|0⟩, . . . , |ν⟩}, then any Fν is embedded into Fν′ as long as ν ′ > ν; and the Fock space of
bosons includes all the others.

Let us consider a counting operator δ̂, that acts on the Fock space of bosons and commutes with n̂, with the following
property:

⟨n|δ̂|n⟩ =

{
1 if 0 ≤ n ≤ ν

0 if n > ν
(10)
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The definition of the grand partition function (3) remains unchanged if we insert this operator so that Zϵ = tr (δ̂ xn̂). Now,
the sum in (4) can be extended to infinity:

Zϵ =

∞∑
n=0

⟨n|δ̂|n⟩ xn. (11)

We now seek to express δ̂ in terms of creation and annihilation operators. For this purpose it is useful to consider relation
(9), that gives an|n⟩ = 0 for n > ν. Including a†n to keep |n⟩ as an eigenstate, and the normalization factor 1/n!, we obtain
that

δ̂ =

∞∑
n=0

1
n!

a†nan |n⟩⟨n| (12)

satisfies the conditions (10).
So far, the inclusion of the counting operator has no consequence in Gentile statistics. As stated before, it is not possible for

the definition of the grand partition function (3) to represent other statistics than Gentile’s; as long as the counting operator
has eigenvalues 0 or 1. A straightforward generalization is to consider situations in which the eigenvalues may be different
from 0 or 1. For creation and annihilation operators given in general by (7), the eigenvalues are

δn = ⟨n|δ̂|n⟩ =

⎧⎨⎩
1 if n = 0

|λ1 · · · λn|
2

1 · · · n
if n ≥ 1

(13)

The grand partition function takes the form

Zϵ = 1 +

∞∑
n=1

|λ1 · · · λn|
2

n!
xn. (14)

Eq. (14) represents a connection between statistics and creation and annihilation operators. It is not difficult to obtain, after
a few algebraic steps, the following direct relation between the mean value of |λn+1|

2 and the number distribution:

n̄ = x|λn+1|
2. (15)

Polychronakos [12] introduced a related approach for exclusion statistics in which the grand partition function for a
system of K states with energy ϵ is written as Z(K ) = (Zϵ)K , with Zϵ =

∑
nPnx

n, where Pn are a priori probabilities
independent of the temperature. In the present context, these probabilities correspond to the eigenvalues of δ̂, Pn ≡ δn.
The grand partition function of a single level can be written as

Zϵ =

∑
n

e−β(ϵ−µ−kBT ln δn)n =

∑
n

e−β(ϵ−µ̃)n, (16)

with µ̃ = µ + kBT ln δn. Now, we can interpret the eigenvalues δn as activity coefficients that take into account quantum
effects represented by the features of creation and annihilation operators (the description in terms of quantum operators
may also be a way of introducing interaction effects [15]).

In the next sections, the previous relations, mainly Eq. (14), are applied to different exotic and intermediate statistics. The
first case study is the quantum Boltzmann statistics.

3. Quantum Boltzmann statistics and quons

Quons were introduced in order to study possible violations of the Pauli principle [5,6]; they satisfy the generalized or
q-commutation relation

aa†
− qa†a = 1, (17)

that interpolates between fermions and bosons when q takes values from −1 to 1. First we analyze the intermediate case
with q = 0, for which aa†

= 1 and

a†
|n⟩ = |n + 1⟩

a|n⟩ = |n − 1⟩, a|0⟩ = 0 (quant. Boltzmann) (18)

The creation and annihilation operators commutewhen applied to any non-vacuumnumber state, this already suggests that
the corresponding statistics should be the classical Maxwell–Boltzmann’s:

n̄QB = x, (19)
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that in this context receives the name of Quantum Boltzmann statistics [8]. A result that supports the generalization of (14)
beyond Gentile statistics is that it correctly reproduces the Quantum Boltzmann statistics. In this case, we have λn = 1 and
the grand partition function is

Zϵ,QB =

∞∑
n=0

xn

n!
= exp (x) . (20)

Now, let us consider that q takes any value between −1 and 1. Using the general expressions for the creation and
annihilation operators (7) combinedwith the q-commutation relation (17), the following recursion equation canbe obtained:
|λn+1|

2
= 1 + q|λn|

2 (see, e.g., [8]). Knowing that λ0 = 0, we obtain

|λn|
2

= 1 + q + · · · + qn−1
=

1 − qn

1 − q
. (21)

This result can be used to obtain the grand partition function from Eq. (14). For q = 0, we immediately recover the Quantum
Boltzmann statistics, discussed in the previous paragraphs, since |λn|

2
= 1. For q = 1, |λn|

2
= n and the grand partition

function is Zϵ = 1 +
∑

∞

n=1x
n

= 1/(1 − x), that corresponds to the Bose–Einstein distribution. For q = −1, |λn|
2

= 1 for
odd n and |λn|

2
= 0 for even n; in the expression for the grand partition function of Eq. (14), only the first term of the sum

remains giving Zϵ = 1 + x, that corresponds to the Fermi–Dirac distribution.
In order to get some intuition about the information encoded in the grand partition function in the general case, it is

useful to rewrite it in the following form:

Zϵ,q = [1 − qfq(x)]−1/q, (22)

where function fq(x) can be obtained recursively using a method described in Appendix B; it is

fq(x) = x + (q3 − q)
[
x3/3! + (q3 + 3q2 + 2q − 1)x4/4! + · · ·

]
. (23)

Using that n̄q = x ∂ lnZϵ,q
∂x , the number distribution is

n̄q =
f ′
q(x)

x−1 − qfq(x)/x
. (24)

For q = 0, −1 or 1, we have that fq(x) = x, andwe recover the QuantumBoltzmann, Fermi–Dirac and Bose–Einstein statistics
for that cases.

Eq. (24) can be compared with the one obtained by Isakov [8]. He proposed an ansatz for the evaluation of the number
distribution for quons (see Eq. (67) in Ref. [8]), and obtained

1
x−1 − q

,

that also recovers the cases of fermions, bosons and classical particles for q = −1, 1 and 0. But this result has the following
drawback. Let us consider q = −1/p, where p is a positive integer. In the limit of small energy, the number distribution tends
to a maximum possible value equal to p. This is correct for p = 1; for larger values of p this limit means that the creation
operator applied to |p⟩ should be zero, but this is not actually the case, since a†

|p⟩ = λ∗

p+1|p + 1⟩ ̸= 0 for p ≥ 2. This simple
number distribution actually corresponds to the Polychronakos statistics, that is analyzed in the next section.

The commutation relation (17) is actually a particular case of two-parameter quantum algebras [21,22]. I consider one
more example of these q (or qp) deformed algebras. The commutation relation for q-bosons is

aa†
− qa†a = q−n̂, (25)

with q > 0, for which we have

|λn|
2

=
qn − q−n

q − q−1 . (26)

Now, the coefficients needed to evaluate the grand partition function in (14), |λ1 · · · λn|
2/n!, diverge for increasing values

of n faster than en. We cannot obtain a convergent series for the grand partition function in this case, unless for q = 1,
corresponding to bosons. Starting from [22], several papers have analyzed statistics and thermodynamic properties of q-
deformed algebras, including this last case. According to [17], those results are incorrect since the unjustified approximation
n2 ≃ n̄2 (or qn ≃ qn) is generally used.

4. Polychronakos statistics

Based on the fractional exclusion statistics introduced by Haldane [7], Polychronakos [12] proposed an alternative
definition that has the following advantages. When the grand partition function for a single level is written asZϵ =

∑
nPnx

n,
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any Pn takes positive values independent of the number of states K , a maximum occupancy number results for fermionic
cases, and the expressions for thermodynamic quantities turn out to be analytic. Polychronakos statistics is based on a
variation of the exclusion statistics for a system of K states of energy ϵ: the inclusion of the first particle leaves K − α

states for the second, the inclusion of the second leaves K − 2α, and so on. The combinatorial formula for putting n particles
in K states is

W =
K (K − α) · · · (K − (n − 1)α)

n!
. (27)

After some simplifying assumptions on the fractional exclusion statistics, Polychronakos obtains the following number
distribution [12]:

n̄P =
1

x−1 + α
. (28)

The grand partition function is

Zϵ,P = (1 + αx)1/α, (29)

and a series expansion gives

Pn =
1
n!

n−1∏
m=0

(1 − mα) (30)

for n ≥ 1, and P0 = 1. For α = 0 we have the Boltzmann distribution. For α < 0 we have the so-called bosonic sector, and
all probabilities are positive. For positive values of α, only α = 1/p, with p a positive integer, are considered, so that the
probabilities are positive up to n = p and vanish for n ≥ p + 1.

The connection with creation and annihilation operators becomes immediate when comparing with Eq. (14), since
the coefficients in (14) are equal to Pn. Assuming that λn are real, we obtain λn =

√
1 − (n − 1)α, and the creation and

annihilation operators behave as

a†
|n⟩ =

√
1 − nα |n + 1⟩

a|n⟩ =

√
1 − (n − 1)α |n − 1⟩, (31)

including the vacuum condition a|0⟩ = 0. The previous relations correspond to bosons for α = −1, classical particles for
α = 0, and fermions for α = 1.

5. Ewkons

A nonlinear Fokker–Planck equation for the diffusion of noninteracting particles in energy space was proposed recently
in Ref. [23]. The equationwas based on previouswork on classical particleswith effective potentials that reproduce quantum
statistics [24–27]. Assuming that noninteracting particles have free diffusion, then classical, Bose–Einstein, and Fermi–Dirac
statistics are derived. And also an additional statistics for particles called ewkons. The ewkon statistics is given by

n̄ewk = σ + x, (32)

It is equal to the Boltzmann distribution displaced a fixed quantity σ , with σ a positive integer. Ewkons have a non vacuum
ground state. The problem of divergent thermodynamic quantities is addressed in Section 5.1.

Before analyzing ewkons, let us consider a further generalization of the reasonings of Section 2, where the connection
between statistics and creation and annihilation operators is presented in Eq. (14). Let us go back to the definition (4) of the
grand partition function. We obtain Gentile statistics by a restriction of the sum to the allowed values of n. Now let us take
into account that the restriction is not only on the maximum value of n but also on the minimum. I consider a non vacuum
ground state with σ particles: |σ ⟩. Then, considering that Zϵ =

∑ν

n=σ x
n, with ν > σ , the number distribution is

n̄ =
1

x−1 − 1
−

ν + 1 − σ

x−(ν+1−σ ) − 1
+ σ . (33)

For example, for ν → ∞, it reproduces the Bose–Einstein distribution displaced a quantity σ .
The vacuum condition has to be replaced by a|σ ⟩ = 0, or λσ = 0. The counting operator for this shifted Gentile statistics

has eigenstates |n⟩ with eigenvalue 1 if σ ≤ n ≤ ν and 0 if n ≥ ν + 1. Reproducing the steps of Section 2, expression (13) is
modified in the following way:

δn = ⟨n|δ̂|n⟩ =

⎧⎪⎪⎨⎪⎪⎩
0 if n ≤ σ − 1
1 if n = σ

|λσ+1 · · · λn|
2

(σ + 1) · · · n
if n ≥ σ + 1

, (34)
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Fig. 1. Number distribution n̄ against β(ϵ − µ) for different statistics are shown side by side in order to facilitate comparison. From left to right and from
top to bottom: Gentile statistics, quons, Polychronakos statistics and ewkons. Fermi–Dirac (FD), Bose–Einstein (BE) and Quantum Boltzmann (QB) statistics
are highlighted with thicker stroke.

This definition reduces to (13) for σ = 0. Let us note that σ must be non-negative in order to avoid the indeterminacy λ0/0
(this precludes the possibility of genkons, mentioned in Ref. [23]). The grand partition function takes the form

Zϵ = xσ
+

∞∑
n=σ+1

|λσ+1 · · · λn|
2

(σ + 1) · · · n
xn. (35)

Now we can analyze ewkons. The corresponding grand partition function is

Zϵ,ewk = ex xσ . (36)

Assuming that λn is real, a series expansion gives λn =
√
n/

√
n − σ , and the creation and annihilation operators for ewkons

are

a†
|n⟩ =

√
n + 1

n + 1 − σ
|n + 1⟩

a|n⟩ =

√
n

n − σ
|n − 1⟩, a|σ ⟩ = 0

(ewkons) (37)

If σ = 0, we recover the operators for the Quantum Boltzmann distribution (18).
The observed accelerated expansion of the universe is accounted by the dark energy, that should have a negative relation

between pressure and energy density [28–30]; also, it is homogeneously distributed in whole space. Ewkons have this two
properties that make them suitable to describe dark energy: since any energy level should have at least σ particles, they are
spread in whole space (assuming a homogeneous number of states per unit volume); and, on the other hand, they have a
negative relation between pressure and energy density.

5.1. Application to dark energy

In order to obtain thermodynamic properties of an ideal gas of ewkons of massm, I assume that the energy gaps are small
enough to consider a continuous energy spectrum and introduce a density of states g(ϵ). Following the same procedure used
for fermions and bosons, states are determined by a wavevector k in a volume V ; in a nonrelativistic gas, they have energy
ϵ = h̄2k2/2m + mc2 and the density of states is g(ϵ′) = gdV2π (2m)3/2ϵ′1/2/h3, where ϵ′

= ϵ − mc2 and gd is a degeneracy
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factor; see, e.g., Ref. [31, p. 33]. In order to avoid divergences in the total energy or number of particles, it is necessary to
introduce an ultraviolet cutoff. There is a maximum value for the energy, ϵmax, such that g(ϵ′) = 0 for ϵ′ > ϵmax. I assume
that y = kBT/ϵmax ≪ 1. Using the grand partition function, the expressions for the energy density and pressure are:

ρ =
1
V

∫
dϵ g(ϵ) ϵ n̄ewk

P =
1
Vβ

∫
dϵ g(ϵ) lnZϵ,ewk.

The results are:

ρ = ϵ5/2
max

σgd
√
2m3/2

5π2h̄3

[
1 +

5
3
mc2

ϵmax
+ O(y5/2)

]
, (38)

P = ϵ5/2
max

σgd
√
2m3/2

5π2h̄3

[
−1 +

5
3

µ − mc2

ϵmax
+ O(y5/2)

]
. (39)

Le us note that, independently of the temperature, the rest energy term in the energy density, 5
3mc2/ϵmax, is not dominant

(as is the case for fermions) since all energy levels (up to ϵmax) should be occupied. The relation between pressure and energy
density, wewk = P/ρ, i.e. the cosmological equation of state for ewkons, is

wewk = −1 +
5
3

µ

ϵmax
+ O(y5/2), (40)

where it was assumed that µ−mc2
ϵmax

≪ 1. Then, wewk is equal to −1 plus a quantity of order µ/ϵmax. The main current models
for dark energy, cosmological constant and quintessence, include a negative pressure. This result is in agreementwith recent
observations of the present value of w, mainly dominated by dark energy, that establish an upper bound w < −0.94 at 95%
confidence level; see Table 3 in Ref. [29]. Also, Eq. (38) is in accordancewith the observation that dark energy density remains
almost constant as the universe expands (see, e.g., [32]), assuming that ϵmax is independent of the universe scale.

Using that the dark energy density is approximately equal to 4 109 eV/m3 [33], we can obtain

m ≲ 0.006 eV/c2 (41)

assuming σ ≥ 1, gd ≥ 1 and ϵmax/mc2 > 1. This small upper bound for the mass connects the present approach with
quintessence theories, where a nearly massless scalar field accounts for the dark energy density [34] (values of the mass
between 0.00243 and 0.00465 eV/c2 are used in [34]).

6. Conclusions

Statistics of systems composed by non-interacting particles is obtained form the single level grand partition function
Zϵ = tr e−β (ϵ−µ)n̂. The definition of Zϵ implies that only Gentile statistics is possible [17]. It is interesting, however, to
extend this definition in order to include other statistics, most noticeable the Boltzmann or Quantum Boltzmann statistics
for λn = 1. Such an extension would be relevant for several exotic statistics present in the literature that, for example,
transfer the effects of interactions to features of creation and annihilation operators [15]. I introduced a counting operator
δ̂ that has eigenvalue 1 for the number states that are allowed, and 0 otherwise, so that its inclusion in the definition of Zϵ

does not have any effect on Gentile statistics. The counting operator can be written in terms of creation and annihilation
operators. It is a natural extension to consider situations in which the eigenvalues of δ̂ are not only 0 or 1. This extension
results in a number distribution that is consistent with expected features for some properties of creation and annihilation
operators. For example, it reproduces the Quantum Boltzmann statistics for λn = 1. The number distribution has an upper
bound equal to p if a†

|p⟩ = 0 and is not necessarily bounded if there is no p such that the previous condition holds.
Besides Gentile and Quantum Boltzmann statistics, the procedure was applied to quons, q-bosons, Polychronakos

statistics and ewkons; see Fig. 1. For quons, the number distribution was obtained from the commutation relation; for q-
bosons, the grand partition function turns out to be divergent. For Polychronakos statistics and ewkons, the creation and
annihilation operators were obtained from the grand partition function. In the case of ewkons, the statistics was deduced in
Ref. [23] from the condition of free diffusion in energy space; condition that is also fulfilled by fermions, bosons and classical
particles. An ideal gas of ewkons has negative pressure and a cosmological equation of state similar to −1 plus a term of
order µ/ϵmax, see Eq. (40); these features make them appropriate for the description of dark energy.
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Appendix A

Commutation relations for the creation and annihilation operators associated to Gentile statistics are presented in this
appendix. One of these relations corresponds to Eq. (9), that is used for the definition of the counting operator (12). We can
use the base of number states, {|0⟩, . . . , |ν⟩}, to write the matrix representation of a and a†. The resulting matrices are of
dimension (ν + 1) × (ν + 1). The number states are

|0⟩ = (1, 0, . . . , 0)T

|1⟩ = (0, 1, . . . , 0)T

...

|ν⟩ = (0, 0, . . . , 1)T .

The creation and annihilation matrices are

a†
=

⎛⎜⎜⎜⎜⎜⎝
0
1 0

√
2 0

. . .
. . .
√

ν 0

⎞⎟⎟⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎜⎜⎝
0 1

0
√
2

. . .
. . .

0
√

ν

0

⎞⎟⎟⎟⎟⎟⎠ . (A.1)

It is easy to see that the relations a|0⟩ = 0 and a†
|ν⟩ = 0 are satisfied. They mean that it is not possible to have less than

zero or more than ν particles. Let us consider the case ν = 2. The matrices can be used to obtain the following commutation
relations:

aaa = 0 (A.2)
aa†a − a†aa = a (A.3)

aaa†
+ 2a†aa = 2a (A.4)

a†aa + aa†a + aaa†
= 3a (A.5)

and the corresponding adjoint relations. We are mainly interested in Eq. (A.2). For higher values of ν, the same procedure
can be used to show that

aν+1
= 0.

Another way of obtaining the same relation, or its adjoint, is to consider the connection between any number state with the
ground state through the creation operator:

|n⟩ ∝ a†n
|0⟩.

Since states with n greater than ν are forbidden, we should have a†ν+1
= 0.

Appendix B

A procedure for the derivation of fq(x), in the grand partition function for quons (22), is presented in this appendix. From
(14), we have that, if x = 0, then Zϵ(0) = 1; then, from the ansatz of Eq. (22), we have that fq(0) = 0. Now we can compute
the derivatives of fq in x = 0 in the following way. From Eqs. (14) and (21), we know that

djZϵ,q

dxj

⏐⏐⏐⏐
x=0

= |λ1 · · · λj| = 1(1 + q) · · · (1 + q + · · · + qj−1). (B.1)

Then, using (22) for the grand partition function, we have

dj

dxj
[1 − qfq(x)]−1/q

⏐⏐⏐⏐
x=0

= 1(1 + q) · · · (1 + q + · · · + qj−1). (B.2)

From the equation for j = 1 we obtain f ′
q(0), using that fq(0) = 0. From the equation for j = 2, we obtain f ′′

q (0), knowing
the results for fq(0) and f ′

q(0), and so on. In this way, derivatives of any order of fq, evaluated in x = 0, can be in principle
obtained. It is convenient to use a computer algebra system to perform this procedure. The results for the first derivatives
are

f ′

q(0) = 1
f ′′

q (0) = 0

f ′′′

q (0) = q3 − q

f ′′′′

q (0) = (q3 − q)(q3 + 3q2 + 2q − 1)

f ′′′′′

q (0) = (q3 − q)(q7 + 4q6 + 10q5 + 14q4 + 10q3 − 4q2 − 9q + 1).
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A series expansion of fq(x) is constructed with these results, as shown in (23). As explained in the text, we have that fq(x) = x
for q = −1, 0 or 1. This is the reason why all the higher order derivatives are proportional to q3 − q, so that they vanish for
q = −1, 0 or 1.
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