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Abstract.  In this paper, we introduce a novel integration method of Kardar–
Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration 
of the KPZ equation the nearest-neighbor height-dierence exceeds a critical 
value, instabilities appear and the integration diverges. One way to avoid these 
instabilities is to replace the KPZ nonlinear-term by a function of the same term 
that depends on a single adjustable parameter which is able to control pillars or 
grooves growing on the interface. Here, we propose a dierent integration method 
which consists of directly limiting the value taken by the KPZ nonlinearity, 
thereby imposing a restriction rule that is applied in each integration time-
step, as if it were the growth rule of a restricted discrete model, e.g. restricted-
solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to 
its dimensionless version, the integration depends on three parameters: the 
coupling constant g, the inverse of the time-step k, and the restriction constant 
ε which is chosen to eliminate divergences while keeping all the properties of the 
continuous KPZ equation. We study in detail the conditions in the parameters’ 
space that avoid divergences in the 1-dimensional integration and reproduce 
the scaling properties of the continuous KPZ with a particular parameter set. 
We apply the tested methodology to the d-dimensional case (d = 3, 4) with the 
purpose of obtaining the growth exponent β, by establishing the conditions of 
the coupling constant g under which we recover known values reached by other 
authors, particularly for the RSOS model. This method allows us to infer that 

M F Torres and R C Buceta

Numerical integration of KPZ equation with restrictions

Printed in the UK

033208

JSMTC6

© 2018 IOP Publishing Ltd and SISSA Medialab srl

2018

2018

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/aab1b3

PAPER: Classical statistical mechanics, equilibrium and non-equilibrium

3

Journal of Statistical Mechanics: Theory and Experiment

© 2018 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/18/033208+14$33.00

mailto:mtorres@ifimar-conicet.gob.ar
mailto:rbuceta@mdp.edu.ar
http://stacks.iop.org/JSTAT/2018/033208
https://doi.org/10.1088/1742-5468/aab1b3
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/aab1b3&domain=pdf&date_stamp=2018-03-20
publisher-id
doi


Numerical integration of KPZ equation with restrictions

2https://doi.org/10.1088/1742-5468/aab1b3

J. S
tat. M

ech. (2018) 033208

d  =  4 is not the critical dimension of the KPZ universality class, where the 
strong-coupling phase disappears.

Keywords: growth processes, interfaces in random media, kinetic roughening, 

classical Monte Carlo simulations
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1. Introduction

Throughout the last three decades, intense research on models and equations has been 
done to understand the phenomenon of surface growth. Among the systems that grow 
out of equilibrium, perhaps the most studied ones are those included in the Kardar–
Parisi–Zhang (KPZ) universality class characterized by the homonymous stochastic 
equation [1]

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + η(x, t), (1)

where h = h(x, t) is the surface height of a growing medium on a d-dimensional substra-
tum, at position x and time t. The Laplacian term and the non-linear term represent 
the elasticity and the lateral growth of the interface, respectively. The noise η(x, t) 
is Gaussian with zero mean and covariance 〈η(x, t)η(x′, t′)〉 = 2D δd(x− x′) δ(t− t′), 
where D is the noise intensity. The right-hand side of the KPZ equation (1) may 
include an additive term representing a constant force f due to incoming or out-
going particle-flow that is absorbed or desorbed on the surface, respectively. For 
λ = 0 the equation (1) becomes the Edward-Wilkinson (EW) equation [2]. A large 
number of real growing interfaces has been successfully described by the KPZ 
equation in one and two dimensions [3–6]. Growing lattice models with the same 
interface properties as the KPZ equation, e.g. ballistic deposition [7], restricted-
solid-on-solid (RSOS) [8, 9], etching algorithm [10], or Eden model [11], are also 
used as a substitute for addressing open questions. The existence of an upper criti-
cal dimension du above of which fluctuations are negligible, independently of the 
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KPZ nonlinearity strength, is currently the most salient unresolved issue [12–36]. 
In order to consider that the KPZ equation is a proper hydrodynamic description 
of the interface growth of some real system or growth model, they both need to 
have the same scaling properties and exponents. The KPZ equation has Galilean 
invariance, regardless of the dimension d, if the relation ζ + z = 2 is verified [1, 3, 
37], where ζ is the (global) roughness exponent and z is the dynamical exponent. 
For d  =  1, since the system behaviour verifies the fluctuation-dissipation theorem 
[1], we know that ζ = 1/2. This theorem is not valid for d  >  1 for which the expo-
nents must be calculated in a dierent way; however, an analytical method that 
allows to know the exponents or scaling properties has not been established yet. 
Several numerical methods have been developed with similar results in some cases 
and dissimilar in others. The methods of perturbative renormalization [1, 3, 12, 13], 
with coupling constant g = λ2D/ν3, predict that for every dimension d  >  2 there 
is a critical value gc �= 0 that separates two regions: for g < gc a weak-coupling 
phase with ζ = 0 and for g > gc a strong-coupling phase with ζ �= 0. However, these 
methods have been unable to obtain exponents in the strong-coupling phase. On 
the one hand, studies of the mapping of the KPZ equation in the directed polymers 
with quenched noise [14, 15] and self-consistent methods [16–21] predict a critical 
dimension du � 4, where the strong-coupling phase disappears. On the other hand, 
by using a non-perturbative renormalization method in the real space, exponents 
of the strong-coupling phase up to dimension d  =  9 were obtained, without the 
prediction of a critical dimension [22–24]. In addition, these exponents are close to 
those obtained from the simulation of growth models, which share the properties of 
KPZ equation exactly at d  =  1. Specifically, the RSOS model has been simulated 
up to dimension 11, without showing signs of a critical dimension [8–10, 25–32]. 
Furthermore, large simulations of a directed polymer model on random potential at 
finite temperature in d  =  4 [35, 36] also contradict du � 4, which was established 
analytically by Lässig and Kinzelbach [15]. The discrete integration of the KPZ 
equation is another of the methods used to obtain its scaling properties. The KPZ 
equation is usually numerically integrated following a discretization scheme like 
this [38]:

hj(t+∆t) = hj(t) +
i=d∑
i=1

(
ν L

[i]
j +

λ

2
N

[i]
j

)
∆t+ σ

√
12∆t Rj(t),

 
(2)

where ∆t is the integration time-step and hj is the height of interface on the jth lattice 

point. The noise amplitude is σ
√
12∆t, where σ =

√
2D/(∆x)d , and R(t) is a uniform 

random variable between [−0.5, 0.5]. The linear term L
[i]
j =

(
h
[i]
j+1 − 2hj + h

[i]
j−1

)
/(∆x)2 

is the discrete ∂2h/∂x2
i of the Laplacian, where ∆x is the integration mesh-step and 

h
[i]
j±1 are the heights of nearest-neighbours (NN) of the jth lattice point in the ith direc-

tion. The nonlinear term of the KPZ can be discretized by adopting dierent schemes 
that are equivalent [39], although the simplest one is the Euler scheme, in which the 

nonlinear term of equation (2) is N [i]
j =

[(
h
[i]
j+1 − h

[i]
j−1

)
/(2∆x)

]2
. Replacing hj = h0Hj, 

x = x0 r and t = t0τ  in equation (2) we obtain the dimensionless equation
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Hj(τ +∆τ) = Hj(τ) +
i=d∑
i=1

(
L[i]

j +
1

2
N [i]

j

)
∆τ +

√
12∆τ Rj(τ)

 
(3)

where h0 = ν/λ, x0 =
√

ν3/(σλ)2 , and t0 = [ν/(σλ)]2. In the last equation, the linear 
and nonlinear terms are

L[i]
j =

H
[i]
j+1(τ)− 2Hj(τ) +H

[i]
j−1(τ)

(∆r)2
, (4)

N [i]
j =

[
H

[i]
j+1(τ)−H

[i]
j−1(τ)

2∆r

]2
, (5)

respectively.
The KPZ discrete integration presents instabilities that make its simulation diverge 

quickly [40, 41]. A deep analysis made by Dasgupta et al [42, 43] shows that these 
instabilities are caused by the uncontrollable growth of pillar or grooves that are intrin-
sic to discrete versions of equations with nonlinear terms (∇h)2, with or without noise. 
Instabilities cannot be avoided by enlarging the system or using a generalized discreti-
zation of the nonlinear term; not even by reducing the integration time step, which 
only makes their appearance less probable. The instability in the numerical integration 
of the one-dimensional KPZ equation with λ > 0 (λ < 0) is associated with grooves 
(pillars). Dasgupta et al showed that a critical height hc ∝ −λ−1 exists using numerical 
integration starting from a flat interface with a pillar or groove perturbation of height 
hp at some point in the mesh. Below the critical value (i.e. |hp| < |hc|), the perturbation 
is reabsorbed into the interface, and above it, the interface diverges quickly. It can be 
observed that if during the discrete integration of the KPZ equation the NN height 
dierence surpasses a critical value, the instability appears and the integration diverges. 
The exact solution to the one-dimensional KPZ equation found by Sasamoto and Spohn 
[44] shows that there are no instabilities in the continuous version. Additionally, the 
noiseless continuous KPZ equation can be mapped into a diusion equation by a Cole-
Hopf transformation and be exactly solved without instabilities. Conversely, the appli-
cation of such a transformation to the noiseless discrete KPZ equation is not reduced 
to a discrete diusion equation, which suggests a possible explanation for the genera-
tion of instabilities along the numerical integration. To successfully integrate the KPZ, 
Dasgupta et al [42, 43] propose to replace the non-linear term (∇h)2 with a function 
Φ((∇h)2) in the KPZ equation, defined by Φ(y) = (1− e−cy)/c, where c is an adjust-
able constant. This proposal does not require a special discretization scheme, since it is 
possible to maintain the Euler scheme without loss of generality. This method avoids, 
within a certain range of the parameter c, the big local height-dierences that lead to 
excessive growth, which are the origin of instabilities. Introducing the nonlinear func-
tion f into the KPZ equation, which is equivalent to introducing an infinite nonlinear 
series, must leave the scaling properties of universal quantities invariant and eliminate 
divergences. Some properties of the KPZ equation, such as scaling exponents, can 
be calculated with this procedure [43] with great precision and coinciding with the 
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theoretical values from renormalization group for d  =  1 and growth models for d  =  2 
[45]. If c � 1, nonlinear eects become weak and, in the extreme case, a long transient 
with scaling properties of the EW universality class appears. On the contrary, if c � 1, 
the method fails to avoid instabilities.

In this work, we propose a dierent integration model inspired by the study of 
the instabilities made by Dasgupta et al [43]. By our method, we directly limit the 
value of the non-linear term, restricting the value of height-dierence between NN 
columns, a dierence which is responsible for making integration divergent. In this 
paper, we characterize this method and use it to regain and obtain important prop-
erties of the KPZ equation. In section 2, we introduce and characterize the restricted 
integration method. In section 3.1, we show the integration properties of the KPZ 
equation in d  =  1 and obtain the associated exponents. In section 3.2, we show the 
results for d  =  3, which were never obtained with an integration scheme that avoids 
divergences; and for d  =  4, which are of great importance since the KPZ numerical 
integration was never performed until this dimension, and because it is the dimen-
sion that several authors predict to be critic, i.e. that does not present a roughness 
region.

2. Model and definitions

To integrate the KPZ equation we are going to use a similar scheme to the one pre-

sented in equation (3), but with an upper limit to nonlinearity N [i]
j  given by equa-

tion (5). Our proposal is to replace this term as follows:

N [i]
j −→ 1

(∆r)2

[(
N [i]

j (∆r)2 − ε
)
Θ
(
ε−N [i]

j (∆r)2
)
+ ε

]
, (6)

where Θ(x) is the Heaviside step function. The restricted growth rule 

|H [i]
j+1(τ)−H

[i]
j−1(τ)| � 2

√
ε applies for each integration time-step, as if it were the 

growth rule of a discrete model with restrictions (e.g. RSOS). The restriction con-
stant ε must be chosen in order to eliminate the divergences that arise in the usual 
integration of the discrete KPZ equation and, at the same time, to maintain all the 
basic properties of the continuous KPZ equation. From equation (3) we can see that 
ε depends on the integration steps ∆r and ∆τ . By means of the coupling constant 
g = λ2D/ν3 = λ2σ2/2ν3, introduced from the KPZ studies by renormalization group 
theory, it is easy to see that integration depends on the coecients and the integration 

steps through equations ∆r =
√

2g
∆x(d−2)  and ∆τ = 2νg

∆xd ∆t. Notice that the integration 

steps ∆r and ∆τ  are invariant under the transformations ∆x → 1, ∆t → ∆t/(∆x)2 and 
g → g/(∆x)d−2. This property allows us to take ∆x = 1 without loss of generality. In 
addition, by choosing ∆t = 1/(2kνg) (where k is a positive real constant) we make the 
integration simpler by ensuring the same statistic for each g value, ∆τ = 1/k. In short, 
the integration depends on only three parameters: the coupling constant g, the inverse 
of time step k, and the restriction value ε.

https://doi.org/10.1088/1742-5468/aab1b3


Numerical integration of KPZ equation with restrictions

6https://doi.org/10.1088/1742-5468/aab1b3

J. S
tat. M

ech. (2018) 033208

In order to obtain the range of ε values for which the properties of the KPZ equa-
tion remain invariant, we study the probability that the restriction to growth occurs, 

i.e. Ψ(ε) = P (X > ε) = 〈Θ(X − ε)〉, where X = {1
2
[H

[i]
j+1(τ)−H

[i]
j−1(τ)]}2.

One of the main observables that can be measured in a growing interface to character-

ize its evolution is its width or roughness defined by w(τ) = [{〈h(r, τ)〉2 − 〈h(r, τ)2〉}]1/2, 
where 〈· · · 〉 is the average over the interface of size L and {· · · } over the dierent real-
izations. Usually, the system has a power law behaviour with w ∝ τβ for τ � τx, where 
β = ζ/z is the growth exponent, and that the system saturates with w = wsat ∝ Lζ for 
τ � τx. Also, it has been found that the crossover time τx ∝ Lz. In the case of the KPZ 
equation, because of its Galilean invariance, it is known that ζ = 1/2 and z  =  3/2 for 
d  =  1 and z + β = 2 for any dimension d.

Another observable measured in a growing interface is the height-dierence cor-

relation of mth-order defined by Gm(�, τ) = {〈|H [i]
j+�(τ)−H

[i]
j (τ)|m〉}, where � is the 

distance between two columns. For growing systems, this correlation will either pres-

ent a power law behaviour Gm ∝ �mζm for � � ξ(τ) or take a constant value G sat
m  for 

� � ξ(τ), where ξ(τ) is the correlation length. Also, ξ ∝ τ 1/z for τ < τx and equal to the 
maximum neighbour distance for τ > τx (e.g. ξ = L/2 for systems with periodic bound-
ary conditions). When ζm depends on m the correlation shows multiscaling and the 
system is multi-ane. Otherwise, the correlation shows single scaling and the system 
is self-ane. The particular case m  =  2 allows to relate the correlation with the rough-
ness. It can be noted that G2 ∝ τ 2(ζ−ζ2)/z� 2ζ2 for � � ξ , where ζ2 is the local rough-
ness exponent, and G2 = Gsat

2 ∝ τ 2β for � � ξ . When ζ = ζ2, the interface has usual or 
Family-Vicsek scaling, and in other cases, it has anomalous scaling.

3. Results of the KPZ integration by restricting method

3.1. Results for 1-dimension

We begin by analyzing the results of the simulations with the dimensionless KPZ 
equation in 1-dimension. We use Euler (or pre-point) discretization and growth restric-
tions by establishing a maximum height dierence around the evolving site. Figure 1 
shows the plot of probability Ψ as a function of ε for several values of k = (∆τ)−1 
and g = 12.56 � 4π. We chose this value because it was originally reported by Moser 
et al that in a non-dimensionless and non-restricted integration it is the best value for 
reproducing the KPZ exponents [38]. The probability Ψ shows two well dierentiated 
behaviours as a function of the inverse time step k.

For k � k∗, the function Ψ quickly decreases with ε to a minimum value at ε = ε∗(k) 
and then rapidly increases, where ε∗ is a monotonically increasing function of k. The 
minimum of Ψ is visually on the plot for values of k < k∗ ≈ 2. This particular behaviour 
of Ψ can be understood by plotting the height-dierence correlation of 2nd-order at 
the saturation Gsat

2  as a function of time τ, for dierent ε values, as shown in figure 2 
for k  =  1.5 and g  =  12.56. Note that Gsat

2  shows the same behaviour as the roughness 
W, both as a function of time τ, for the KPZ equation. For ε = ε∗, a power law behav-
iour of the correlation Gsat

2  with growth exponent very close to the theoretical value 
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of the KPZ growth exponent (βKPZ = 1/3) is observed. For ε < ε∗ the power law holds 
although the exponent moves away as we move away. For ε � ε∗ we can observe that 
the measured exponent approaches the theoretical value of the EW growth exponent 
(βEW = 1/4). This change in behaviour is a consequence of the nonlinear term being 
strongly restricted and diusion being dominant. Conversely, for ε > ε∗, the behaviour 
of the power law is temporarily shortened with an exponent close to the theoretical 
value in the early- and middle-time regime and, later, it shows a divergent behav-
iour. This is accentuated when the ε value is far from ε∗; the ε value is so large that 
it is unable to limit divergences of integration. In this last case, the method becomes 
ineective and presents the same diculties as the usual integration method.

For k  >  k*, no minimum value is observed for the probability Ψ(ε), only that it 
always decreases as a function of ε, becoming very small or zero when ε increases, 
which assures us that the restriction is rarely or never applied. Even so, the restriction 
must be maintained, since a divergence in merely one sample would destroy the aver-
age. For k  >  k* it suces to stay in the last value of ε for which Ψ �= 0. Otherwise, for 
k  =  k*, we consider the value ε = ε∗ where Ψ has a minimum.

To observe how the growth exponent β depends on the coupling parameter g we 
study the correlation Gsat

2  as a function of time τ for dierent values of g. Taking 
L  =  512 and k  =  100, in figure 3 we observe how the power laws are maximized in the 
neighbourhood of g  =  15. For values of g � 15, the elastic term causes a rapid satur-
ation of the interface, producing a small deviation from the expected KPZ-value of 
β. For g � 15, the noise term aects the growth at the beginning, delaying the KPZ 
behaviour. Both behaviours are due to finite-size eects, i.e. for all g, as the system size 
grows, β → βKPZ.

Results of our simulations show that the system is self-ane. The mth-order cor-
relation Gm as a function of the distance � between columns shows that ζ1 � 0.487, 
ζ2 � 0.489, ζ3 � 0.488, and ζ4 � 0.489 for a system of size L  =  16384, k  =  10 and and 
time τ = 220 close to the saturation. The exponent values in dierent orders are very 
close to each other, which confirms that the restrictions do not introduce changes to the 
results known for the KPZ. Simulations show that the system with restriction maintains 
the self-anity for dierent sizes L and for dierent values of the coupling constant g.

Plot (a) of figure 4 shows G2 as a function of �, for dierent values of time τ, size 
L  =  16384 and k  =  10. We observe that ζ2 depends on τ and it approaches the KPZ 
theor etical value (ζKPZ = 1/2) as the time τ increases. As other authors have shown [45], 
when the system size L and time τ go +∞ the global roughness exponent ζ2(τ) → 1/2. 
Since the correlation lenght ξ ∝ τ 1/z we plot in figure 4(b) the scaling function �−2ζKPZG2 
as a function of � τ−1/zKPZ for several values of τ. In the plot we can see that the inter-
face has usual scaling, since the dierent curves overlap. It is important to note that, 
at distance �0 ≈ 2, the correlation G2(�0, τ) is constant with time τ, except for small 
initial variations (see figure 4). Therefore, if we increase the size of the system, bringing 
it to the thermodynamic limit, it is not necessary to modify the restriction that allows 
the integration. In contrast, as the system size increases, our method for growth mod-
els with anomalous scaling (e.g. LD equation) requires to modify the restriction that 
avoids instabilities. Similarly, the method of integration of Dasgupta et al for the LD 
equation shows that by increasing the size of the system it is necessary to modify the 
parameter c that controls the nonlinearities which avoid instabilities [42, 43].

https://doi.org/10.1088/1742-5468/aab1b3
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Figure 1. Plot of the probability Ψ as a function of the restriction constant ε 
for several values of k = (∆τ)−1, where ∆τ  is the integration time-step. We take 
L  =  512 and g  =  12.56. We use the integration mesh-step ∆r =

√
2g corresponding 

to taking ∆x = 1.

Figure 2. Height dierence correlation of 2nd-order at the saturation Gsat
2  as a 

function of the adimensional time τ for several values of ε. We use the same data 
of figure 1 and k  =  1.5. The measured values of the roughness exponent β (in the 
cases where it can be measured) are 0.291 (ε = 10), 0.324 (ε = 20), 0.335 (ε = 100), 
0.338 (ε = 290) and 0.344 (ε = 390). The plot shows for ε = 290 � ε∗(1.5) (blue 
upward-triangle) the power law behaviour of the correlation, for four decades, with 
growth exponent β very close to the KPZ theoretical exponent βKPZ = 1/3. Below, 
for ε = 10 (black circles) the power law behaviour of the roughness exponent is 
close to the EW theoretical exponent βEW = 1/4. Above, for ε = 500 (orange left-
triangle) the power law behaviour, like KPZ, is lost over time due to divergences 
in integration.
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Similar results are observed when the KPZ equation (1) includes an additive term 
representing a constant force f �= 0 due to incoming or outgoing particle-flow. As f 
increases, the only relevant change is an initial deformation in the roughness similar to 
incresing g in figure 3.

3.2. Results for d-dimensions (d = 3, 4)

By applying the methodology tested in the 1-dimensional case we analyse some impor-
tant results that can be obtained in d-dimensions (d  >  2), considering the cases d = 3, 4 
in particular. For d  =  3 the height dierence correlation of 2nd order at the saturation 
Gsat

2  shows that there is a critical coupling value gc that separates two well-dierentiated 
behaviours. Below (g < gc), the weak-coupling phase can be observed, where β ≈ 0 and 
the system saturates rapidly. For g ≈ gc, since it is a critical point, a power law-like 
behaviour is observed, with β � 0. Above (g > gc), whenever g increases the interface 
roughness begins to increase as well. For a fixed value g = go, the optimal power-law 
behaviour of the strong-coupling phase is obtained. For g > go, as well as for d  =  1, it 
can be observed that the noise initially aects the power law, delaying the appearance of 
the KPZ type behaviour, but maintaining the exponents approximately. In figure 5(a), 
the correlation Gsat

2  is plotted as a time-dependent function τ for d  =  3 at dierent val-
ues of g. We observe that gc ≈ 30 measuring β(30) � 0.045 and that the value of g for 
which the best power law is obtained is close to go ≈ 47, with β(47) � 0.204. For higher 
values of g, the exponent value is β � 0.203, except for g  =  50, where a greater devia-
tion occurs, reaching β(50) � 0.22. We believe that this deviation occurs because the 
noise smoothly modifies the power law before transforming into the deformation seen 
for larger g values. However, an exponent value 0.203 � β � 0.220 is very close to the 
value measured for the RSOS model [25]. Taking β = 0.203 and accepting the relation 

Figure 3. Saturation of the 2nd-order height-dierence correlation Gsat
2  as a 

function of time τ for several values of g. For the simulations we used L  =  512, 
k  =  100 and ε chosen as follows: ε = 200 for g < 4π and g  =  300 otherwise. The 
measured values of the roughness exponent β are 0.298 (g = 0.78 ≈ π/4), 0.324 
(g = 3.14 ≈ π), 0.330 (g = 6.28 ≈ 2π), 0.331 (g = 12.56 ≈ 4π), 0.333 (g = 18.85 ≈ 6π), 
0.330 (g = 31.42 ≈ 10π) and 0.329 (g = 47.12 ≈ 15π).
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ζ + z = 2 (with z = ζ/β), we obtain z � 1.662 and ζ � 0.337. For the RSOS model, the 
roughness exponent ζ � 0.313 was measured as well [27], a value with a small depar-
ture from those mentioned above.

In the case of d  =  4, the correlation Gsat
2  is plotted as a function of time τ for dierent 

values of g on the (b) of figure 5. A similar behaviour to the case d  =  3 can be observed, 
with gc ≈ 80 and go ≈ 100, measuring β(100) � 0.159. This value is very close to the 
one measured for RSOS in the same dimension [30]. Taking the recently measured 
exponent ζ � 0.273 for the RSOS model [28, 30], applying the relation ζ/β + ζ = 2, we 
calculate β � 0.158, a value very close to the one reported here. For g  >  100, the mea-
sured values for the β exponent begin to significantly deviate from the values accepted 
and retrieved here. Since the system size is small, for d  =  4 it saturates fast and we 
cannot conclude if the KPZ behaviour is recovered as it was for d  =  1 and d  =  3.

Figure 4. (a) Height-dierence correlation of 2nd-order G2 as a function of the 
distance between columns � for several times τ = 2n (with n integer), taking 
L  =  16384, k  =  100, g  =  12.56, and ε = 250. The measured values of the local 
roughness exponent ζ2 are 0.440 (n  =  10), 0.457 (n  =  12), 0.471 (n  =  14), 0.479 
(n  =  16), 0.485 (n  =  18) and 0.489 (n  =  20). As τ increases ζ2 approaches the KPZ 
theoretical value of the global roughness exponent ζKPZ = 1/2. (b) Scaling of the 
G2(�, τ) for the same parameters and values of τ as those used in the plot (a). The 
plot shows G2 = const for � � τ 1/z and G2 ∝ τ 2β for � � τ 1/z.
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4. Conclusions

In this paper, we demonstrate how it is possible to avoid the instabilities associated 
with the uncontrollable growth of pillars or wells that can be developed during the evo-
lution of the discrete version of the KPZ equation. Contrary to the proposal introduced 
20 years ago by Dasgupta et al, we propose not to modify the discrete KPZ equation by 
adding nonlinear terms, but to impose restrictions to the lateral growth of the interface 
by limiting the nonlinearities of the KPZ equation. The restriction rule is applied at 
each integration time step, but only acts to eliminate divergences while maintaining all 
the properties of the continuous KPZ equation. The ε restriction parameter is chosen 
in a range of values that leaves the scaling properties invariant. In this work, we have 

Figure 5. Both plots: Height-dierence correlation of 2nd-order Gsat
2  at the 

saturation as a function of the time τ for several g. For d  =  3 (Plot (a)) we take 
L  =  60, k  =  50 and ε = 130. The measured values of the roughness exponent β 
(in the cases where it can be measured) are 0.045 (g  =  30), 0.156 (g  =  40), 0.193 
(g  =  45), 0.204 (g  =  47), 0.220 (g  =  50), 0.198 (g  =  55) and 0.201 (g  =  60). For 
d  =  4 (Plot (b)) we take L  =  16, k  =  100 and ε = 130. The measured values of the 
roughness exponent β (in the cases where it can be measured) are 0.106 (g  =  90), 
0.159 (g  =  100) and 0.273 (g  =  110).
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integrated the discrete version of the dimensionless KPZ equation in such a way that 
it only depends on two parameters besides ε: the inverse of the time-step k and the 
coupling constant g. Our results in 1-dimension, with Euler discretization and growth 
restrictions, show that the height-dierence correlation of 2nd-order at the saturation is 
a power law with a growth exponent very close to the theoretical value established for 
the KPZ equation, i.e. βKPZ = 1/3. The method becomes eective for all times under 
these conditions. Otherwise, if ε � ε∗, the growth exponent is close to the theoretical 
value of the EW universality class (βEW = 1/4), and if ε � ε∗, the KPZ power law can 
be broken due to the emergence of divergences with a probability that decreases with 
k. The method was tested for d  =  3 and d  =  4. In the first case, the predicted result is 
obtained by numerical methods, showing both the weak- and strong-coupling phases. 
Our results yield a critical-coupling constant gc ≈ 30 and an optimal-coupling constant 
go ≈ 47 of the strong-coupling phase, for which the exponent β is close to the one 
measured for RSOS simulations. When integrating for d  =  4, a strong-coupling phase 
is observed for g > gc ≈ 80 with an exponent close to the one measured for RSOS at 
the optimal-coupling constant go ≈ 100. This can be taken as an indicator that d  =  4 
is not the critical dimension of the KPZ universality class. Another option is that the 
observed strong-coupling phase is attributed to the finite size of the sytem. However, in 
our simulations, increasing the size of the system does not result in the disappearance 
of this phase.
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