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ABSTRACT: Measurements of the soil cone index are widely used to assess soil resistance 
to root penetration (SR) and to monitor the soil compaction status of agricultural fields. 
However, soil sampling for SR estimation is a rather challenging task in view of the high 
spatial and temporal variability of the soil. This study proposed a bootstrapping method 
to determine the minimum sample size required to estimate the vertical profile of mean 
soil cone index (CI) values at different levels of precision and confidence. For this purpose, 
CI data from a Typic Argiudoll under no-tillage before and after chiseling was used. A total 
of 151 CI profiles were recorded before and after chiseling in a 3,200 m2 (40 × 80 m) 
no-tillage area at sampling points distributed on a horizontal 5 × 5 m aligned grid and 
from the top layer to 0.40 m depth by in 0.02 m intervals. A modified bootstrap routine 
was developed to estimate the sampling distribution of the sample mean and medians 
of CI values per layer. The minimum sample size to estimate the vertical profile of mean 
CI values at different levels of precision and confidence was determined from data of the 
whole soil profile, including the autocorrelation of CI readings in the vertical direction. 
Tilling increased the variability of this measurement and thus the sampling efforts to 
achieve the same level of precision and confidence were different before and after the 
procedure. The standard errors of sample medians estimated by bootstrapping were 
higher than those corresponding to sample means. In addition, to achieve the same 
level of precision and confidence, the estimation of the vertical profile of mean CI values 
based on sample medians required more observations than based on sample means. This 
study shows that the viability of the bootstrap approach to determine the implications of 
soil variability on the sampling efforts required for an accurate estimation of the vertical 
distribution of resistance in soils under different managements.
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INTRODUCTION
Soil mechanical resistance to root penetration (SR) is a key soil physical property that 
controls root expansion, and consequently modulates the crop oxygen and water uptake 
(Letey, 1985). Soil cone index (CI) measurements are widely used to assess SR at field 
and lab conditions as well (Rooney and Lowery, 2000). Periodic monitoring of the soil 
compaction status of agricultural fields through CI is an effective way to assess the 
effects of different management systems and cultural practices on soil structure and 
root growth and development (Tavares Filho and Ribon, 2008). However, soil sampling 
for the estimation of SR can be challenging, because of the high spatial and temporal 
intrinsic variability of this soil property, which often increases the required sampling 
effort (Castrignanò et al., 2002; Han et al., 2016). In addition, the extrinsic sources of 
variation such as anthropogenic activities, machinery traffic, and tillage systems can 
increase SR variability (Veronese Júnior et al., 2006; Usowicz and Lipiec, 2009). Thus, 
the question about how many observations are required for a reliable estimation of the 
vertical profile of mean CI values, i.e., the mean CI values per layer, is a key aspect of 
the sampling design for soil compaction monitoring.

In the design-based sampling approach, the population of values in the region of interest 
is regarded as unknown but fixed, and randomness is introduced by the sampling design. 
In this context, the sampling distribution of the estimator is used to assess the uncertainty 
of the estimated parameters, e.g. the population mean (Gruijter et al., 2006). This 
uncertainty can be reduced by increasing the sample size until the area is fully covered 
(Wang et al., 2012). The sample size needed to estimate the population mean of a soil 
property, depends on the soil variability and the level of precision required. The more 
variable a soil property, the higher the sampling efforts required to achieve a desired 
level of precision. Whereas the variability of the soil property depends on the intrinsic soil 
variability, the precision level is set according to the research objectives and available 
resources (McBratney and Webster, 1983).

Assuming that the data of the target soil property are independent and were drawn from 
a population with normal distribution, the minimum sample size needed to estimate the 
population mean can easily be calculated by the expression (Mulla and McBratney, 2000):

n =

2

t1–α/2 CV
d

								            Eq. 1

where: n is the minimum number of soil samples (observations), t1-α/2 the t statistic for 
the 1-α/2 level of confidence, CV is the coefficient of variation, and d is the acceptable 
margin of relative error. 

However, this method is unsuited when observations are autocorrelated and the distribution 
of the population being sampled is non-normal or has an unknown form (Dane et al., 1986). 
A lack of normality and spatial dependence are commonly observed for soil properties 
(Warrick and Van Es, 2002). The classical way of computing the variance estimator may 
result in an underestimation of variance of the process, if there is significant spatial 
autocorrelation. To solve this problem, Cressie (1993) established an alternative expression 
to compute the variance controlling spatial autocorrelation. On the other hand, the 
skewed distributions commonly observed in soil properties may be corrected by applying 
transformations such as the logarithmic, and then analyzed by using parametric methods, 
provided the assumptions are met (Sokal and Rolhf, 2012). Alternatively, data may be 
analyzed on the original scale by using robust estimators such as the sample median, 
which is less affected by departures from normality (Gubiani et al., 2011). However, 
the lack of an analytical method to assess the precision of a sample median limits the 
estimation of minimum sampling for this estimator (Efron and Tibshirani, 1993).
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Information about how many observations are needed to estimate the vertical profile 
of mean CI values of an area of interest is limited. For example, Tavares Filho and 
Ribon (2008) studied the effect of different tillage systems on the sample needs for the 
estimation of CI using an impact penetrometer and reported that at least 15-20 samples 
are needed to estimate CI at a precision of 10 %. Molin et al. (2012) compared three 
penetrometers and studied the CI variation through the profile in depth intervals. These 
authors concluded that at least 15 replications are necessary for the estimation of CI 
with a precision varying from 5 to 15 %, depending on the penetrometer used. These 
sampling recommendations are based on the decreasing relationship between sample 
size and standard error of the mean of the target soil layer. Although straightforward, this 
approach has two drawbacks: (1) data are analyzed independently per layer, ignoring 
the spatial structure of the CI measures in the vertical direction (Castrignanò et al., 
2002); and (2) the effect of sample size on the estimation accuracy is assessed based 
on the information contained in only one random sampling (Efron and Tibshirani, 1993).

Bootstrapping is a computer-intensive statistical technique that allows the approximation 
of the true sampling distribution of a given statistic by means of resampling procedures 
by an empirical cumulative distribution function (Efron and Tibshirani, 1993). The resulting 
sampling distribution is assumed to be good enough for assessing the precision of an 
estimator and construct confidence intervals (Chernick, 2008). Based on this approach, 
Dane et al. (1986) proposed a modified bootstrap algorithm to estimate sample size for 
bulk density in a Typic Paleudult. To estimate highly positively skewed hydraulic properties 
of a Typic Hapludox, Melo-Filho et al. (2002) compared the sample needs approximated by 
the classical formula (Equation 1) and a modified bootstrap algorithm. In these studies, 
the bootstrap approach was applied to soil properties separately for each layer. The 
information provided by soil penetrometers is typically autocorrelated in the vertical 
direction, ensuring a modification of the algorithm to integrate the information of the 
whole layer explored by the penetrometer. 

The objective of this research was to propose a bootstrapping-based method to determine 
the sample size required for the estimation of the vertical profile of mean CI values 
with different levels of precision and confidence. For this purpose, CI data from a Typic 
Argiudoll under no-tillage before and after chiseling were used.

MATERIALS AND METHODS

Study site

The study was carried out on a commercial farm in Aurelia (31° 29’ 8.50” S, 61° 27’ 25.88” W, 
elevation 78 m a.s.l., datum WGS84), Santa Fe province (Argentina). This region is 
characterized by a flat relief with deep and well-drained silty-clay loam soils consisting of 
loessic sediments. The soil of the experimental plot was classified as fine-mixed thermic 
silty-loam Typic Argiudoll Rafaela Series (INTA, 1991). It has an A horizon (0.00-0.22 m), 
followed by a transitional AB horizon with high clay contents (0.22-0.32 m) and an argillic 
horizon Bt1 (0.33-0.70 m) underneath (INTA, 1991). The field was used for conventional 
tillage cultivation for more than 50 years, converted to no-tillage eight years before the 
experiment, and is currently used for a wheat-soybean sequence.

Soil sampling

During spring 2014, a field area of 3,200 m2 (40 × 80 m) was tilled with an 11-shank 
chisel plow. The fixed shanks were spaced 0.35 m apart operating 0.18-0.20 m deep at 
a speed of 7 km h-1. Before and after tillage, CI measurements were performed with a 
soil compaction meter (PNT-2000®, DLG Automação) at sampling points of a 5 × 5 m 
horizon-aligned grid and in the top 0.40 m soil layer in 0.02 m intervals. The spatial 
structure at shorter distances was assessed by adding 32 extra points spaced 1 × 1 m 
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to the original sampling scheme, drawing crosses over four randomly selected points 
(Figure 1). In total, 151 vertical CI profiles were recorded with a cone (diameter 1.9 
cm, apex angle 30°) (Asabe Standards, 2006) at each sampling time (before and after 
chiseling). To characterize the mean soil water content (SWC) of the study area, soil cores 
were extracted from a 0.00-0.40 m layer on a 10 × 10 m grid and SWC was estimated 
by the gravimetric method for every 0.10 m interval.

Data analysis

The raw CI data (302 profiles) were pre-processed to eliminate systematic errors of soil 
penetrometer measurements. The distribution of CI values was summarized per layer 
using descriptive statistics and boxplots. Forty CI profiles were excluded prior to data 
analysis because they contained observations that exceeded the three-fold interquartile 
range from the first and third quartiles or were regarded as technical artifacts of the soil 
penetrometer measurements, such as reading failures. Data normality was assessed by 
the Shapiro-Wilks normality test per layer, and logarithmic transformation was performed 
if needed. The spatial autocorrelation of CI readings was examined by computing sample 
variograms in horizontal and vertical directions. Because of the non-stationarity of CI 
along the vertical direction, a polynomial model was developed using soil depth as 
explanatory variable. The trend coefficients were estimated by the generalized least 
squares (GLS) method and the sample variogram was computed using GLS residuals 
(Webster and Oliver, 2007).

Bootstrap procedure

The estimators of the mean CI values per depth and their sampling distributions for 
different sample sizes were obtained with a modified bootstrap procedure as follows:

1.	 One thousand bootstrap samples of size n were drawn with replacement from the 
available CI profiles for each sampling time. The sample sizes ranged from 2 to 130 
or 140, depending on whether the sampling time was before or after tillage. Because 
of the spatial structure of CI along the vertical direction, each individual CI profile was 
regarded as resampling unit, so that the spatial autocorrelation was taken into account.

2.	 For each of the 1,000 bootstrap samples of a given size n, the vertical profiles of sample 
median and mean of CI values were obtained by calculating these statistics per layer.

3.	 Finally, the estimators of the vertical profile of mean CI values and their standard error 
(SE) were calculated by computing the arithmetic mean and the standard deviation 
of the bootstrapped sample median and mean of CI values of each layer.
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Figure 1. Sampling scheme of cone index (CI). Markers indicate sampling points before (filled 
circles) and after tillage (empty circles).
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Determination of the minimum sample size

The minimum sample size to estimate the vertical profile of mean CI values with different 
levels of precision and confidence using the sample mean and median as estimators 
was determined by a procedure adapted from Dane et al. (1986) and Melo-Filho et al. 
(2002). The vertical profile of population mean CI values was estimated using the full 
data and the intervals were calculated with an error margin of ± 10, 20, 30, and 40 %. 
Then, the confidence level was calculated for each sample size (n) as the proportion (P) 
of vertical bootstrap profiles of the sample median and mean of CI values within a given 
interval. Finally, the minimum sample size was determined by modeling the relation 
between P and n using a locally-weighted polynomial function (LOESS) and obtaining 
the inverse predictions by a linear approximation function. Confidence levels of 0.95, 
0.90, and 0.80 were used.

In addition, the minimum sample size was approximated by using the conventional 
method based on the confidence interval of the mean (Equation 1). For each sampling 
time, the variance of the process was estimated using the information from the most 
variable layer and the minimum sample size was calculated for the same level of precision 
and confidence indicated above.

Data management and the bootstrap routine were carried out using the statistical 
programming language R (R Core Team, 2017). Geostatistical analyses were performed 
using the gstat package (Pebesma, 2004). 

RESULTS AND DISCUSSION
Soil water contents at both sampling times were near field capacity and had low variation 
in the explored depth range; thus, no correction was applied to CI values (Table 1). 
The variability in CI values was high at both sampling times and decreased with depth 
(Figure 2). However, the sample CI profiles were more concentrated around the vertical 
profile of mean CI values before than after tillage (the average CV before and after tillage 
were 0.45 and 0.64, respectively). Before tillage, CVs >0.35 were observed from the 
surface to a depth of 0.20 m, whereas after tillage CV exceeded 0.35 in the entire depth 
range (Table 2). In general, the CVs reported in this study agree with those observed by 
Alesso et al. (2017) in a similar soil under no-tillage, but are higher than those found by 
Özgöz et al. (2007) and Cavalcante et al. (2011), especially in the surface layers. 

Before tillage, data from the 0.00 to 0.12 m depth range had right-skewed distributions, 
whereas after tillage, skewness was observed even to a depth of 0.20 m. However, 
according to the Shapiro-Wilks test, the distribution of CI values departed from normality 
only in the upper 7 and 13 layers before and after tillage, respectively. These results 
showed that surface layers are more variable and that due to the skewness of CI data, the 
population mean of CI values in the surface layers would not be adequately estimated by 
the sample mean. Similar results were reported by Gubiani et al. (2011), who concluded 
that the sample mean represents CI values in compacted better than in chiseled soils, 
due to the effect of tillage on soil structure. In this case, data transformation should be 
applied to meet the assumptions, or a more robust estimator, such as the sample median, 
should be used instead of the sample mean. In this study, the logarithmic transformation 
did not approximate the CI data to a normal distribution. The sample mean and median 
did not differ strongly due to the large sample sizes (Table 2 and Figure 2). However, 
larger differences between the vertical profiles of sample mean and median CI values 
would be expected if the samples were smaller.

In the horizontal plane, the CI data showed no spatial structure at both sampling times, 
thus each profile could be regarded as an independent sample unit. The lack of spatial 
structure in the horizontal plane indicates that the scale of spatial continuity of this 
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property was below the sampling scale due to the combination of small-scale variations 
and measurement errors. In contrast, in the vertical direction (1D), CI showed a strong 
spatial structure (Figure 3). Similar results were reported by Castrignanò et al. (2002) 
on a Typic Chromoxerert from southern Italy and by Veronesi et al. (2012) on a Haplic 
Cambisol in the Czech Republic. In this study, the fitted global trend models before and 
after tillage explained 40 and 57 % of the total variability of CI. In both cases, after 
trend removal, a spherical model was fitted to the sample variogram and the estimated 
range showed differences as a result of tillage. Before tillage, the CI measurements 
showed auto-correlation to a depth of 0.12 m whereas after tillage, this range of spatial 
dependence was extended to a depth of 0.16 m. The shorter range may be attributed 
to the layering produced by the continuous no-tillage system, inducing strong changes 
in the soil properties in deeper layers, whereas vertical tillage alters the soil structure 
by loosening the layers and extending the spatial continuity.

Sample size

The relation between sample size and the maximum relative error (RE) of the sample 
median and mean of CI values approximated by bootstrap before and after tillage is 
shown in figure 4. In general, the maximum RE of both estimators corresponds to the 
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Figure 2. Spaghetti plots showing the variability of vertical profiles of cone index (CI) in MPa (gray 
lines) before and after tillage. Black lines represent the mean (solid line), median (dashed line), 
and the 2.5th and 97.5th quantiles (dotted lines).

Table 1. Mean ± standard deviation of soil water content in 0.10-m intervals to a depth of 0.40 m, 
before and after tillage

Soil layer Before tillage After tillage
Soil water content

m g g-1

0.00-0.10 0.302 ± 0.017 0.271 ± 0.013
0.10-0.20 0.291 ± 0.012 0.279 ± 0.011
0.20-0.30 0.292 ± 0.015 0.280 ± 0.012
0.30-0.40 0.297 ± 0.015 0.290 ± 0.017
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top 0.10 m of soil where the most variable CI readings were recorded. For both sampling 
times, the sample median of CI values showed higher RE compared to the sample mean 
over the entire range of sample size explored. In this study, the tillage increased the 
variability of CI readings resulting in higher RE of the sample mean or median of CI 
values after tillage for a given sample size. Similar results were reported by Özgöz et al. 
(2007) who concluded that all three tillage system evaluated (conventional, conservation, 

Table 2. Summary statistics of cone index (CI, MPa) recorded before and after tillage in 0.02-m intervals from the soil surface to the 
maximum measured depth (0.40 m)

Depth
Before tillage (n = 130) After tillage (n = 140)

mean CV median skw p mean CV median skw p
m
0.00 0.06 0.36 0.06 1.87 <0.0001 0.08 0.62 0.07 1.60 <0.0001
0.02 0.12 0.90 0.06 2.57 <0.0001 0.13 0.88 0.07 1.78 <0.0001
0.04 0.22 0.94 0.14 1.47 <0.0001 0.23 0.99 0.12 1.60 <0.0001
0.06 0.39 0.79 0.30 0.93 <0.0001 0.38 0.97 0.28 1.42 <0.0001
0.08 0.59 0.69 0.51 0.99 <0.0001 0.51 0.91 0.40 1.26 <0.0001
0.10 0.8 0.60 0.74 0.71 0.0013 0.64 0.86 0.53 1.02 <0.0001
0.12 0.99 0.52 0.92 0.56 0.0129 0.74 0.80 0.63 0.94 <0.0001
0.14 1.14 0.46 1.12 0.34 0.1834 0.84 0.76 0.70 0.86 <0.0001
0.16 1.27 0.41 1.32 0.05 0.4114 0.91 0.73 0.78 0.76 <0.0001
0.18 1.38 0.38 1.42 0.2 0.1784 0.98 0.70 0.81 0.67 <0.0001
0.20 1.46 0.37 1.49 0.21 0.1038 1.05 0.65 0.94 0.52 0.0003
0.22 1.51 0.34 1.51 0.24 0.2488 1.13 0.60 1.01 0.35 0.0053
0.24 1.53 0.32 1.55 0.09 0.6881 1.21 0.55 1.19 0.22 0.0301
0.26 1.53 0.30 1.58 -0.1 0.6348 1.26 0.52 1.27 0.22 0.1674
0.28 1.56 0.30 1.56 -0.14 0.5746 1.33 0.49 1.31 0.14 0.2225
0.30 1.58 0.30 1.62 -0.06 0.4969 1.38 0.45 1.46 -0.03 0.2374
0.32 1.62 0.29 1.62 -0.13 0.4389 1.43 0.42 1.51 -0.20 0.1148
0.34 1.67 0.29 1.66 -0.15 0.6051 1.47 0.39 1.50 -0.23 0.1241
0.36 1.77 0.29 1.72 -0.04 0.4064 1.52 0.37 1.57 -0.18 0.1480
0.38 1.86 0.29 1.82 0.10 0.5610 1.58 0.37 1.65 -0.07 0.4839
0.40 1.96 0.30 1.92 0.09 0.4273 1.65 0.35 1.71 -0.03 0.3466

CV: coefficient of variation; skw: skewness; and p: p-value of the Shapiro-Wilks normality test.
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Figure 3. Sample and fitted isotropic variograms of the cone index (CI) data along vertical direction 
(1D) before and after tillage.
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and reduced) increased variability of CI values. In addition, the RE associated with the 
sample median of CI values were greater than the RE of the sample mean because the 
latter is a more efficient estimator, i.e. less variance. As a result, the number of samples 
needed to achieve the same precision is also greater for the sample median. For example, 
a maximum RE of 20 % around the vertical profile of sample mean CI values could be 
expected with about 21 samples before tillage, whereas at least 24 observations are 
needed to achieve the same precision after tillage. In contrast, the same level of precision 
around the vertical profile of sample median CI values could be achieved with about 
66 observations before tillage, whereas more than 139 are needed after tillage.

The same general pattern of the relationship between sample size and error of the 
estimator was reported by Molin et al. (2012) and Tavares Filho and Ribon (2008) for 
Oxisols. However, in those studies the sample size above which no information is gained 
by adding extra observations was significantly smaller than the results reported in figure 4. 
This could be explained by the differences of variability between soils and by the fact 
that in those studies the CI data were collected or averaged per layer. The former study 
reveals the soil-specific nature of the sample size recommendations, thus the greater the 
soil variability, the higher are the sampling requirements. The latter article describes the 
smoothing effect of sample support or data processing on the variability (Gubiani et al., 
2011), resulting in a smaller RE for the same sample size.

Although the approach described above is straightforward, it has a major drawback 
by using only the information contained in the most variable soil layer and is based on 
the assumption of normality of the population being sampled. The alternative method 
proposed in this study is based on a resampling method and integrates the information 
of the whole depth range down to 0.40 m, taking the vertical autocorrelation into 
account. The proportion of bootstrap vertical profiles of sample median and mean CI 
values falling within the intervals around the vertical profile of the population of mean 
CI values increases with the sample size for all error margin levels, as expected for both 
estimators (Figure 5). However, for the sample median, none of the curves reached the 
line P = 1, neither before nor after tillage. In contrast, for the sample mean, the curves 
± 20, 30, and 40 % reached the plateau level within the available maximum sample 
size (n = 130 and 140) although the sampling sizes were always greater after tillage 
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Figure 4. Relation between sample size (n) and the maximum relative error (RE) of the vertical 
profile of mean (solid line) and median (dashed line) cone index (CI) values approximated by 
bootstrapping before and after tillage for of the entire 0.00-0.40 m depth range.
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(Figure 6). These results show that the sampling distribution of the sample median was 
more variable than that of the sample mean. Also, they show the effect of soil tillage on 
soil variability because the relationship between sample size and proportion of bootstrap 
profiles within confidence intervals tended to be less steep after soil tillage. 

In general, the number of sample profiles required for the estimation of the vertical profile 
of mean CI values increased with the variability of CI readings and the desired level of 
precision and confidence (Table 3). The higher variability of CI observed after tillage 
resulted in greater sampling requirements for all levels of precision and confidence, 
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Figure 5. Proportion of bootstrap vertical profiles of sample median of cone index (CI) values 
that fall within the ± 10, 20, 30, and 40 % of error around the vertical profile of mean CI values, 
before and after tillage.
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and after tillage.
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independent of the estimator being used. In addition, at the same level of variability of 
CI readings, precision and confidence, the sampling requirements are higher when the 
profile of mean CI values is estimated by the sample medians. For example, to estimate 
the profile of mean CI values with an error of less than 20 % and a confidence level of 
90 %, it would be necessary to take more than 129 and 139 sample profiles before and 
after tillage, respectively. In contrast, if the estimators were the sample means, the 
sampling requirements would drop to 74 and 97 sample profiles of CI before and after 
tillage, respectively. Estimating sampling needs with the conventional method, which 
assumes normal distribution of the CI data and is based solely on the information of the 
most variable layer, resulted in smaller sampling sizes. For instance, for the same level 
of precision and confidence, 64 and 81 sample profiles would be required before and 
after tillage, respectively, according to this method. This discrepancy between methods 
suggests that bootstrapping is a more robust method to assess true population variation 
based on information of the entire profile.

In all cases, the estimated sample sizes (Table 3) exceeded the sampling recommendations 
reported in other studies (Tavares Filho and Ribon, 2008; Molin et al., 2012; Storck et al., 2016). 
For example, the general recommendation of 20 samples would result in an estimation of the 
vertical profile of mean CI values with an error near ± 40 %, the 80 % of the times at best, 
independently of the estimator or the sampling time. Nevertheless, the precision achieved 
with 15-20 samples is below than the 10 % threshold suggested by the above authors.

The bootstrap method can be used without requiring knowledge of the distribution of 
the sampling population, whereas the conventional sample size determination method 
depends on knowledge or assumptions about the distribution (Dane et al., 1986). Moreover, 

Table 3. Minimum sample sizes needed to estimate the vertical profile of mean cone index (CI) 
values with different levels of precision and confidence before and after soil tillage determined 
by conventional and bootstrap methods, using the vertical profile of sample mean and median 
values as estimators

Sampling moment Method Estimator
Relative error margin (%)

± 0.10 ± 0.20 ± 0.30 ± 0.40
Confidence level = 95 %

Before tillage Conventional mean 361 100 49 25
Bootstrap mean >129 98 43 31

median >129 >129 >129 >129
After tillage Conventional mean 400 100 49 25

Bootstrap mean >139 124 53 36
median >139 >139 >139 >139

Confidence level = 90 %
Before tillage Conventional mean 256 64 36 16

Bootstrap mean >129 74 35 26
median >129 >129 >129 103

After tillage Conventional mean 289 81 36 25
Boostrap mean >139 97 44 31

median >139 >139 >139 117
Confidence level = 80 %

Before tillage Conventional mean 169 49 25 16
Bootstrap mean >129 50 27 18

median >129 >129 84 57
After tillage Conventional mean 169 49 25 16

Bootstrap mean >139 70 34 24
median >139 >139 98 74
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it is readily understood and easy to use, provided the assumptions are met, but depends 
strongly on how well the variance of the process is approximated (Han et al., 2016). On the 
other hand, bootstrapping methods are conceptually more complex and require computer 
software to perform the simulations, but are superior to the parametric methods, for 
capturing the variability more precisely and estimating the sampling distribution without 
assumptions. These features allow researchers to deal with distributions other than normal, 
as is common for soil properties. In particular, the method outlined here considers the 
vertical autocorrelation by performing the resampling procedure at the soil profile level. 

CONCLUSIONS
The proposed bootstrap approach allows the approximation of the sampling distribution 
of the vertical profiles of soil cone index and the determination of the sample size 
required for the estimation of a vertical profile of mean CI values using different 
estimators and levels of precision and confidence. Unlike the conventional method, 
the proposed approach did not assume any theoretical distribution and uses the 
information of the whole soil profile including the vertical autocorrelation of CI 
readings, which is a great advantage.

Results of this study demonstrate that the bootstrap approach may be used to determine 
the implications of soil variability on the sampling efforts required for an accurate 
estimation of soil resistance in soils subjected to different soil management practices. 
However, more research is needed to explore the effect of different soil types, tillage 
practices, and penetrometers on the sample needs.
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