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Abstract

This paper proposes an analytical method to determine directly and simultaneously five phenolic compounds (4-nitrophenol, 2-nitrophenol,
phenol, 2,4,6-trichlorophenol and 4-chlorophenol) in sea water (Ria de Bahía Blanca, Argentine). The advantages of this method is that only
requires spectrophotometric measurements (separation steps and derivatization reagents are avoided) and chemometric modelling (PLS and MLR–
SPA).

The statistical comparison between PLS — a well established multivariate method — and MLR–SPA — a recently presented chemometric
modelling — demonstrated better analytical performance for the later one. This fact is indicative of the potentiality of MLR–SPA for solving
complex analytical problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Phenol and substituted phenols are of special concern owing
to the potential propagation of these compounds through the
environment via leaching which comes from the industrial and
petrochemical industries wastes. Some waterways can be
contaminated for those phenols and hazard effects may occur
to the people, also to aquatic organisms, fish and other life
forms [1].

Furthermore, phenolic compounds are also formed during
the natural decomposition of humic substances, tannins and
lignins, and photolytic or metabolic degradation of herbicides
and insecticides [2,3]. These compounds show toxicity values
from moderate to higher, the toxicity level depends on the
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number, position and kind of substituent. The environmental
aspects have became increasingly important in recent years and
both the US Environmental Protection Agency (EPA) and the
European Union (EU) have included the phenolic compounds
as 4-nitrophenol, 2-nitrophenol, phenol, 2,4,6-trichlorophenol
and 4-chlorophenol because they are considered dangerous
pollutants [4,5]. The analysis established by EPA is based on
liquid–liquid extraction (LLE), followed by gas chromatogra-
phy (GC) using several detection methods (electron-capture
detection (ECD) and mass spectrometry (MS) [6,7]. Thus, this
method is complicated and it implies some disadvantages as
time-consuming, high costs, also a large sample volume and
toxic organic solvents are required to extract the analyte.

A more recent extraction technique, solid-phase microex-
traction (SPME), coupled to high-performance liquid chroma-
tography (HPLC) with UV and electrochemical detection (ED)
[8,9], or coupled to gas chromatography–mass spectrometry
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Fig. 1. The MFPC spectrum.
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[10,11] has been applied to the extraction of organic pollutants
in environmental matrices, mainly in water samples, at trace
levels.

Partial least-squares (PLS) is the most popular linear
regression method that has been proposed for multicomponent
analysis, and it is usually applied for multivariate calibration
because of the quality of the calibration models and the
availability of software [12,13]. PLS shows the advantage of
using full data points, which is critical for the spectroscopic
resolution of complex mixtures of analytes.

Nevertheless the PLS advantages, this method gives
complex models owing to the fact that PLS employs latent
variables instead of real variables, which may not have a
straightforward physical interpretation. In this context, multi-
variate linear regression (MLR) models are simpler and easier
to interpret, but they are very affected by collinearity between
variables [13,14]. The use of the Successive Projections
Algorithm (SPA) [15,16] like a variable selection strategy
resolves this problem finding a small representative set of
spectral variables with a minimum of collinearity. In terms of
prediction ability, MLR–SPA has been shown to be
comparable to full-spectrum PLS/PCR models in a number
of applications, including UV–Vis [15,17], ICP-AES [15] and
NIR [18]. Furthermore, SPA has also been compared with the
genetic algorithm [15,16], which is a popular tool for variable
selection in multivariate calibration [19,20]. Moreover, SPA is
a deterministic algorithm, which does not employ stochastic
operations such as other selection methods (Simulated
Annealing [19] and Genetic Algorithm [21,22], for instance)
do.

The final goal of the present study is to propose an analytical
method to determine five phenols in a mixture without any
separation step and without derivatization reagent. The method
only requires the spectral data to be modelled by a multivariate
calibration methods (PLS or MLR–SPA).

This method was applied to sea water samples, that were
taken in the Ria of Bahía Blanca, Argentine. Whereas Bahía
Blanca City has a Petrochemical pole, the town Council has
included phenolic compounds in the lists of priority pollutants
and periodical controls are being carried out. These compounds
are included into the National Law 24051, decree–Law 831/93
about hazard residues. In effluents of the Petrochemical pole
mixtures of different kinds and amounts of phenolic compounds
have been found. As these mixtures had different composition
and this composition is variable periodically. Thus, we selected
five of the most probably phenol compounds that has been
found in the controls.

2. Experimental

2.1. Apparatus

Spectrophotometric measurements were performed on a
Hewlett Packard 8452A diode array spectrophotometer with a
quartz cell with 10 mm light path.

Ultrasonic bath TESTLAB (tb04) was used.
Peristaltic pump Gilson Minipuls3.
2.2. Reagents and solutions

All solutions were prepared with analytical reagent-grade
chemicals and ultra pure water of Milli-Q quality (18.3 mΩ).
Stock solutions of 4-chlorophenol 0.0988 g L−1 (Fluka), phenol
0.102 g L−1 (Anedra), 2-nitrophenol 0.0988 g L−1 (Riedel de
Häen), 4-nitrophenol 0.101 g L−1 (Merck) and 2,4,6-trichlor-
ophenol 0.102 g L−1 (ICN Biomedicals) were prepared by
weighing an appropriate amount and dissolving them in ultra
pure water. They were mixed in an ultrasonic bath for 2 min.
NH4OH (Cicarelli) 0.01 mol L−1 was prepared dissolving
0.68 mL of the reagent and making up to 1000 mL with water.
NH4Cl–NH4OH (pH 10.5) was prepared mixing an appropriate
amount of NH4Cl (Anedra) 2.0 mol L−1 and NH4OH (Cicarelli)
2.0 mol L−1. Na2CO3 (Fluka) 0.1 mol L−1 was prepared
dissolving 8.3 g of the reagent and making up to 1000 mL with
water. Britton–Robinson buffers were prepared mixing an
appropriate amount of CH3COOH (Cicarelli) 0.04 mol L−1,
H3PO4 (Merck) 0.04 mol L−1, H3BO3 (Cicarelli) 0.04 mol L−1

and NaOH (Anedra) 0.2 mol L−1.

2.3. Procedure

2.3.1. Matrix free of phenol compounds (MFPC) preparation
In this work standards were prepared by using a matrix free

of phenol compounds (MFPC). The purpose of using this matrix
is modelling the data by chemometric tools. That means the
modelling of the matrix in order to prevent the interferences that
can be present in the matrix.

The MFPC was prepared from a sea water sample, that was
filtered through a glass microfibre (GF/C Whatman). The
filtered sample was introduced into a FIA system by a peristaltic
pump at 1.2 ml min−1. This stream went through a mini-column
packed with C18 (length: 150 mm and 4.6 mm i.d.). The C18
column was previously conditioned by pumping water for
1 min., then methanol for 2 min. and a final wash with water for
1 min.
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By this way the sample matrix totally free of organic
compounds was obtained in order to use it for the calibration
and validation mixtures preparation. Fig. 1 shows the spectra
of the MFPC.

2.3.2. Calibration and validation sets
The calibration mixtures were prepared following a

central composite design, which consisted of a combination
of a fractional factorial design at two levels and an
additional star design [23,24]. In this way, 26 calibration
samples were prepared in the following analytes concentra-
tion ranges: 0.0 to 0.391 mg L−1 for phenol, 4-nitrophenol
and 2-nitrophenol, and 0.0 to 0.400 mg L−1 for 2,4,6-
trichlorophenol and 4-chlorophenol (see Table 1). On the
other hand, a ten samples validation set was prepared in
order to validate the chemometric models. The analytes
concentrations were chosen in a randomized way, but
spanning the concentration range of the calibration set (see
Table 3). Both sets were prepared by placing suitable
amounts of each phenolic compound, 1.0 mL NH4Cl–
NH4OH pH 10.5 and completing to 25.00 mL with the
MFPC solution. All mixtures were measured in random
order.

2.3.3. Sample preparation
Sea water samples were collected into plastic Van-Dorn

bottles and stored at 4 °C. They were filtered through a
glass microfibre (GF/C Whatman). The clear filtrate was
then stored at 4 °C to minimize analyte biodegradation.
Table 1
Calibration design for chemometric modelling

Calibration sample 4-chlrophenol (mg L−1) Phenol

1 0.264 0.258
2 0.400 0.258
3 0.264 0.391
4 0.400 0.391
5 0.264 0.258
6 0.400 0.258
7 0.264 0.391
8 0.400 0.391
9 0.264 0.258
10 0.400 0.258
11 0.264 0.391
12 0.264 0.258
13 0.264 0.391
14 0.400 0.391
15 0 0.321
16 0.132 0.321
17 0.328 0
18 0.328 0.129
19 0.328 0.321
20 0.328 0.321
21 0.328 0.321
22 0.328 0.321
23 0.328 0.321
24 0.328 0.321
25 0.264 0.258
26 0.400 0.258
Before the analysis, they were equilibrated to room
temperature.

3. Results and discussion

3.1. Influence of pH in phenol compounds spectra

Fig. 2 shows the UV–Vis absorption spectra of 4-
chlorophenol, phenol, 2-nitrophenol, 4-nitrophenol and 2,4,6-
trichlorophenol at pH 10.5. As can be observed, there are
strong overlapping of spectra. The variation of the phenolic
compounds spectra were studied using different Britton–
Robinson buffers in the pH range 2.2–13.1. The spectral
behaviour showed that a better resolution and higher analyte
absorbances were obtained at pH 10.5.

Different solutions at the pH selected and also, buffer
solution at this very pH were tested (Na2CO3 0.1 mol L−1,
NH4OH 0.01 mol L−1, NH4Cl–NH4OH, Britton–Robinson).
The best signals were obtained with NH4Cl–NH4OH.

3.2. Analytical performance

3.2.1. Application of PLS
This method involves a calibration step in which the

relation between spectra and component concentrations is
estimated from a set of reference samples, and a prediction
step in which the results of the calibration are used to
estimate the component concentrations in an unknown
sample spectrum [13]. Herein, we implemented the PLS-1
2-nitrophenol 4-nitrophenol 2,4,6-trichlorophenol

0.258 0.258 0.400
0.258 0.258 0.264
0.258 0.258 0.264
0.258 0.258 0.400
0.391 0.258 0.264
0.391 0.258 0.400
0.391 0.258 0.400
0.391 0.258 0.264
0.258 0.391 0.264
0.258 0.391 0.400
0.258 0.391 0.400
0.391 0.391 0.400
0.391 0.391 0.264
0.391 0.391 0.400
0.321 0.321 0.328
0.321 0.321 0.328
0.321 0.321 0.328
0.321 0.321 0.328
0 0.321 0.328
0.129 0.321 0.328
0.321 0 0.328
0.321 0.129 0.328
0.321 0.321 0
0.321 0.321 0.132
0.258 0.258 0.400
0.258 0.258 0.264



Fig. 2. UV–Vis spectra of the five phenol compounds, each one at a
concentration of 0.1 mg L−1 and pH 10.5.
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version that is optimised for the determination of a single
analyte of interest (each of the five phenols in turn).

The optimum number of factors to be used within the PLS-
1 algorithm is an important parameter to achieve better
performance in prediction. This allows one to model the
system with the optimum amount of information, avoiding
overfitting. The well-known cross-validation procedure was
applied in the present work. The optimum numbers of factors
for different spectrum regions are shown in Table 2. Data
region selection was performed by applying a moving window
strategy to the calibration set itself, in order to find the most
Table 2
PLS calibration figures

Figures 4-chlrophenol (mg L−1) Phenol

Spectral region (nm) 250–428 238–588
Optimal number of factors a 8 8
RMSECVb (mg L−1) 0.017 0.016
REP c (%) 5.8 5.3
SENdd 0.027 0.048
SELd 0.13 0.13
(γ−1) d (mg L−1) 0.037 0.021
LODd (mg L−1) 0.12 0.069
a Factors were selected following the Haaland criterion [12].
b RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðxact−xpredÞ2

I

s
, where I is the number of calibration simples, xact is the act

the PLS models and x̄act is the average concentration in the calibration set.
c REP(%)=RMSECV×100 / x̄act.
d Calculated according to Eqs. (1), (2), (3) and (4), respectively. ‖δr‖ is a measur
informative range in the time profile by localisation of the
minimum prediction error sum of squares (PRESS) [25]. As
can be seen, the obtained latent variables were higher than 5 in
most of the cases, indicating that the variability sources
number in the presently studied system exceeds the number of
studied analytes.

Table 2 also gives other important statistical parameters and
figures of merit such as the root mean square error of cross-
validation (RMSECV), the relative error of prediction (REP
%), the sensitivity (SENk), the selectivity (SELk), the
analytical sensitivity (SENk) and the limit of detection
(LODk). These latter figures of merit can be calculated and
used for method comparison or to study the quality of a given
analytical technique. SEN for a given analyte k has been
defined as

SENk ¼ 1
jjbk jj ð1Þ

Where ‖ ‖ indicates the Euclidean norm and bk is the vector
of final regression coefficients appropriate for component k,
which can be obtained by any multivariate method. Better
insight is furnished by the analytical sensitivity, defined by

gk ¼ ðSENk=jjdrjjÞ ð2Þ

where ‖δr‖ is a measure of the instrumental noise. It allows
comparing analytical methods, regardless the specific tech-
nique equipment and scale employed. Moreover, it establishes
the minimum concentration difference (γ− 1

k) which is
statistically discernible by the method along the dynamic
range [26].

The selectivity quantifies the amount of analyte signal
that is overlapped with the interferences, and is calculated as

SELk ¼ jjs⁎k jj
jjsk jj ð3Þ

Where sk is the vector of spectral sensitivities of component k
in pure form and sk⁎ is the corresponding projection onto the net
analyte signal space [27].
2-nitrophenol 4-nitrophenol 2,4,6-trichlorophenol

330–548 370–548 310–428
4 4 6
0.011 0.008 0.025
3.8 2.7 8.3
0.067 0.19 0.013
0.41 0.14 0.23
0.015 0.0053 0.073
0.049 0.017 0.24

ual concentration in calibration samples, xpred is the predicted concentration with

e of the instrumental noise and equal to 0.001.



Table 3
PLS prediction on both validation and real samples

Validation
samples

4-chlorophenol
(mg L−1)

Phenol 2-nitrophenol 4-nitrophenol 2,4,6-trichlorophenol

Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 0.239 0.217 0.245 0.240 0.239 0.232 0.243 0.253 0.388 0.409
2 0.379 0.349 0.245 0.284 0.239 0.232 0.243 0.252 0.245 0.259
3 0.379 0.358 0.388 0.375 0.239 0.233 0.243 0.250 0.388 0.407
4 0.319 0.297 0.326 0.344 0.159 0.145 0.324 0.333 0.326 0.353
5 0.159 0.126 0.326 0.354 0.000 −0.002 0.324 0.325 0.326 0.352
6 0.000 0.019 0.163 0.129 0.319 0.310 0.162 0.177 0.163 0.199
7 0.319 0.339 0.000 −0.006 0.379 0.351 0.385 0.390 0.163 0.177
8 0.239 0.238 0.388 0.325 0.379 0.385 0.000 0.021 0.388 0.426
9 0.319 0.310 0.326 0.352 0.319 0.301 0.385 0.391 0.000 −0.004
10 0.379 0.387 0.245 0.250 0.379 0.361 0.385 0.393 0.245 0.251
Real 1 0.159 0.142 0.286 0.256 0.319 0.310 0.203 0.217 0.326 0.358
Real 2 0.199 0.142 0.245 0.211 0.258 0.254 0.284 0.290 0.245 0.257
Real 3 0.358 0.393 0.245 0.233 0.279 0.291 0.243 0.246 0.368 0.376
Real 4 0.239 0.243 0.326 0.254 0.199 0.175 0.324 0.332 0.204 0.218
RMSEPa(ppm) 0.025 0.034 0.014 0.010 0.022
REP% 9.6 12.6 5.2 3.7 8.2
a RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðxact−xpredÞ2

I

s
, where I is the number of validation simples, xact is the actual concentration in validation samples, xpred is the predicted concentration with the

PLS models and x̄act is the average concentration in the validation n set.
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At last, a usual definition for the limit of detection is [28]:

LOD ¼ 3:3jjdrjj jjbk jj ð4Þ

LODs obtained show that the sensibility of the method agree
well with the values previously reported for this type of sample
[31–33] for phenol, 2-nithophenol and 4-nitrophenol (values
ranged between 0.02 and 0.07 mg L−1). On the other hand,
LODs obtained for 4-chlorophenol and 2,4,6-trichlorophenol
are not good enough for considering the methodology to the
routine control.

Prediction results are shown in Table 3. As can be seen,
relative error of prediction (REP%) values for the validation
set samples are ranged from 3.7 (4-nitrophenol) to 12.6%
(phenol). As will be seen bellow, these results are improved
when using another chemometric tool.
3.2.2. Application of MLR–SPA
MLR–SPA uses a calibration (Xcal) and a validation (Xval)

sets consisting of instrumental response data and parameter
values measured by a reference method (y). The essence of SPA
consists of projection operations carried out on the calibration
Table 4
SPA calibration figures

Figures 4-chlorophenol Phenol

Spectral region (nm) 250–428 238–588
Number of
variable selected

17 11

Selected variables (nm) 250; 256; 264; 270; 282;
292; 304; 316; 340; 364–
370; 378; 402; 426; 428

240; 250; 264; 288; 306;
340;402; 448; 486; 568;

RMSEC 0.005 0.007
REP (%) 1.7 2.2
matrix. A detailed explanation of the projection operations is
given elsewhere [15,16].

Starting from each of the J variables (columns of Xcal)
available for selection, SPA builds an ordered chain of K
variables where each element is selected in order to present the
least collinearity with the previous ones. The collinearity
between variables is assessed by the correlation between the
respective column vectors of Xcal. It is worth to point out that,
according to this selection criterion, no more than K variables
can be included in the chain [15,16].

It is possible to extract K subsets of variables from each of
the J chains constructed by using one up to K elements in the
order in which they were selected. Thus, a total of J×K subsets
of variables can be formed. In order to choose the most
appropriate subset, J×K MLR models are built using the
calibration samples set and compared in terms of the root–
mean–square error obtained of the validation samples set. Table
4 present the number of selected variables, these variables and
figures of merit for SPA. The prediction results for SPA models
are shown in Table 5.

Since it is not possible to assure that the selected variables by
SPA are orthogonals, ‖bk‖, SENK and LODK were not
calculated for MLR–SPA.
2-nitrophenol 4-nitrophenol 2,4,6-trichlorophenol

330–548 370–548 310–428
10 6 6

586
330; 364–368; 400; 450;
486; 488; 498; 546.

370; 400; 428;
486; 488; 546.

310; 318; 332;
358; 402; 428.

0.008 0.005 0.014
2.6 1.6 4.4



Fig. 3. Elliptical joint confidence regions for the slope (b) and intercept (a)
corresponding to regressions of real concentrations versus PLS and MLR–SPA
predicted concentrations of the five analytes. PLS (solid line) and MLR–SPA
(dashed line). The cross marks the theoretical point (a=0, b=1).

Table 5
SPA prediction on both validation and real samples

Validation
samples

4-chlorophenol
(mg L−1)

Phenol 2-nitrophenol 4-nitrophenol 2,4,6-trichlorophenol

Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 0.239 0.242 0.245 0.254 0.239 0.242 0.243 0.241 0.388 0.390
2 0.379 0.370 0.245 0.289 0.239 0.243 0.243 0.241 0.245 0.234
3 0.379 0.373 0.388 0.387 0.239 0.241 0.243 0.239 0.388 0.377
4 0.319 0.330 0.326 0.352 0.159 0.152 0.324 0.316 0.326 0.324
5 0.159 0.147 0.326 0.359 0.000 − 0.005 0.324 0.316 0.326 0.324
6 0.000 − 0.001 0.163 0.148 0.319 0.318 0.162 0.164 0.163 0.174
7 0.319 0.315 0.000 0.002 0.379 0.373 0.385 0.385 0.163 0.153
8 0.239 0.263 0.388 0.353 0.379 0.389 0.000 0.008 0.388 0.399
9 0.319 0.279 0.326 0.351 0.319 0.326 0.385 0.383 0.000 − 0.024
10 0.379 0.375 0.245 0.267 0.379 0.376 0.385 0.383 0.245 0.241
Real 1 0.159 0.160 0.286 0.276 0.319 0.320 0.203 0.210 0.326 0.328
Real 2 0.199 0.164 0.245 0.227 0.258 0.263 0.284 0.282 0.245 0.234
Real 3 0.358 0.368 0.245 0.251 0.279 0.288 0.243 0.248 0.368 0.350
Real 4 0.239 0.259 0.326 0.273 0.199 0.190 0.324 0.320 0.204 0.198
RMSEP (ppm) 0.018 0.026 0.006 0.005 0.011
REP% 6.6 9.8 2.2 1.8 4.1
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3.2.3. Comparative study of both chemometric models
A visual inspection of Tables 3 and 5 allows seeing

substantial differences between predictions obtained by appli-
cation of both chemometric approaches. REP% values drop
from 12.6% to 9.8% in the worst case (phenol) and from 5.2 to
2.2 for 2-nitrophenol. A statistical t-student test allowed us to
conclude (not showed) that differences between REP% obtained
for both approaches are significant (p<0.05) in all the five
analytes.

In order to get further insight into the precision ability of both
chemometric methods herein analysed, linear regression
analysis of actual concentration values versus SPA and PLS
predictions (see Tables 3 and 5) was applied. The estimated
intercept and slope (â and b̂ respectively) were compared with
their ideal values of 0 and 1 using the elliptical joint confidence
region (EJCR) test, in this case by using an ordinary least
squares fitting (OLS) of the actual versus the simultaneously
seventy predicted values for each method as recommended
Martinez et al. for simultaneous determination of several
analytes [29]. Fig. 3 shows the EJCR plots for the two
employed chemometric assisted methods. As can be seen, the
ellipses contain the theoretical (a=0, b=1) point for both
methods. This fact is indicative that proportional and constant
errors are not present and thereby of the excellent predictive
ability especially of MLR–SPA.

3.2.4. Applications to real samples
The method was applied to sea water samples which were

spiked with phenol compounds as they were found not to
contain them initially. Bearing in mind the strong absorption
of the matrix and phenol compounds at low wavelengths, the
standards were prepared with the sea water free of phenol
compounds. As can be judged observing the results presented
in Tables 3 and 5, the prediction can be considered acceptable
taking unto account the complexity of the sample being
analyzed.
4. Conclusions

Five phenols that are considered dangerous pollutants could
be directly and simultaneously determined in complex samples
by resorting to spectrophotometric measurements and chemo-
metric modelling. The statistical comparison between PLS — a
well established multivariate method — and MLR–SPA — a
recently presented chemometric modelling— has demonstrated
a better analytical performance for the later one (i.e. a
substantially diminishing on the error of prediction). This fact
is indicative of the potentiality of MLR–SPA on solving
complex analytical problems.

The method proposed in this paper, and applied to sea water,
is a useful alternative for the determination of the phenolic
compounds above mentioned, which are included in the EPA
and European Union lists as hazardous pollutants. Moreover,
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the method presents several advantages such as good sensitivity
and selectivity and an acceptable linear range compared with
other methods [30,31].
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