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Routh reduction for first-order Lagrangian field theories
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Abstract We present a reduction theory for first order Lagrangian field theories
which takes into account the conservation of momenta. The relation between the
solutions of the original problem with a prescribed value of the momentum and the
solutions of the reduced problem is established. An illustrative example is discussed
in detail.
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1 Introduction

The geometric reduction of an invariant Lagrangian system can be performed in
two different ways depending on whether the conservation of momenta is taken
into account in the reduction procedure or not. Accordingly, two fundamental re-
duction theories have emerged in the literature: the so-called Routh reduction and
the Lagrange-Poincaré reduction. In a nutshell, the distinction is as follows: in the
Lagrange-Poincaré reduction one quotients the tangent bundle of the phase space di-
rectly by the Lie group of symmetries, while in the case of Routh reduction one first
restricts the attention to the level set of the momentum and only then quotients by a
suitable subgroup of the group of symmetries (in fact, Routh reduction is the natural
Lagrangian analog of symplectic reduction [19]). As the terminology suggest, both
techniques have a rich and long history; the reader can take a look at [22] for an
overview.
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In the realm of Lagrangian field theory, much attention has been paid to the
Lagrange-Poincaré case (see e.g. [4,5] and references therein; see also [11,9]) but, to
the best of our knowledge, the case of Routh reduction remains unexplored. The pur-
pose of this paper if to fill this gap and discuss a variational framework to carry out
Routh reduction for first-order Lagrangian field theories. This is achieved by exam-
ining the contact structure of the variational problem with symmetry, which allows
us to relate the critical sections of the original Lagrangian field theory with a pre-
scribed value of the momentum with the critical sections of a reduced Lagrangian
field theory with forces. The role of the reduced Lagrangian is played by a suitably
defined Routhian, extending the well-known construction for the mechanical case
(see e.g. [21]).

The paper is organized as follows. In Section 2 we discuss the setting of La-
grangian field theory and identify the critical sections of a Lagrangian density as
integral sections of a suitable affine subbundle of the contact subbundle. We describe
how the symmetry (and the choice of a principal connection) induces a splitting of the
contact structure. A notion of momentum map adapted to this setting is introduced
following [13], and its conservation along solutions is shown. Section 3 contains the
main results on Routh reduction for field theories. First, we identify a natural candi-
date for a Routhian in the field theoretical setting and then, after some preparatory
results, we prove that its reduction plays the role of the Lagrangian for a reduced
Lagrangian field theory with forces. It is shown that extremals of the original (i.e.
unreduced) LFT with a prescribed value of the momentum project onto solutions
of the reduced LFT. Many of the results in this section are obtained adapting the
techniques from [2] to the field-theoretical case. Section 4 addresses the problem of
reconstruction. We recover the integrability condition for reconstruction that has ap-
peared in the context of Lagrange-Poincaré reduction [5,9] and discuss its geometric
meaning in terms of liftings of sections. Finally, Section 5 contains one easy example
that illustrates the applicability of the proposed scheme.

To conclude, we would like to point that it should be possible to consider a dif-
ferent approach to Routh reduction in field theory, at least under some regularity
conditions, in those formalisms for which a multisymplectic-like reduction theorem
is available. For instance the case of polysymplectic manifolds, arguably one of the
easiest approach to field theories, has its own reduction theorem [20] and thus looks
like a natural first choice. This will be discussed elsewhere.

Notations. If Q is a manifold, Λ p(Q) = ∧p(T ∗Q) denotes the p-th exterior power of
the cotangent bundle of Q. The space of differential p-forms, sections of Λ p(Q)→Q,
will be denoted by Ω p(Q). We also write Λ •(Q) =

⊕dimQ
j=1 Λ j(Q). If f : P→ Q is

a smooth map and αx is a p-covector on Q, we will sometimes use the notation
α f (x) ◦Tx f to denote its pullback f ∗αx. If P1→ Q and P2→ Q are fiber bundles over
the same base Q we will write P1×Q P2 for their fibred product, or simply P1×P2
if there is no risk of confusion. Finally, Einstein summation convention will be used
everywhere.
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2 Lagrangian field theory

We will denote the configuration (fibre) bundle by π : E →M, with dimM = m and
dimE = m+ n, and we assume that M is oriented with volume form η . We con-
sider the first jet bundle J1π and adopt the usual notations for the source and target
projections:

J1π E

M

π10

π1 π

A section of π will generally be denoted by s : M → E, j1
x s denotes the first jet of

s at x ∈ M and j1s : M → J1π denotes the prolongation of s. We will use adapted
coordinates (xi,ua,ua

i ) on J1π such that locally η = dx1∧·· ·∧dxm. For p < l, the set
of p-horizontal l-forms on E, denoted Λ l

kE, is defined as

Λ
l
pE
∣∣∣
e
= {α ∈Λ

lE : v1y . . .vpyα = 0, for all v1, . . . ,vp ∈Ve(π)}.

Likewise, the set

Λ
l
pJ1

π

∣∣∣
j1x s

= {α ∈Λ
lJ1

π : v1y . . .vpyα = 0, for all v1, . . . ,vp ∈Vj1x s(π1)}

denotes the p-horizontal l-forms on J1π . For the necessary background on the geom-
etry of first-order Lagrangian field theory, we refer the reader to [7]. A comprehensive
treatment of jet bundles can be found in [24].

We will need the following definition of Lagrangian field theory which is more
general than the standard one:

Definition 1 A Lagrangian field theory (LFT) is a triple (π : E→M,Lη ,F ), where
L is a smooth function on J1π , η is the pullback to J1π of a volume form on M and
F ∈Ω

m+1
3 (J1π) is a π10-basic (m+1)-form on J1π .

The π1-semibasic form L = Lη is the Lagrangian density, and F is the force. We
will make an abuse of notation and write η for both the volume form on M and its
pullback to J1π or any space that fibers over M. The case F = 0 corresponds to the
usual definition of LFT and will simply be represented by the pair (π : E→M,Lη).

We say that a (possibly local) section s : U ⊂ M → E is critical for (π : E →
M,Lη) if

δ

∫
U

(
j1s
)∗

Lη +
∫

U

(
j1s
)∗ 〈F ,δ sC〉= 0

holds for every variation δ s that vanishes on ∂U , where δ sC is the section of the
pullback bundle ( j1s)∗ (V π1) constructed by the complete lift of an extension of the
section δ s : M → V π to a vertical vector field on E. In coordinates, writing F =
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1
2 F j

abdua ∧ dub ∧η j +Fadua ∧η (here η denotes the pullback to J1π of the volume
form in M), a section xi 7→ (xi,ua(x)) is critical iff it satisfies:

∂

∂xk

(
∂L
∂ua

k

)
− ∂L

∂ua = F j
ab

∂ub

∂x j +Fa.

Note that the case F = 0 leads to the well-known Euler-Lagrange equations for first-
order fields.

2.1 Contact structure and critical sections

We will now describe an alternative characterization of the solutions of a Lagrangian
system (E,Lη ,F ). The approach is based on the notion of classical Lepage-equivalent
variational problems [12] (see also [18] and references therein) and the Griffiths for-
malism [15] (see also [16]).

The canonical form on J1π is the V π-valued 1-form θ = (dua− ua
i dxi)⊗ ∂ua ,

which can be intrinsically expressed as (see e.g. [7]):

θ | j1x s = Tj1x sπ10−Txs◦Tj1x sπ1. (1)

We consider the contact bundle Icon which is the subbundle of Λ •(J1π) generated
by the forms θ a = dua− ua

i dxi. With this it is meant that an element in the contact
bundle ρ ∈ Icon is of the form

ρ = ∑
a

θ
a∧βa, βa ∈Λ

•(J1
π).

Since θ is a V π-valued 1-form, composing θ with a section α of V ∗π results in a
1-form on J1π which is a combination of the forms θ a, and therefore we can think
of Icon as the subbundle generated (in the above-mentioned sense) by the forms α ◦θ

with α a section of V ∗π . In our case, it will be convenient to think of Icon as generated
by the forms α ◦ θ where α is a 1-form on E (again, this holds because θ is V π-
valued).

We consider the contact subbundle Im
con,2 = Icon ∩Λ m

2 J1π spanned by m-forms
which are 2-horizontal and which, in view of the observations above, admits the fol-
lowing description:

Im
con,2

∣∣
j1x s = L

{
α ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)∧β : α ∈ T ∗s(x)E,β ∈

(
Λ

m−1
1 J1

π
)

j1x s

}
.

(2)
The notation L {·} denotes the linear span. In other words, an element ρ in the con-
tact subbundle Im

con,2 is of the form

ρ = (α1 ◦θ)∧β1 + · · ·+(αk ◦θ)∧βk,

sor some k ∈N and with αi,βi as in (2). We will call an element of Im
con,2 with a single

summand (i.e., k = 1) a simple element. Most of the proofs involving Im
con,2 will be

done for simple elements, since the case of arbitrary elements is similar.
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Finally, we consider the subbundle WLη of Λ m
2 J1π given by the affine translation

of the contact subbundle by the Lagrangian density:

WLη = Lη + Im
con,2 ⊂Λ

m
2 J1

π. (3)

We denote by πLη : WLη → J1π its canonical projection. Coordinates on WLη are
given as follows. The bundle Im

con,2 is spanned by the forms γa
i = θ a ∧ηi, with ηi =

∂xiyη , and thus an element α j1x s ∈ (WLη) j1x s is expressed as α j1x s = (Lη) j1x s+ pi
a(γ

a
i ) j1x s

for some multipliers pi
a. This defines coordinates on the fibers of πLη , and therefore

(xi,ua,ua
i , pi

a) are coordinates on WLη which are adapted to the fibrations:

WLη J1π E M,

(xi,ua,ua
i , pi

a) (xi,ua,ua
i ) (xi,ua) xi.

πLη π10 π

The bundle πLη : WLη → J1π comes equipped with a corresponding Cartan m-
form λLη . It is defined as follows: for all v1, . . . ,vm ∈ TαWLη ,

λLη

∣∣
α
(v1, . . . ,vm) = π

∗
Lη α(v1, . . . ,vm) = α

(
T πLη(v1), . . . ,T πLη(vm)

)
.

In coordinates, it reads:

λLη = Lη + pi
adua∧ηi− pi

aua
i η .

We can now prove a useful characterization of the critical sections of a LFT:

Proposition 1 A section s : U ⊂M→ E is critical for (π : E→M,Lη) if and only if
there exists a section Γ : U ⊂M→WLη such that
1) Γ covers s, i.e. π10 ◦πLη ◦Γ = s, and
2) Γ ∗ (XydλLη) = 0, for all X ∈ XV (WLη).

Here XV (WLη) denotes the vector fields which are vertical w.r.t. the projection WLη→
M. Γ is called a solution of (π : E→M,Lη) or of (WLη ,λLη).

Proof The situation is summarized in the following diagram:

WLη J1π E

M

π1

πLη π10

π

Γ

j1s

s
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Considering the vector fields {∂ua ,∂ua
i
,∂pi

a
} the condition Γ ∗ (XydλLη) = 0 translates

into:

0 = Γ
∗
(

∂

∂ua ydλLη

)
= Γ

∗
(

∂L
∂ua η−d pk

a∧ηk

)
,

0 = Γ
∗
(

∂

∂ua
k
ydλLη

)
= Γ

∗
((

∂L
∂ua

k
− pk

a

)
η

)
,

0 = Γ
∗
(

∂

∂ pk
a
ydλLη

)
= Γ

∗
((

dua−ua
l dxl

)
∧ηk

)
.

Hence Γ = (xi,ua(x),ua
i (x), pi

a(x)) must satisfy

∂L
∂ua −

∂ pk
a

∂xk = 0,
∂L
∂ua

k
− pk

a = 0,
∂ua

∂xk = ua
k ,

which are the Euler-Lagrange equations, written in implicit form.

Remark 1 The fact that the Euler-Lagrange equations obtained from the relation
Γ ∗ (XydλLη) = 0 are implicit has an important consequence: the momentum con-
straint will be kept implicit through the reduction procedure, and this helps us to
overcome the usual issues related to the group regularity (regularity w.r.t. the group
variables) of the Lagrangian. In this respect, our approach is similar to [10].

Remark 2 In the presence of a force F , a similar proof shows that s : U ⊂M→ E is
a critical section for (π : E→M,Lη ,F ) if and only if there exists a section Γ : U ⊂
M→WLη covering s and such that

Γ
∗(Xy

(
dλLη + F̃

))
= 0,

for all X ∈ XV (WLη), where F̃ ∈Ω m+1(WLη) is the pullback of F .

Remark 3 In what follows we will work with global solutions of the LFT, but all the
results apply as well to local solutions.

2.2 Symmetry and momentum

We now discuss the presence of natural symmetries and their momentum maps for a
LFT (π : E→M,Lη). For concreteness, we will work with left actions.

We start with an action φ : G×E → E of a Lie group G on E which is vertical,
i.e. π(ge) = π(e) for each g ∈ G and e ∈ E, where ge = φg(e) = φ(g,e). We assume
that the action is free and proper, and thus pE

G : E → E/G is a principal fiber bundle.
We will denote by π : E/G→M the quotient bundle:

E E/G

M

pE
G

π π
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The infinitesimal generator of an element ξ ∈ g (where g is the Lie algebra of G) will
be denoted by ξE . More in general, if Q is a manifold with a G-action we use the
notation ξQ for the infinitesimal generators.

There are natural (left) G-actions on J1π (by prolongation, i.e. j1φg), on T (J1π)
(via the tangent lift) and on Λ p(J1π) for any p (via the cotangent lift). We will of-
ten use the abbreviated notation for all of them: for instance, if α j1x s ∈ Λ m(J1π) we
write gα j1x s = T ∗j1φg( j1x s) j1φg−1α j1x s, and so on. We assume that the action leaves the

Lagrangian density invariant. More precisely, we require ( j1φg)
∗Lη = Lη .

In this situation, it can be shown that the action preserves the contact subbun-
dle Im

con,2 and therefore, in view of the invariance of the Lagrangian density, it also
preserves the subbundle WLη . Moreover, the Cartan form λLη is invariant w.r.t. this
action: this can be checked using the argument in [13], Section 4.B. In this setting,
the notion of momentum map for the action on WLη is introduced following [13], and
it is a particular case of the more general multisymplectic approach [3].

Definition 2 A momentum map for the action of G on WLη is a map

J : WLη →Λ
m−1WLη ⊗g∗

over the identity in WLη such that

ξWLη
ydλLη =−dJξ ,

where Jξ is the (m−1)-form on WLη whose value at α ∈WLη is Jξ (α) = 〈J(α),ξ 〉.

Accordingly, we think of a “momentum” µ̂ as an element µ̂ ∈ Ω m−1(WLη ,g
∗),

i.e. as a g∗-valued (m− 1)-form on WLη ; a conserved value µ̂ of the momentum
map is a closed one, i.e. dµ̂ = 0. If we consider a solution Γ : U ⊂ M →WLη of
(π : E→M,Lη), then for each ξ ∈ g we have

d(Γ ∗Jξ ) = Γ
∗(dJξ ) = Γ

∗(−ξWLη
ydλLη) = 0,

and therefore the momentum is conserved along solutions. Thus, we obtain Noether’s
theorem in this setting:

Proposition 2 The momentum map J is conserved along solutions of (WLη ,λLη).

We might then restrict our attention to solutions which lie in the level set of a fixed
value of the momentum µ̂ which we will always assume to be regular (this implies
that J−1(µ̂) is a submanifold of WLη ).

A momentum map is Ad∗-equivariant if it satisfies

〈J(gα),Adg−1ξ 〉= g〈J(α),ξ 〉.

Note that this is an equivariance condition for the natural action of G on the spaces
WLη and Λ m−1WLη ⊗g∗, where G acts on g∗ by gµ = Ad∗g−1 µ . The construction of a
momentum map for the action on WLη is standard [13]:
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Lemma 1 The map J : WLη →Λ m−1WLη ⊗g∗ defined by

〈J(α),ξ 〉= ξWLη
(α)y λLη

∣∣
α
,

for each ξ ∈ g, is an Ad∗-equivariant momentum map for the G-action on WLη .

From now on, we reserve the notation J to denote the specific momentum map
defined in Lemma 1. We will now show that such an admissible momentum µ̂ is
(π1 ◦πLη)-basic, and can be though of as an (m− 1)-form µM on M. From now on,
we assume that (π1 ◦πLη) has connected fibers.

Lemma 2 Let µ̂ ∈ Ω m−1(WLη ,g
∗) be a closed g∗-valued form on WLη in the image

of J. Then there exists µM ∈Ω m−1(M,g∗) such that µ̂ = (π1 ◦πLη)
∗ µM . In particular,

µ̂ is 1-horizontal.

Proof Let µ̂ |α= J(α). From the definition of the Cartan form λLη , if v ∈ Vα(π1 ◦
πLη), then

vyJξ (α) = vy
(
ξWLη

y λLη

∣∣
α

)
= 0,

since α is 2-horizontal and T πLη(v),T πLη(ξWLη
) ∈V π1. Therefore µ̂ annihilates the

vertical space of (π1 ◦ πLη). It remains to check that µ̂ is constant on the fibers of
(π ◦πLη). This happens if, and only if, £Z µ̂ = 0 for each Z vertical w.r.t. (π1 ◦πLη)
(because (π1 ◦πLη) has connected fibers. But this is immediate: using that µ̂ is closed
we have £Z µ̂ = d (Zyµ̂) = 0.

We will write µ = π∗1 µM ∈Ω
m−1
1 (J1π,g∗); note that µ is characterized by:

µ̂ = π
∗
Lη µ.

Given a g∗-valued closed form µ̂ on WLη introduce the corresponding momentum
level set according to the formula

J−1 (µ̂) =
{

α ∈WLη : µ̂|
α
= J (α)

}
.

We will see an explicit description of the elements of this set in Lemma 3 below. It
can be proved that this set is a particular instance of a momentum-type submanifold
of WLη , as discussed in [8].

We will denote by Gµ the isotropy group of µ , i.e. the subgroup of G consisting
of elements which leave µ invariant under the natural action on Ω m−1(J1π,g∗):

Gµ = {g ∈ G : gµ = µ}.

It is easy to check that this subgroup coincides with the isotropy group of µ̂ (defined
analogously). Thus, Gµ acts on WLη and leaves J−1(µ̂) invariant.

Remark 4 In the case of classical mechanics the configuration bundle is Q×R→R.
We have m = 1, and a momentum map is a map J : WL→ g∗. A momentum value is
identified with an element in g∗, as usual.
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There is an splitting of Im
con,2 induced by the choice of a connection on the princi-

pal bundle pE
G : E→ E/G. Its construction is as follows. We denote by ω ∈Ω 1(E,g)

the chosen connection and consider the following splitting of the cotangent bundle:

T ∗E = (pE
G)
∗(T ∗(E/G)

)
⊕ (E×g∗).

The identification is obtained as follows:

(pE
G)
∗(T ∗(E/G)

)
⊕ (E×g∗)→ T ∗E,

(e, α̂[e],σ) 7→ αe = α̂[e] ◦Te pE
G + 〈σ ,ω(·)〉.

Accordingly, we have an splitting of contact bundle (2)

Im
con,2 = Ĩm

con,2⊕ Im
g∗,2, (4)

with

Ĩm
con,2

∣∣∣
j1x s

= L
{

α̂[s(x)] ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)∧β :

α̂[s(x)] ∈ T ∗[s(x)] (E/G) ,β ∈
(
Λ

m−1
1 J1

π
)

j1x s

}
,

Im
g∗,2
∣∣

j1x s =
{
〈σ ∧, ω ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)〉 : σ ∈

(
Λ

m−1
1 J1

π⊗g∗
)

j1x s

}
.

Here 〈· ∧, ·〉 denotes the natural contraction. For simple tensors, writing α1⊗ν for a
g∗-valued form (ν ∈ g∗) and α2⊗η for a g-valued form (η ∈ g), we have 〈α1⊗ν ∧,
α2⊗η〉= 〈ν ,η〉α1∧α2.

If s : U → E is a section, we can define a reduced section [s]G : U → E/G, whose
value at x ∈M is simply [s(x)]G. We also recall that a point in the fiber of x ∈M of
the vector bundle Lin(π∗T M, g̃) ' π

∗(T ∗M)⊗ g̃ represents a linear map from TxM
to g. Sections of this bundle might be identified with linear bundle maps over the
identity from π

∗T M to g̃, where g̃ is the adjoint bundle associated to the principal
bundle pE

G : E → E/G. An element in Lin(π∗T M, g̃) is of the form [e, ξ̂ ]G, where
π(e) ∈ E/G and ξ̂ : Tπ(e)M→ g is a linear map.

Proposition 3 The map

ϒω : J1
π −→

(
pE

G
)∗ (

J1
π×E/G Lin(π∗T M, g̃)

)
,

j1
x s 7−→

(
s(x) , j1

x [s]G , [s(x) ,ω ◦Txs]G
)
.

is a bundle isomorphism.

Proof We will construct explicitly the inverse ϒ−1
ω . We regard a 1-jet σ of π as a

splitting of the sequence

0−→VeE i∗−→ TeE π∗−→ TxM −→ 0,

i.e. as a map σ : TxM→ TeE with π∗ ◦σ = idTxM . We need to define such an splitting
starting from an splitting σ of the sequence

0−→V[e](E/G)
i∗−→ T[e](E/G)

π∗−→ TxM −→ 0.
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The connection ω determines, via its horizontal lift Hω : T[e](E/G)→ TeE, a splitting
of the sequence

0−→VeE i∗−→ TeE
(pE

G)∗−→ T[e](E/G)−→ 0.

Finally, we also have a linear map ξ̂ : TxM→ g. Then σ =ϒ−1
ω

(
e,σ , ξ̂

)
is the splitting

σ : TxM→ TeE given by

σ(vx) = (Hω ◦σ)(vx)+
(
ξ̂ (vx)

)
Q(e).

It is clear from the definition that σ is the inverse of ϒω .

The map ϒω enjoys a useful property: under this identification, the action of G on J1π

is simply
g ·
(
e, j1

x s, [e, ξ̂ ]G
)
=
(
g · e, j1

x s, [e, ξ̂ ]G
)
.

This is a direct consequence of the equivariance of the principal connection ω . As a
result, we get the following corollary.

Corollary 1 There is an identification

J1
π/Gµ ' J1

π×E/G E/Gµ ×E/G Lin(π∗T M, g̃) .

Remark 5 The assumption of a global Lie group action on the configuration bundle
adopted in this paper is standard in the literature of Lagrangian field theory reduction,
see e.g. [4,5,11,9]. A recent approach to Routh reduction in the mechanical case [14]
assumes only the weaker notion of an infinitesimal symmetry, encoded by a vector
field X on the manifold, to perform reduction. It should be noted, however, that [14]
deals only with the case of a single vector field (corresponding to the case of a cyclic
variable).

3 Routh reduction for Lagrangian field theories

We will describe an approach to Routh reduction for a LFT (π : E →M,Lη) which
is similar to the mechanical case described in [2]. First, we need a definition of the
Routhian in field theory.

3.1 The Routhian in field theory

We consider solutions which have a prescribed value of the momentum map µ̂ which
is assumed to be closed, and in particular this implies that it is of the form µ̂ = π∗Lη

µ

for some closed µ ∈Ω
m−1
1 (J1π,g∗) (Lemma 2). Let us denote

W µ

Lη
= J−1 (µ̂)
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the level set of µ̂ . We will denote by λ
µ

Lη
its canonical m-form (the pullback of λLη by

the inclusion) and, abusing slightly the notation, simply write πLη for the projection
onto M.

Recall that we have an splitting of the contact bundle induced by the connec-
tion (4). The following lemma shows that the momentum fixes the vertical compo-
nent of the forms in the contact structure. It will be convenient to use the following
notation:

ε = (−1)dimM−1.

Lemma 3 Any simple element ρ ∈W µ

Lη
such that πLη(ρ) = j1

x s can be written as

ρ = L
(

j1
x s
)

η + α̂[s(x)]G ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)∧β+

ε 〈µ ∧, ω|s(x) ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)〉

for some α̂[s(x)]G ∈ T ∗[s(x)]G(E/G) and β ∈ (Λ m−1
1 J1π) j1x s.

Proof The form ρ ∈W µ

Lη
⊂Λ m

2 J1π can be written as

ρ = L
(

j1
x s
)

η + α̂[s(x)]G ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)∧β+

〈σ ∧, ω|s(x) ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)〉,

with all the terms as in the statement of the lemma, and σ ∈ (Λ m−1
1 J1π ⊗ g∗) j1x s. If

ξ ∈ g, the infinitesimal generator ξWLη
satisfies T πLη(ξWLη

) = ξJ1π (the generator
of the prolonged action), which is π1-vertical. In particular ξJ1π( j1

x s)yη j1x s = 0, and
ξJ1π( j1

x s)y β | j1x s = 0. Moreover, ξJ1π satisfies Tj1x sπ10
(
(ξJ1π)( j1

x s)
)
= ξE(s(x)), and

therefore (Tj1x sπ10−Txs◦Tj1x sπ1)
(
ξJ1π( j1

x s)
)
= ξE(s(x)), which is pE

G vertical. Finally,
from the definition of the connection form, we have ω(ξE) = ξ . All together, this
means that

〈J(ρ),ξ 〉= π
∗
Lη(ξJ1πyρ) = 〈π∗Lη σ ,ε ξJ1πyω ◦ (T π10−T s◦Tj1x sπ1)〉

= ε 〈π∗Lη σ ,ξ 〉.

Imposing J(ρ) = µ̂ and writing µ̂ = π∗Lη
µ , the claim follows.

For arbitrary elements ρ ∈W µ

Lη
, we get a similar result, but with the second term of

the form

∑
i

α̂i ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)∧βi.

This suggests us to define a Routhian density Rµ ∈Ω m
1 (J1π) as follows:

Rµ

(
j1
x s
)
= L

(
j1
x s
)

ηx− ε
〈

µ| j1x s
∧, ω|s(x) ◦Txs◦Tj1x sπ1

〉
, j1

x s ∈ J1
π.

Proposition 4 The form Rµ is a Lagrangian density. It is Gµ -invariant.
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Proof Recall that a Lagrangian density is a π1-semibasic form on J1π . It suffices to
check that the second term is π1-semibasic, but this is clear since it annihilates V π1.
For the Gµ -invariance, note that µ is invariant by definition of Gµ .

Thus, we can naturally define the Routhian to be the function Rµ ∈C∞(J1π) such
that Rµ = Rµ η . We will see later that, just like in the mechanical case, this function
plays the role of the Lagrangian for the reduced system.

We write p : E/Gµ ×Lin(π∗T M, g̃)→ E/G for the obvious projection. In partic-
ular, one can consider the map:

q : J1 (π ◦ p)−→ J1
π×E/Gµ ×Lin(π∗T M, g̃),

j1
x σ 7−→

(
j1
x (p◦σ) ,σ(x)

)
.

Using the connection ω , we have maps fitting in the following diagram:

J1π E/Gµ ×Lin(π∗T M, g̃) J1 (π ◦ p)

J1π/Gµ J1π×E/Gµ ×Lin(π∗T M, g̃)

pJ1π
Gµ

fω (π◦p)10

q

gω

The definitions are as follows:

fω : J1
π −→ E/Gµ ×Lin(π∗T M, g̃),

j1
x s 7−→

(
[s(x)]Gµ

, [s(x) ,ω ◦Txs]G
)
.

gω : J1
π/Gµ −→ J1

π×E/Gµ ×Lin(π∗T M, g̃),[
j1
x s
]

Gµ
7−→

(
j1
x
(

pE
G ◦ s

)
, [s(x)]Gµ

, [s(x) ,ω ◦Txs]G
)
.

The map gω is the identification from Corollary 1. Since the Routhian density Rµ is
invariant under Gµ , it defines a reduced density on J1π/Gµ which, under the identi-
fication gω can be seen as a density on J1π×E/Gµ ×Lin(π∗T M, g̃). We will denote
it by Rµ :(

gω ◦ pJ1π
Gµ

)∗
Rµ = Rµ , Rµ ∈Ω

m
1
(
J1

π×E/Gµ ×Lin(π∗T M, g̃)
)
.

Likewise, the Routhian Rµ defines a reduced function Rµ . Note that Rµ = Rµ η . We
will also call Rµ the Routhian density and Rµ the Routhian.

3.2 Some technical results

This section contains some technical lemmas which will be used later to obtain the
main results on the Routh reduction of Lagrangian field theories. We have shown
that the extremals of a LFT with prescribed momentum µ are encoded in the affine
subbundle W µ

Lη
. To relate this affine subbundle with the affine subbundle obtained
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from the reduced Lagrangian density q∗Rµ on J1(π ◦ p) we will make use of the
following pullback bundle:

Fω = f ∗ω
(
J1 (π ◦ p)

)
.

It fits in the following commutative diagram:

Fω = f ∗ω
(
J1 (π ◦ p)

)
J1 (π ◦ p)

J1π E/Gµ ×Lin(π∗T M, g̃)

J1π/Gµ J1π×E/Gµ ×Lin(π∗T M, g̃)

prω
2

prω
1 (π◦p)10 q

fω

pJ1π
Gµ

gω

pr23

(5)

The maps prω
1 and prω

2 are the canonical projections of the pullback bundle Fω onto
J1π and J1(π ◦ p), respectively. We consider the affine subbundles:

W µ

Lη
= J−1 (µ)⊂Λ

m
2 J1

π,

W 0
q∗Rµ

= q∗Rµ + Îm
con,2 ⊂Λ

m
2 J1(π ◦ p),

where

Îm
con,2

∣∣∣
j1x σ

=
{
[α̂◦(Tj1x (p◦σ)π10−Tx (p◦σ)◦Tj1x (p◦σ)π1)◦Tj1x σ j1 p]∧β :

α̂ ∈ T ∗p(σ(x)) (E/G) ,β ∈
(
Λ

m−1
1 J1 (π ◦ p)

)∣∣
j1x σ

}
⊂Λ

m
2 J1(π ◦ p)

is essentially the pullback of the contact subbundle of J1π to J1(π ◦ p). Note that
Îm
con,2 is a subbundle of the contact subbundle of J1(π ◦ p). Thus we have a inclusion

W 0
q∗Rµ

⊂Wq∗Rµ
,

where Wq∗Rµ
is the affine translation of the contact subbundle of J1(π ◦ p) by q∗Rµ

(the notation is consistent with (3)). Finally, we construct the following subbundles
of Λ m

2 (Fω):

(prω
1 )
∗ (W µ

Lη
)
∣∣
ρ
=

{
α(Tρ prω

1 (·), . . . ,Tρ prω
1 (·)) ∈ Λ

m
2 (Fω)|ρ : α ∈ W µ

Lη

∣∣∣
j1x s

}
,

(prω
2 )
∗(W 0

q∗Rµ
)
∣∣
ρ
=
{

κ(Tρ prω
2 (·), . . . ,Tρ prω

2 (·)) ∈ Λ
m
2 (Fω)|ρ : κ ∈ W 0

q∗Rµ

∣∣∣
j1x σ

}
,

at a point ρ = ( j1
x s, j1

x σ) ∈ Fω which is such that σ(x) = ([s(x)]Gµ
, [s(x),ω ◦Txs]G).

Note that these bundles are obtained via pullback -using the projections prω
1 , prω

2 - of
the corresponding affine subbundles. We will write

ΠLη : (prω
1 )
∗W µ

Lη
−→W µ

Lη
, (prω

1 )
∗
α 7→ α,

Πq∗Rµ
: (prω

2 )
∗W 0

q∗Rµ
−→W 0

q∗Rµ
, (prω

2 )
∗
κ 7→ κ,
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for the projections. The following diagram summarizes the situation:

(prω
1 )
∗W µ

Lη
Λ m

2 Fω Fω

W µ

Lη
J1π

ΠLη

iωLη ψ

prω
1

πLη

(6)

where ψ : Λ m
2 Fω → Fω is the canonical projection and iωLη

is the natural inclusion.
There is an equivalent diagram for (prω

2 )
∗W 0

q∗Rµ

.

Lemma 4 Let λ ′Lη
∈Ω m

(
(prω

1 )
∗W µ

Lη

)
be the pullback of the canonical m-form λ ′ on

Λ m
2 Fω to (prω

1 )
∗W µ

Lη
. Then

Π
∗
Lη λLη = λ

′
Lη .

Proof Consider m tangent vectors v1, . . . ,vm ∈ Tα(prω
1 )
∗W µ

Lη
. To simplify the nota-

tion, we will write iωLη
(α) = α , and then vectors at an element α ∈ (prω

1 )
∗W µ

Lη
are

also seen as vectors at α ∈Λ mFω . By definition, we have

λ
′
Lη

∣∣
α

(
v1, . . . ,vm

)
= α

(
Tα ψ(v1), . . . ,Tα ψ(vm)

)
.

But α is of the form α = (prω
1 )
∗β for some β ∈W µ

Lη
(namely, ΠLη(α) = β ), hence

λ
′
Lη

∣∣
α

(
v1, . . . ,vm

)
= β

(
Tψ(α)prω

1 ◦Tα ψ(v1), . . . ,Tψ(α)prω
1 ◦Tα ψ(vm)

)
.

On the other hand, using that ΠLη(α) = β , we have

(Π ∗Lη λLη)
∣∣
α

(
v1, . . . ,vm

)
= λLη

∣∣
β

(
Tα ΠLη(v1), . . . ,Tα ΠLη(vm)

)
= β (Tβ πLη ◦Tα ΠLη(v1), . . . ,Tβ πLη ◦Tα ΠLη(vm)

)
,

which, looking at Diagram (6), agrees with λ ′Lη
|α(v1, . . . ,vm).

In the same way one proves the following. If λ ′
q∗Rµ

∈Ω m((prω
2 )
∗W 0

q∗Rµ

) is the pull-

back of the canonical m-form λ ′ on Λ m
2 (Fω) to (prω

2 )
∗W 0

q∗Rµ

, then

Π
∗
q∗Rµ

λq∗Rµ
= λ

′
q∗Rµ

.

The following lemma shows that solutions of (π : E → M,Lη) with momen-
tum µ , thought of as sections Γ of W µ

Lη
→ M, can be identified with sections Γ̂

of (prω
1 )
∗W µ

Lη
→M.
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Lemma 5 Let Γ : M→W µ

Lη
be a section such that

Γ
∗(Zydλ

µ

Lη

)
= 0, for all Z ∈ XV (π1◦πLη ) (WLη) ,

then there exists a section Γ̂ : M→ (prω
1 )
∗W µ

Lη
such that ΠLη ◦ Γ̂ = Γ and

Γ̂
∗ (Z′ydλ

′
Lη

)
= 0, for all Z′ ∈ XV (π1◦πLη◦ΠLη )

(
(prω

1 )
∗W µ

Lη

)
.

Conversely, if Γ̂ : M→ (prω
1 )
∗W µ

Lη
is a section such that

Γ̂
∗ (Z′ydλ

′
Lη

)
= 0, for all Z′ ∈ XV (π1◦πLη◦ΠLη )

(
(prω

1 )
∗W µ

Lη

)
,

then the section Γ = ΠLη ◦ Γ̂ : M→W µ

Lη
satisfies

Γ
∗(Zydλ

µ

Lη

)
= 0, for all Z ∈ XV (π1◦πLη ) (WLη) .

Proof The situation is illustrated in the following diagram:

(prω
1 )
∗W µ

Lη
W µ

Lη

Fω J1π

M

ΠLη

τLη
πLη

prω
1

π1

Γ
Γ̂

To define Γ̂ , we start defining two sections:

γ1 : M→ J1
π, γ1 = πLη ◦Γ ,

γ2 : M→ E/Gµ ×Lin(π∗T M, g̃), γ2 = fω ◦ γ1.

Note that if Γ was constructed from the Euler-Lagrange equations as in Proposition 1,
γ1 would be j1s for some s : M→E. Using γ1 and γ2 we construct the section γ̂ : M→
Fω :

γ̂(x) =
(
γ1(x), j1

γ2(x)
)
∈ Fω ⊂ J1

π× J1(π ◦ p).

It is easy to check that it is well defined. Finally, Γ̂ : M→ (prω
1 )
∗W µ

Lη
is given by:

Γ̂ (x) = Γ (x)◦Tγ̂(x)prω
1 ∈ (prω

1 )
∗W µ

Lη

∣∣
γ̂(x).

Every Z′ ∈ XV (π1◦πLη◦ΠLη )
(
(prω

1 )
∗W µ

Lη

)
can be written as

Z′ = f1Z′1 + f2Z′2
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where f1, f2 are smooth functions on (prω
1 )
∗W µ

Lη
and

T ΠLη ◦Z′1 = Z1 ∈ XV (π1◦πLη ) (WLη) , T ΠLη ◦Z′2 = 0.

Let Γ̂ : M→ (prω
1 )
∗W µ

Lη
be the section defined before. It satisfies ΠLη ◦ Γ̂ = Γ . By

Lemma 4 we have that

f1Z′1ydλ
′
Lη = f1Z′1yΠ

∗
Lη dλLη = f1Π

∗
Lη(Z1ydλLη),

and similarly f2Z′2ydλ ′Lη
= f2Π ∗Lη

(0ydλLη) = 0. Thus,

Γ̂
∗(Z′ydλ

′
Lη) = Γ̂

∗( f1Π
∗
Lη(Z1ydλLη)) = ( f1 ◦ Γ̂ ) Γ

∗(Z1ydλLη) = 0,

as required. The converse is analogous.

In the same way, one proves the following:

Lemma 6 If Γ̂ : M→ (prω
2 )
∗W 0

q∗Rµ

is a section such that

Γ̂
∗ (Z′ydλ

′
Lη

)
= 0, for all Z′ ∈ X

V ((π◦p)1◦πq∗Rµ
◦Πq∗Rµ

)(
(prω

2 )
∗W 0

q∗Rµ

)
,

then the section Γ = Πq∗Rµ
◦ Γ̂ : M→W 0

q∗Rµ

satisfies

Γ
∗(Zydλ

0
q∗Rµ

)
= 0, for all Z ∈ X

V ((π◦p)1◦πq∗Rµ
)(

W 0
q∗Rµ

)
.

Here λ 0
q∗Rµ

is the canonical m-form on W 0
q∗Rµ

.

Remark 6 Lemma 5 and Lemma 6 also hold in the presence of a force term. The
proof is similar. We point out that sections of Γ : M →W 0

q∗Rµ

in Lemma 6 cannot

in general be lifted to (prω
2 )
∗W 0

q∗Rµ

. We will discuss this in detail later in Section 4
when we deal with reconstruction.

We now discuss the force induced by the connection form. Consider the following
2-horizontal m-form ωµ ∈Ω m

2 (J1π):

ωµ

∣∣
j1x s = ε

〈
µ|x ∧, ω|s(x) ◦Tj1x sπ10

〉
.

One can show that ωµ is Gµ -invariant as follows. The Lie group G acts on T (J1π)
by tangent lift (of the prolongation j1φg), which in particular implies equivariance
of T π10, i.e. T π10(gv) = gT π10(v) for any v ∈ T (J1π). Using this observation and
the equivariance of the connection, the invariance is immediate. Note that the same
invariance holds for dωµ , and therefore there exists

β µ ∈Ω
m+1
3

(
J1

π×E/Gµ ×Lin(π∗T M, g̃)
)

such that (see Diagram (5)): (
gω ◦ pJ1π

Gµ

)∗
β µ = dωµ .
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The form β µ induces a force on W 0
q∗Rµ

, which we denote by β 0
µ ∈ Ω

m+1
3 (W 0

q∗Rµ

),
given by:

β
0
µ =

(
q◦πq∗Rµ

)∗
β µ .

Finally, let us write ω̂µ = (prω
1 )
∗ωµ .

Lemma 7 The following holds:

Π
∗
q∗Rµ

β
0
µ = d

[(
iωq∗Rµ

)∗
ψ
∗
ω̂µ

]
.

Proof The proof follows from diagram chasing in the following commutative dia-
gram:

Λ m
2 (Fω) Fω J1π J1π/Gµ

(prω
2 )
∗W 0

q∗Rµ

W 0
q∗Rµ

J1 (π ◦ p) J1π×E/Gµ ×Lin(π∗T M, g̃)

ψ prω
1

pJ1π
Gµ

gωiω
q∗Rµ

Πq∗Rµ

πq∗Rµ
q

Indeed, we have:

Π
∗
q∗Rµ

β
0
µ =

(
q◦πq∗Rµ

◦Πq∗Rµ

)∗
β µ =

(
gω ◦ pJ1π

Gµ
◦prω

1 ◦ψ ◦ iωq∗Rµ

)∗
β µ

=
(
ψ ◦ iωq∗Rµ

)∗
(prω

1 )
∗(gω ◦ pJ1π

Gµ

)∗
β µ = d

[
(iωq∗Rµ

)∗ψ∗ω̂µ

]
,

as required.

We are ready to prove a key result which relates the subbundles (prω
1 )
∗W µ

Lη
and

(prω
2 )
∗W 0

q∗Rµ

of Λ m
2 Fω . Roughly speaking, they are related by an affine translation by

means of the force ω̂µ . More precisely, let us denote tω̂µ
: Λ m

2 Fω →Λ m
2 Fω the map

tω̂µ
(ρ) = ρ + ω̂µ

∣∣
( j1x s, j1x σ) ,

where
(

j1
x s, j1

x σ
)
= ψ (ρ). Then the following holds:

Proposition 5 With the notations above,

tω̂µ

(
(prω

2 )
∗W 0

q∗Rµ

)
= (prω

1 )
∗W µ

Lη
.

Proof We will only show the inclusion tω̂µ
((prω

2 )
∗W 0

q∗Rµ

) ⊂ (prω
1 )
∗W µ

Lη
. The con-

verse is similar.
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Consider the following commutative diagram:

Fω J1 (π ◦ p) J1π

J1π E/Gµ ×Lin(π∗T M, g̃) E/G M

prω
2

prω
1

j1 p

(π◦p)10 π1
π10

fω p π

Differentiating the relation

π1 ◦ j1 p◦prω
2 = π ◦ p◦ fω ◦prω

1 = π1 ◦prω
1 ,

we find

Tj1x (p◦σ)π1 ◦Tj1x σ j1 p◦T( j1x s, j1x σ)prω
2 = Tj1x sπ1 ◦T( j1x s, j1x σ)prω

1 . (7)

In a similar way, from

π10 ◦ j1 p◦prω
2 = p◦ fω ◦prω

1 = pE
G ◦π10 ◦prω

1 ,

we get

Tj1x (p◦σ)π10 ◦Tj1x σ j1 p◦T( j1x s, j1x σ)prω
2 = Ts(x)pE

G ◦Tj1x sπ10 ◦T( j1x s, j1x σ)prω
1 . (8)

Since ( j1
x s, j1

x σ) ∈ Fω , by definition we have fω( j1
x s) = (π ◦ p)10( j1

x σ) = σ(x),
and therefore

(p◦σ)(x) = (p◦ fω)( j1
x s).

Recalling the relation between the maps above in the next diagram

J1π E/Gµ ×Lin(π∗T M, g̃)

E E/G

fω

π10 p

pE
G

we see that pE
G (s(x)) = p(σ(x)), and thus

Tx (p◦σ) = Ts(x)pE
G ◦Txs. (9)

Let us pick a simple element ρ ∈ (prω
2 )
∗W 0

q∗Rµ

. It can be written as:

ρ =
{
Rµ

(
q
(

j1
x σ
))

+

+
[
α̂ ◦
(

Tj1x (p◦σ)π10−Tx (p◦σ)◦Tj1x (p◦σ)π1

)
◦Tj1x σ j1 p

]
∧β
}
◦T( j1x s, j1x σ)prω

2 ,
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for some α̂ ∈ T ∗p(σ(x)) (E/G) and β ∈
(
Λ

m−1
1 J1 (π ◦ p)

)∣∣
j1x σ

. Taking into account (7),
(8) and (9), we have

α̂ ◦ (Tj1x (p◦σ)π10−Tx (p◦σ)◦Tj1x (p◦σ)π1)◦Tj1x σ j1 p◦T( j1x s, j1x σ)prω
2 =

= α̂ ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)◦T( j1x s, j1x σ)prω

1 ,

and then ρ might as well be written as

ρ =
{
Rµ(q

(
j1
x σ)
)
+[α̂ ◦Ts(x)pE

G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)]∧α

}
◦T( j1x s, j1x σ)prω

1 ,

where α ∈
(
Λ

m−1
1 J1π

)∣∣
j1x s is chosen such that

β ◦T( j1x s, j1x σ)prω
2 = α ◦T( j1x s, j1x σ)prω

1 .

Note that, by definition,

q( j1
x σ) =

(
j1
x(p◦σ),σ(x)

)
=
(

j1
x(pE

G ◦ s), fω(s(x))
)
= gω

(
pJ1π

Gµ
( j1

x s)
)
,

and then Rµ(q
(

j1
x σ)
)
= Rµ( j1

x s). Thus, ρ + ω̂µ

∣∣
( j1x s, j1x σ) can be written as:

ρ + ω̂µ

∣∣
( j1x s, j1x σ) =

{
L( j1

x s)ηx− ε
〈

µ| j1x s
∧, ω|s(x) ◦Txs◦Tj1x sπ1

〉
+

+[α̂ ◦Ts(x)pE
G ◦ (Tj1x sπ10−Txs◦Tj1x sπ1)]∧α

}
◦T( j1x s, j1x σ)prω

1 .

The reasoning is the same for arbitrary (i.e. not necessarily simple) element in ρ ∈
(prω

2 )
∗W 0

q∗Rµ

. This concludes the proof.

In order to apply this result to the reduction of field equations of motion, it will
be necessary to take into account the following general fact. Roughly speaking, the
next result states that the affine translation by ω̂µ will give rise to a force term related
to its dω̂µ .

Lemma 8 Let P be a manifold and α ∈ Ω m (P) a m-form on P. Consider the affine
translation tα : Λ mP→Λ mP induced by α , i.e.

tα(β ) = β +αp,

where p = πP(β ) (πP : Λ mP→ P is the projection). Let i : W ↪→ Λ mP be an affine
subbundle and consider the affine subbundle Wα = tα (W ). Let λWα

and λW denote
the restrictions of the canonical m-form λP to Wα and W respectively.

(i) The following identity holds:

λWα
= t∗−α λW + i∗α (π∗Pα)

where iα : Wα ↪→Λ mP is the inclusion.
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(ii) Let Γα : M→Wα be a map and X a vector field on Wα such that

Γ
∗

α (XydλWα
) = 0.

Then for Γ = t−α ◦Γα the following identity holds:

Γ
∗((T t−α ◦X)y(dλW +di∗ (π∗Pα))

)
= 0.

Proof Let us first remark that tα is a diffeomorphism, and therefore Wα is indeed an
affine subbundle. We will prove (i), since (ii) follows easily. Let p = πP(β ) where
β ∈W ; then αp +β ∈Wα and for m tangent vectors v1, . . . ,vm in Tαp+βWα

λWα
|
αp+β

(v1, . . . ,vm) = αp (T πP(v1), . . . ,T πP(vm))+β (T πP(v1), . . . ,T πP(vm)) .

On the other hand, using that πP ◦ t−α = πP,

t∗−α(λW |β )(v1, . . . ,vm) = β (T πP ◦T t−α(v1), . . . ,T πP ◦T t−α(vm))

= β (T πP(v1), . . . ,T πP(vm)) .

Comparing the previous identities, the claim follows.

3.3 Routh reduction for Lagrangian field theories

We are going to prove the main reduction theorem. Essentially, it states that the so-
lutions of the invariant LFT (π : E → M,Lη) project onto solutions of the reduced
Lagrangian field theory (with force):(

(π ◦ p) : E/Gµ ×Lin(π∗T M, g̃)→M,Rred
µ ,β red

µ

)
, (10)

where Rred
µ = q∗Rµ and β red

µ = q∗βµ are the Routhian density and the force in the
reduced jet bundle J1(π ◦ p).

Before the proof, we need to make some observations about this reduced La-
grangian field theory. The proofs, which are straightforward in coordinates, are omit-
ted:
1) Any solution Γ : M→Wq∗Rµ

of the reduced LFT (10) takes values in W 0
q∗Rµ

.

2) If a section Γ : M→W 0
q∗Rµ

satisfies

Γ
∗(Xy

(
dλ

0
q∗Rµ

+β
0
µ

))
= 0, for all X ∈ X

V ((π◦p)1◦πq∗Rµ
)
(W 0

q∗Rµ
). (11)

and additionally πq∗Rµ
◦Γ : M→ J1(π ◦ p) is holonomic then Γ , considered as a

section Γ : M→Wq∗Rµ
, is a solution.

The next result states that, looking at solutions for the original (unreduced) and the
reduced LFT at the level of Λ m

2 (Fω), they coincide.

Proposition 6 The set of solutions of (W µ

Lη
,λ

µ

Lη
) is in one-to-one correspondence

with the set of solutions of (W 0
q∗Rµ

,λ 0
q∗Rµ

,β 0
µ).
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Proof We will need the following commutative diagram:

Λ m
2 (Fω)

(prω
1 )
∗W µ

Lη
(prω

2 )
∗W 0

q∗Rµ

W µ

Lη
Fω W 0

q∗Rµ

J1π J1(π ◦ p)

M

t−ω̂µ

ΠLη

tω̂µ

Πq∗Rµ

πLη

prω
2prω

1
πq∗Rµ

π1 (π◦p)1

(12)

Let Γ : M→W µ

Lη
be a solution of (W µ

Lη
,λ

µ

Lη
), we consider its lift Γ̂ : M→ (prω

1 )
∗W µ

Lη

to (prω
1 )
∗W µ

Lη
given by Lemma 5, which satisfies

Γ̂
∗ (Z′ydλ

′
Lη

)
= 0, for all Z′ ∈ XV (π1◦πLη◦ΠLη )

(
(prω

1 )
∗W µ

Lη

)
.

Apply now Lemma 8 to P=Λ m
2 (Fω), α = ω̂µ , W =(prω

2 )
∗W 0

q∗Rµ

and Wα =(prω
1 )
∗W µ

L

(it is important to note that we are able to do so in view of Proposition 5), and we get
the relation:(

t−ω̂µ
◦ Γ̂
)∗((T t−ω̂µ

◦Z′
)
ydλ

′
q∗Rµ

+d(iωq∗Rµ
)∗ψ∗ω̂µ

)
= 0.

Note that t−ω̂µ
: Λ m

2 (Fω)→ Λ m
2 (Fω) is a diffeomorphism which preserves the fibers

of Λ m
2 (Fω)→ Fω (and such that diagram (12) commutes). Therefore (T t−ω̂µ

◦ Z′)

belongs to X
V ((π◦p)1◦πq∗Rµ

)(
W 0

q∗Rµ

)
, and any vector field in this set can be put in this

form. Applying Lemma 6 (see Remark 6), this means that

Πq∗Rµ
◦ t−ω̂µ

◦ Γ̂ : M→W 0
q∗Rµ

is a solution of (W 0
q∗Rµ

,λ 0
q∗Rµ

,β 0
µ) , where we have used Lemma 7 to identify

d(iωq∗Rµ
)∗ψ∗ω̂µ = Π

∗
q∗Rµ

β
0
µ .
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We can now prove the main Routh reduction theorem for first order Lagrangian
field theories.

Theorem 1 (Reduction) Let (π : E→M,Lη) be a G-invariant LFT and fix a (closed
and regular) value of the momentum map µ̂ ∈ Ω

m−1
1 (WLη ,g

∗) and a principal con-
nection ω on E→ E/G. Consider the reduced LFT

(
(π ◦ p) : E/Gµ ×Lin(π∗T M, g̃)→M,Rred

µ ,β red
µ

)
.

Then every solution of the LFT (π : E → M,Lη) with momentum µ̂ projects onto a
solution of the reduced LFT. The reduced solution is given by γ red = fω ◦ γ .

Proof If γ : M → E is a solution of the LFT (π : E → M,Lη), then we construct
Γ : M→WLη solution of (WLη ,λLη). By the momentum constraint, we have Γ : M→
W µ

Lη
, so Γ is a solution of (W µ

Lη
,λ

µ

Lη
). Now we apply Proposition 6 and we get a

solution Γ red of (W 0
q∗Rµ

,λ 0
q∗Rµ

,β 0
µ).

By diagram chasing (see the proof of Lemma 5), it is not hard to see that

πq∗Rµ
◦Γ

red = j1
γ

red,

with γ red = fω(γ). In view of the observations above, this means that Γ̂ is a solution
of the variational problem on Wq∗Rµ

, and therefore γ red : M→E/Gµ×Lin(π∗T M, g̃)

is a solution of the reduced LFT.

4 Reconstruction

In general, the problem of reconstruction in geometric reduction addresses the fol-
lowing two questions:
1) Given a solution of the reduced system, is it always possible to find a solution of

the original (unreduced) system projecting onto it?
2) If the answer to the previous question is affirmative, how does one effectively

construct such a solution?
In Lagrangian mechanics, both the Lagrange-Poincaré and the Routh reduction

schemes provide reduced systems which are equivalent to the unreduced ones1. How-
ever, in the case of Lagrangian field theory, this is not the case as was first observed
in [6] in the context of Euler-Poincaré reduction (i.e. Lagrange-Poincaré reduction
for a Lie group). In this section, we will show that in the case of Routh reduction for
field theories there is also an obstruction to reconstruction which coincides with that
of the Lagrange-Poincaré case [4,5,9].

1 In the case of Routh reduction, one reconstructs only solutions with a fixed momentum.
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4.1 Lifting sections on reduced jet bundles

Consider a G-principal fiber bundle pP
G : P→ P/G for which there are two fibrations

π : P→M and π : P/G→M making Diagram (13) (left) commutative. Given a sec-
tion ζ : M → P/G, we want to find conditions to ensure that there exists a section
s : M→ P covering ζ , i.e. such that pP

G ◦ s = ζ . To answer this question, we look at
the pullback bundle ζ ∗P, see Diagram (13) (right).

P P/G

M

pP
G

π π

ζ
s

ζ ∗P P

M P/G

pr2

pr1 pP
G

ζ

(13)

The pullback bundle pr1 : ζ ∗P→M is a G-principal bundle with action

g · (x, p) = (x,g · p).

For later use, we recall that tangent space T(x,p)ζ ∗P at (x, p) ∈ ζ ∗P is given by

T(x,p)ζ
∗P =

{
(vx,Vp) : Txζ (vx) = Tp pP

G (Vp)
}
⊂ TxM×TpP.

Lemma 9 There exists a section s : M→ P covering the section ζ : M→ P/G if and
only if ζ ∗P is a trivial bundle.

Proof Since ζ ∗P is principal, it is trivial if and only if it admits a section s̃ : M→ ζ ∗P.
If s̃ exists, then s = pr2 ◦ s̃ is the desired section. Conversely, if s : M→ P exists, then
s̃ : M→ ζ ∗P⊂M×P is defined by s̃(x) = (x,s(x)).

Using that ζ ∗P is a principal bundle, being trivial can be characterized in terms
of a flat connection [17]:

Theorem 2 Let π : P→M be a G-principal bundle with M simply connected. Then
P is trivial if and only if there exists a flat connection on P.

Proof Obviously if P'M×H is trivial we can consider the canonical flat connection
on P. Conversely, given a flat connection we take an integral leaf L of the horizontal
distribution and π−1(x)∩L has a unique element (since M is simply connected, the
connection has trivial honolomy), and this defines a section of P→M.

If M is not simply connected, then one can ask for a flat connection with trivial
holonomy and obtain a similar result. For the sake of simplicity, we will assume
that M is simply connected to apply Theorem 2 when needed. For later use, we also
observe that the section constructed in the proof of Theorem 2 has horizontal image
w.r.t. the given connection.

We now wish to apply the previous discussion to the case of jet bundles. We start
with the first jet J1π of a bundle π : P→ M and construct the quotients P/G and



24 S. Capriotti, E. Garcı́a-Toraño Andrés

J1π/G. More concretely, we look at the situation is depicted in Diagram (14) (left):
Z : M→ J1π/G is a given section and ζ : M→ P/G is the induced section. The basic
question we want to address is the following: does there exist a holonomic section
Ẑ : M→ J1π such that pJ1π

G ◦ Ẑ = Z?

J1π J1π/G

M J1π/G

M

pJ1π
G

π10 π10

pP
G

π π

ζ

Ẑ Z

Z∗
(
J1π
)

J1π

M J1π/G

pr2

pr1 pJ1π
G

Z

(14)
We remark that J1π → J1π/G is a principal bundle. We can then construct the pull-
back bundle Z∗(J1π) (Diagram (14), right) and particularize Lemma 9 to conclude
the following:

Lemma 10 Assume that M is simply connected. Then Z∗
(
J1π
)

admits a flat connec-
tion if and only if there exists a section Ẑ : M→ J1π .

There is also a map r : J1π/G → J1π , [ j1
x s]G 7→ j1

x [s]G making the following
diagram commutative

J1π J1π/G

J1π

pJ1π
G

j1 pP
G

r (15)

As before, we denote by θ ∈Ω 1(J1π,V π) the canonical contact form on J1π .

Theorem 3 Let Z : M→ J1π/G be a section of the quotient bundle such that

r (Z (x)) = j1
x ζ

where ζ := π10 ◦Z : M→ P/G.
1) Suppose that there exists a holonomic section Ẑ : M→ J1π such that pJ1π

G ◦ Ẑ = Z.
Then for any connection ωP on the principal bundle pP

G : P→P/G, the connection

ω
Z = ωP ◦ (pr2)

∗
θ ∈Ω

1 (Z∗(J1
π),g

)
is a flat connection on Z∗

(
J1π
)
.
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2) Conversely, suppose that for some connection ωP on P→ P/G (and hence for
all) the connection

ω
Z = ωP ◦ (pr2)

∗
θ ∈Ω

1 (Z∗(J1
π),g

)
is a flat connection on Z∗

(
J1π
)
. Then the associated section Ẑ : M→ J1π through

Lemma 10 is holonomic.

Proof If φg : P→ P denotes the action g · p = φg(p), then Lg : J1π → J1π denotes
the prolonged action g · j1

x s = Lg( j1
x s) = j1φg( j1

x s).
1) Using the section Ẑ : M→ J1π , we have a connection on Z∗

(
J1π
)

whose horizon-
tal subspaces at (x, j1

x s = g · Ẑ(x)) are given by:

H Ẑ
(x, j1x s) =

{(
vx,TẐ(x)Lg ◦TxẐ(vx)

)
: vx ∈ TxM

}
,

This distribution is integrable: this follows from the fact that brackets of left-invariant
vector fields are left-invariant. Hence H Ẑ is a flat connection. Since Ẑ is holonomic, it
satisfies Ẑ∗θ = 0 and then using the invariance of the contact structure, (Lg)

∗θ = θ ,
we find:

(pr2)
∗

θ
∣∣
(x, j1x)

(
vx,TẐ(x)Lg ◦TxẐ (vx)

)
= θ | j1x s

(
TẐ(x)Lg ◦TxẐ (vx)

)
= (Ẑ∗θ)|x(vx) = 0.

This implies that

H Ẑ ⊂ ker(ωZ). (16)

Next, we will show that dimker(ωZ) ≤ dimM. Together with (16), this proves that
H Ẑ = ker(ωZ).

We observe the following: θ is V π-valued and ωP restricts to the identity on V π .
Therefore a tangent vector (vx,Vj1x s) to Z∗(J1π) at a point (x, j1

x s) Z∗(J1π) will belong
to ker(ωZ) if, and only if, 0 = pr∗2θ(vx,Vj1x s) = θ(Vj1x s). Let us assume that we have
two different tangent vectors (vx,Vj1x s) and (vx,Wj1x s) such that θ(Vj1x s) = θ(Wj1x s) =

0. Then the conditions TxZ(vx) = Tj1x s pJ1π
G (Vj1x s) and TxZ(vx) = Tj1x s pJ1π

G (Wj1x s) = 0

imply that (Vj1x s−Wj1x s) is vertical w.r.t. pJ1π
G . But then it is of the form ξJ1π( j1

x s) for
some ξ ∈ g different from 0. Since ξJ1π = j1ξP is the prolongation of the vertical
vector field ξP, it follows that θ(ξJ1π) = ξP 6= 0 (this can be checked easily with
the coordinate expression of the prolongation, see [7]), which is not possible. Hence
for each vx ∈ TxM there is at most one choice of Vj1x s such that θ(Vj1x s) = 0 and
(vx,Vj1x s) ∈ T(x, j1x s)Z

∗(J1π). It follows that dimker(ωZ)≤ dimM.

2) If ωZ is a flat connection on Z∗(J1π), let Ẑ : M→ J1π be the corresponding section
via Lemma 10. We have already shown that

ker(ωZ)(x, j1x s) =
{(

vx,TẐ(x)Lg ◦TxẐ(vx)
)

: vx ∈ TxM
}
,
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where (x, j1
x s = g · Ẑ(x)). Recalling the definition of the contact structure (1), we have

(pr2)
∗

θ
∣∣
(x, j1x s(x))

(
vx,TẐ(x)Lg ◦TxẐ (vx)

)
= θ | j1x s

(
TẐ(x)Lg ◦TxẐ (vx)

)
= TẐ(x)π10

(
TxẐ (vx)

)
− Ẑ (x)(vx) ,

where in the last term we have interpreted the element Ẑ (x) ∈ J1π as a map

Ẑ (x) : TxM→ T
π10(Ẑ(x))P.

Thus the condition
(
vx,TẐ(x)Lg ◦TxẐ(vx)

)
∈ ker(ωZ) reads

ωP
(
TẐ((x)π10

(
TxẐ (vx)

)
− Ẑ (x)(vx)

)
= 0.

The section s = π10 ◦ Ẑ : M→ P satisfies pP
G ◦ s = ζ , and the condition above means

that there exists Γ : T M→ kerωP ⊂ T P with

Ẑ (x) = Txs+ Γ |x

Projecting along the map T pP
G, we have that

Ts(x)pP
G ◦ Ẑ (x) = Ts(x)pP

G ◦Txs+Ts(x)pP
G (Γ |x) .

From Diagram (15), we have that

Ts(x)pP
G ◦ Ẑ (x) = q◦ pJ1π

G
(
Ẑ (x)

)
= q(Z (x)) = Txζ ,

and also, since r ◦Z = T ζ ,

Ts(x)pP
G ◦Txs = Tx

(
pP

G ◦ s
)
= Txζ .

It follows that Ts(x)pP
G (Γ |x) = 0. Because T pP

G is an isomorphism when restricted to
kerωP (recall that ωP is a connection for the bundle pP

G : P→ P/G), it means that
Γ |x = 0, and so

Ẑ (x) = Txs,

i.e., Ẑ is a holonomic section.

Remark 7 The fact that the section Ẑ determines the horizontal distribution of the
connection ωZ is referred to as the horizontality condition in [9].
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4.2 The case of Routh reduction

We will now apply the previous constructions and results about liftings on sections
to find conditions for reconstruction. To reconstruct, one should reverse the proof of
Theorem 1. The key point if to find the analog of Lemma 5 for reduced sections,
which requires additional conditions.

Consider a section γ red : M→ E/Gµ×Lin(π∗T M, g̃) of the reduced LFT. It gives
rise to a section Z : M→ J1π×E/Gµ×Lin(π∗T M, g̃) obtained as Z = q( j1γ red) (see
Diagram (5)). In the following definition we particularize the integrability condition
on Theorem 3 for lifting the section Z to J1π . Recall that there is an identification

gω : J1
π/Gµ → J1

π×E/Gµ ×Lin(π∗T M, g̃),

and thus we have a section Z : M → J1π/Gµ given by Z = g−1
ω (Z). As before, θ

denotes the canonical contact form on J1π and pr2 : Z∗(J1π)→ J1π is the canonical
projection.

Definition 3 Let γ red : M→ E/Gµ ×Lin(π∗T M, g̃) be a section of the reduced LFT
and Z = g−1

ω (q( j1γ red)). Fix a principal connection on ω on E → E/G. We will say
that γ red satisfies the flat condition if the connection

ω
Z = ω ◦pr∗2θ ∈Ω

1(Z∗(J1
π),g

)
is flat.

We will now check that if γ red : M → E/Gµ × Lin(π∗T M, g̃) satisfies the flat
condition, then the associated section Γ : M→W 0

q∗Rµ

can be lifted to (pr2)
∗W 0

q∗Rµ

.

Indeed, to mimic the proof of Lemma 5 all one needs to do is to find a lift Z̃ : M→ Fω

of γ red. To find such a lift, it suffices to find a holonomic lift Ẑ : M → J1π of the
section Z = g−1

ω (q( j1γ red)). The situation is summarized in the following diagram:

J1π J1π/Gµ

E E/Gµ

M

π10

pJ1π
Gµ

ZẐ

Using Theorem 3, such a lift Ẑ exists if and only if γ red satisfies the flat condition. To
conclude, given γ red : M→ E/Gµ ×Lin(π∗T M, g̃) which satisfies the flat condition
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we construct Ẑ : M→ J1π and the section

Z̃ : M→ Fω ,

x 7→ (Ẑ(x), j1
γ

red(x)),

is the desired section. Therefore, one can prove the following:

Lemma 11 Let γ red : M→ E/Gµ ×Lin(π∗T M, g̃) be a section of the reduced LFT
which satisfies the flat condition and let Γ : M→W 0

q∗Rµ

be the associated section.

Then there exists a section

Γ̂ : M→ (prω
2 )
∗W 0

q∗Rµ

such that Γ = Πq∗Rµ
◦ Γ̂ : M→W 0

q∗Rµ

and which satisfies

Γ̂
∗ (Z′ydλ

′
Lη

)
= 0, for all Z′ ∈ X

V ((π◦p)1◦πq∗Rµ
◦Πq∗Rµ

)(
(prω

2 )
∗W 0

q∗Rµ

)
.

Proof One can mimic the proof of Lemma 5 using the lift to Fω above.

Theorem 4 (Reconstruction) Let γ red : M → E/Gµ ×Lin(π∗T M, g̃) be a solution
of the reduced LFT(

(π ◦ p) : E/Gµ ×Lin(π∗T M, g̃)→M,Rred
µ ,β red

µ

)
.

which satisfies the flat condition. Then there exist a solution of the unreduced LFT
(π : E→M,Lη) with momentum µ which projects onto it.

Proof Given γ red : M→ E/Gµ ×Lin(π∗T M, g̃), one uses Lemma 11 to construct

Γ̂
red : M→ (prω

2 )
∗W 0

q∗Rµ

and reverses the proof of Theorem 1 to find a solution Γ : M → (pr1)
∗W µ

Lη
. Since

by construction πLη ◦Γ = Ẑ is holonomic, Γ is also a solution when regarded as a
section Γ : M→ (pr1)

∗WLη . Therefore letting Ẑ = j1γ , it follows that γ : M→ E is a
solution of the unreduced LFT.

5 An example related to the KdV equation

We will revisit the last example in [5] from the perspective of Routh reduction. Con-
sider the bundle π : E = R2×R2 → M = R2 with coordinates (t,x,φ ,ψ) and the
Lagrangian on J1π given by

L(t,x,φ ,ψ,φt ,φx,ψt ,ψx) =
1
2

φtφx +φ
3
x +φxψx +

1
2

ψ
2.

We take the volume form η = dt∧dx on M. The Lagrangian is invariant by the action
of the Lie group G = R by translations on φ . The infinitesimal generator of ξ ∈ g is
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ξWLη
= ξ ∂φ . The bundle WLη has coordinates (t,x,φ ,ψ,φt ,φx,ψt ,ψx, pt

φ
, px

φ
, pt

ψ , px
ψ)

so that the canonical form reads

λLη =

(
1
2

φtφx +φ
3
x +φxψx +

1
2

ψ
2
)

dt ∧dx+ pt
φ (dφ −φtdt)∧dx−

px
φ (dφ −φxdx)∧dt + pt

ψ (dψ−ψtdt)∧dx− px
ψ (dψ−ψxdx)∧dt,

and then the momentum map is easily found to be

J(t,x,φ ,ψ,φt ,φx,ψt ,ψx, pt
φ , px

φ , pt
ψ , px

ψ) = pt
φ dx− px

φ dt.

We now fix a momentum value µ = µ1dt+µ2dx which should be closed, i.e. dµ = 0,
which implies ∂ µ1/∂x = ∂ µ2/∂ t. Clearly, the submanifold W µ

Lη
⊂WLη is described

by {pt
φ
= µ2, px

φ
=−µ1}. The isotropy group is Gµ = G = R.

To construct the Routhian, we choose a principal connection on E → E/G' R3

which will be of the form

ω = dφ −Γt(t,x,ψ)dt−Γx(t,x,ψ)dx−Γψ(t,x,ψ)dψ.

We have:

ω ◦T(t,x)s = (φt −Γt −Γψ ψt)dt +(φx−Γx−Γψ ψx)dx.

The (unreduced) Routhian is then (note that ε =−1)

Rµ(t,x,φ ,ψ,φt ,φx,ψt ,ψx) = Lη− (−1)〈µ ∧, ω ◦T(t,x)s〉
= Lη +(µ1dt +µ2dx)∧

[(
φt −Γt −Γψ ψt

)
dt +

(
φx−Γx−Γψ ψx

)
dx
]

=
1
2

φtφx +φ
3
x +φxψx +

1
2

ψ
2 +µ1

(
φx−Γx−Γψ ψx

)
−µ2

(
φt −Γt −Γψ ψt

)
.

The fibration π : E/Gµ = R2×R→M = R2 is

π(t,x,ψ) = (t,x).

Hence
E/Gµ ×Lin(π∗T M, g̃) = (R2×R)×R2 T ∗R2 = T ∗R2×R,

and also p : E/Gµ ×Lin(π∗T M, g̃) = T ∗R2×R→ E/G = R2×R is

p(t,x,σ ,ρ,ψ) = (t,x,ψ),

where (t,x,σ ,ρ) are coordinates on T ∗R2. The projection (π ◦ p) is simply

(π ◦ p)(t,x,σ ,ρ,ψ) = (t,x)

and q : J1 (π ◦ p)→ J1π×E/Gµ ×Lin(π∗T M, g̃) = J1π×T ∗R2 is

q(t,x,σ ,ρ,ψ,σt ,σx,ρt ,ρx,ψt ,ψx) = (t,x,ψ,ψt ,ψx,σ ,ρ).

On the other hand, J1π/Gµ with coordinates (t,x,ψ,φt ,φx,ψt ,ψx), and looking
at how

gω : J1
π/Gµ → J1

π×E/Gµ ×Lin(π∗T M, g̃)
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is defined (Section 3), we find

gω (t,x,ψ,φt ,φx,ψt ,ψx) =
(
t,x,ψ,ψt ,ψx,σ = φt −Γt −Γψ ψt ,ρ = φx−Γx−Γψ ψx

)
.

Using this expression, Rred
µ (t,x,ψ,ψt ,ψx,σ ,ρ) is easily obtained:

Rred
µ =

1
2
(σ+Γt +Γψ ψt)(ρ +Γx +Γψ ψx)+

(
ρ +Γx +Γψ ψx

)3
+(

ρ +Γx +Γψ ψx
)

ψx +
1
2

ψ
2 +µ1ρ−µ2σ .

To compute the force term, we have

ωµ =−〈µ ∧, ωE ◦T π10〉=−(µ1dt +µ2dx)∧
(
dφ −Γtdt−Γxdx−Γψ dψ

)
and therefore (since µ is closed)

dωµ =

(
µ2

∂Γψ

∂ t
−µ1

∂Γψ

∂x

)
dt ∧dx∧dψ.

The force β red is obtained by pullback, and has the coordinate expression as dωµ .
Therefore, the Euler-Lagrange equations for Rred

µ with force β red are:

1
2

∂

∂ t
[Γψ(ρ +Γx +Γψ ψx)]+

1
2

∂

∂x
[Γψ(σ +Γt +Γψ ψt)]+3

∂

∂x
([ρ +Γx +Γψ ψx]Γψ)+

∂

∂x
[2Γψ ψx +ρ +Γx]−ψ =

(
µ2

∂Γψ

∂ t
−µ1

∂Γψ

∂x

)
,

(ρ +Γx +Γψ ψx) = 2µ2,

(σ +Γt +Γψ ψt)+6
(
ρ +Γx +Γψ ψx

)2
+2ψx =−2µ1.

If we choose the canonical flat connection Γt =Γx =Γψ = 0 the Routhian becomes

R̂red
µ =

1
2

σρ +ρ
3 +ρψx +

1
2

ψ
2 +µ1ρ−µ2σ ,

and the Euler-Lagrange equations are

∂ρ

∂x
= ψ, ρ = 2µ2, σ +6ρ

2 +2ψx =−2µ1.

Differentiating the last and replacing ψ using the first equation, we find

∂ρ

∂ t
= 2

∂ µ2

∂ t
,

∂σ

∂x
+12ρ

∂ρ

∂x
+2

∂ 3ρ

∂x3 =−2
∂ µ1

∂x
.

Now using that µ is closed we have ∂ρ/∂ t =−2∂ µ1/∂x. If one further imposes the
integrability condition ∂σ/∂x = ∂ρ/∂ t (which is needed in view of the definition of
gω ), one finds that ρ must satisfy the KdV equation:

∂ρ

∂ t
+6ρ

∂ρ

∂x
+

∂ 3ρ

∂x3 = 0.
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Note that this imposes that the chosen momentum µ2 must satisfy a PDE which, after
scaling, is again of KdV type. The fact that this result can be directly compared to
that of [5] reflects the well-known result that, in the case of an Abelian Lie group of
symmetries, there is a close relation between the Lagrange-Poincaré and the Routh
reductions [23].
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Mathematics. Birkhäuser, Boston, Mass., 1983.
16. L. Hsu. Calculus of variations via the Griffiths formalism. J. Differential Geom., 36(3):551–589,

1992.
17. S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. I. Wiley Classics Library.

John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original, A Wiley-Interscience Publica-
tion.

18. D. Krupka. Introduction to global variational geometry, volume 1 of Atlantis Studies in Variational
Geometry. Atlantis Press, Paris, 2015.

19. B. Langerock, F. Cantrijn, and J. Vankerschaver. Routhian reduction for quasi-invariant Lagrangians.
J. Math. Phys., 51(2):022902, 20, 2010.

20. J. Marrero, N. Román-Roy, M. Salgado, and S. Vilariño. Reduction of polysymplectic manifolds. J.
Phys. A, 48(5):055206, 43, 2015.

21. J. Marsden. Lectures on mechanics, volume 174 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 1992.



32 S. Capriotti, E. Garcı́a-Toraño Andrés

22. J. Marsden, T. Ratiu, and J. Scheurle. Reduction theory and the Lagrange-Routh equations. J. Math.
Phys., 41(6):3379–3429, 2000.

23. T. Mestdag and M. Crampin. Invariant Lagrangians, mechanical connections and the Lagrange-
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