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In this paper we study the behavior of holomorphic mappings on A-compact sets. 
Motivated by the recent work of Aron, Çalişkan, García and Maestre (2016), we give 
several conditions (on the holomorphic mappings and on the λ-Banach operator 
ideal A) under which A-compact sets are preserved. Appealing to the notion of 
tensor stability for operator ideals, we first address the question in the polynomial 
setting. Then, we define a radius of (A; B)-compactification that permits us to tackle 
the analytic case. Our approach, for instance, allows us to show that the image of 
any (p, r)-compact set under any holomorphic function (defined on any open set of 
a Banach space) is again (p, r)-compact.

© 2018 Published by Elsevier Inc.

Introduction

Several classes of functions are described by the nature of their images on compact sets. For instance, 
linear operators or polynomials between Banach spaces are continuous if and only if they map compact 
sets into compact sets. In this paper we propose to study the behavior of certain classes of functions on 
A-compact sets of Carl and Stephani [11], determined by an operator ideal A. More precisely, given a class 
of continuous functions F and two operator ideals A and B, we are interested in studying those functions 
in F mapping A-compact sets into B-compact sets. We denote this class by F(A;B) and say that an element 
in F(A;B) is (A; B)-compactifying.

In the recent years many authors studied different type of functions between Banach spaces (such as linear 
operators, polynomials, holomorphic and continuous functions) in relation with the class of p-compact sets 
of Sinha and Karn [35]. For instance, in [30], Pietsch considers the class of (s, p)-compactifying operators 
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as those mapping s-compact to p-compact sets, for 1 ≤ p ≤ s < ∞. This class also was treated by Delgado 
and Piñeiro in [31]. However, the class of (A; B)-compactifying linear operators L(A;B), in a general setting, 
can be traced back to the article of Stephani (see [36, Theorem 4.1] for a full characterization of L(A;B)). 
On the other hand, Aron and Rueda show that continuous homogeneous polynomials preserve the class of 
p-compact sets [4, Theorem 3.2] and Aron, Çalişkan, García and Maestre give a partial result for holomorphic 
functions preserving p-compact sets [3, Theorem 3.5], see the paragraph preceding Example 4.6 for details. 
Also, Muñoz, Oja and Piñeiro [26] characterize the space C(K,Kp) of continuous functions from a compact 
Hausdorff space into a Banach space whose range is p-compact. In order to proceed, let us introduce some 
definitions and notation.

As usual, L, F , F and K are the ideals of bounded, finite rank, approximable and compact linear operators, 
respectively; all considered with the supremum norm ‖ · ‖. Also, A = (A, ‖·‖A) denotes a λ-Banach operator 
ideal, 0 < λ ≤ 1. When considering A and B, we will assume that both are λ-Banach ideals with the same 
λ. Given a Banach space E over the real or complex field K, BE and E′ denote its closed unit ball and its 
dual space, respectively. Now, we recall the basics of the Carl–Stephani theory. A subset K of E is relatively 
A-compact if there exist a Banach space Z, an operator T ∈ A(Z; E) and a compact set M ⊂ Z such that 
K ⊂ T (M) [11, Lemma 1.1]. A sequence (xn)n in E is A-null if there exist a Banach space Z, an operator 
R ∈ A(Z; E) and a null sequence (zn)n ⊂ Z such that xn = Rzn for all n ∈ N [11, Lemma 1.2]. As in the 
case of compact sets, every A-compact set is contained in the absolutely convex hull of an A-null sequence 
[11, Theorem 1.1]. Several operator ideals may generate the same system of A-compact sets. This is the 
case, for instance, of the surjective hull of A, Asur [11, p. 79] and also of A ◦ F [24, Corollary 1.9].

Regarding linear operators, it is clear that A ⊂ L(K;A) and that L(A;A) = L for any A. Also, for any 
class of continuous functions F and any pair of ideals A and B such that B ⊂ A, F(A;B) ⊂ F(A;A) holds 
trivially. Inspired by [3,4,30,31,36] we study when F(A;B) = F or when F(A;A) = F for different classes F
of homogeneous polynomials and holomorphic functions and different λ-Banach operator ideals A and B. 
Before starting any discussion, notice that the class of continuous functions provides a negative result. The 
next example is an extension and uses the ideas of [3, Example 3.1].

Example. Let A be a λ-Banach operator ideal and E be a Banach space. Suppose that there exists a 
relatively compact set in E which is not relatively A-compact. Then, there exists a continuous function 
f : R → E such that f([0, 1]) is not A-compact. In particular, C(A;A)(R; E) � C(R; E).

To see this, take a null sequence (xj)j ⊂ E which is not A-null. Now, consider

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ≤ 0,

(j + 1)(1 − jt)xj+1 + j((j + 1)t− 1)xj if t ∈ [ 1
j+1 ,

1
j ] for j ∈ N,

x1 if t ≥ 1.

Since f(1
j ) = xj for all j ∈ N, we conclude that (xj)j ⊂ f([0, 1]) which implies that f([0, 1]) is not relatively 

A-compact and, clearly, [0, 1] is an A-compact set for any A.
The paper is organized as follows: In Section 1 we deal with the class of n-homogeneous (A; B)-compactify-

ing polynomials, denoted by Pn
(A;B), which is a subclass of Pn, the space of all n-homogeneous polynomials. 

We introduce a λ-norm on this class ‖ · ‖(A;B), under which Pn
(A;B) is a λ-Banach polynomial ideal. Then 

we focus on homogeneous polynomials preserving A-compact sets, that is the class Pn
(A;A), and show that 

the property is hereditary on the degree (Proposition 1.5). Contrary to what happens in the linear case, 
or even in the p-compact setting for polynomials, we show that n-homogeneous polynomials (n ≥ 2) do 
not preserve Πp-compact sets (Examples 1.1 and Example 1.6). Here Πp denotes the ideal of p-summing 
operators, 1 ≤ p < ∞. In Section 2, with the notions of (symmetric) tensor norms and tensor stability 
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of λ-Banach operator ideals we show conditions under which polynomials preserve A-compact sets (Theo-
rem 2.2). We apply our results to provide several examples. For instance, we show that polynomials defined 
on L1(μ) preserve Π1-compact sets (Example 2.6). In Section 3 we present examples of (A; B)-compactifying 
polynomials for some classes of polynomials generated by composition. Our examples rely on classical ideals 
and show how several other examples may be constructed in an analogous way.

In Section 4 we pass to the holomorphic setting and show that each polynomial in the Taylor series 
expansion of any (A; B)-compactifying analytic function is also (A; B)-compactifying. Then we define a 
radius of (A; B)-compactification which allows us to obtain a reciprocal result and present several examples. 
For instance, we show that the image of any (p, r)-compact set under any holomorphic function, defined 
on any open set of a Banach space, is again (p, r)-compact. When r = p′ the latter result extends [3, 
Theorem 3.5].

The main examples we present are based on (p, r)-compact sets of Ain, Lillemets and Oja [1]. For 
1 ≤ p < ∞ and 1 ≤ r ≤ p′ with p′ the conjugate of p, a set K of E is relatively (p, r)-compact if there exists 
a p-summable sequence (xj)j ∈ �p(E) such that

K ⊂
{ ∞∑

j=1
ajxj : (aj)j ∈ B�r

}
,

where (aj)j ∈ Bc0 if r = ∞. The (p, p′)-compact sets are the p-compact sets of Sinha and Karn. If 
the sequence (xj)j is unconditionally p-summing, that is (xj)j ∈ �w,0

p (E), the class of unconditionally 
(p, r)-compact sets, studied in [2], is obtained (for r = p′ see also [21]). These type of compactness are given 
in terms of the extended notion of nuclear operators N(t,u,v) (see [29, 18.1.1] for the definition). Namely, 
the p-compact sets correspond with N p-compact sets, where N p = N(p,1,p) is the ideal of right p-nuclear 
operators [24, Remark 1.3]. Also, (p, r)-compact sets are N(p,1,r′)-compact sets [2, Proposition 2.4], and un-
conditionally (p, r)-compact sets are determined by N(∞,p′,r′) (see the paragraph above [2, Theorem 4.1]).

Working with A-compact sets, those linear operators mapping bounded sets into A-compact sets arise 
naturally. These operators form the ideal of A-compact operators denoted by KA, which were introduced 
and studied in [11]. In [24], it is shown that KA becomes a Banach operator ideal whenever A is Banach 
ideal. For this, a measure of the A-compact sets K of E is defined as

mA(K;E) = inf{‖T‖A : K ⊂ T (M), T ∈ A(X;E) and M ⊂ BX},

where the infimum is taken considering all Banach spaces X, all operators T ∈ A(X; E) and all compact 
sets M ⊂ BX for which the inclusion K ⊂ T (M) holds. When the context K ⊂ E is understood, we simply 
write mA(K) instead of mA(K; E). If K is A-compact, then its closed absolutely convex hull Γ(K), is also 
A-compact and mA(K) = mA(Γ(K)). Although the original definition of mA was conceived in [24] for normed 
operator ideals, it is easy to see that it extends verbatim for λ-normed (Banach) operator ideals and all the 
properties remain valid with the obvious modifications. Now, KA is a λ-normed (Banach) operator ideal if 
we define for E and F Banach spaces and T ∈ KA(E; F ) the following λ-norm [24]:

‖T‖KA = mA(T (BE);F ).

In particular, we denote by K(p,r) and U(p,r) the λ-Banach ideals of (p, r)-compact operators and of uncon-
ditionally (p, r)-compact operators, respectively. When it is convenient for r = p′ we write, as usual, Kp and 
Up the respective Banach operator ideals.

We refer to [29] for the basics of λ-Banach operator ideals and [13] or [32] for definitions and results of 
tensor norms and operator ideals. Also, we refer to [15] for polynomials and holomorphic functions.
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1. On (A; A)-compactifying polynomials

From the definition of A-compact sets, it is easily seen that any continuous linear operator is 
(A; A)-compactifying. The class of (A; B)-compactifying operators (those mapping A-compact sets into 
B-compact sets) were first studied, in a more general setting, by Stephani [36], while the particular case 
of the (Ks; Kp)-compactifying operators was treated in detail (under the name of (s, p)-compactifying) in 
[30] and [31]. For polynomials, in [4, Theorem 3.2], it is proved that any (homogeneous) polynomial is 
(Kp; Kp)-compactifying. On the other hand, in [3, Example 4.2], it is shown that n-homogeneous polynomi-
als are not (Kp; Kq)-compactifying if 1 ≤ q < p.

Recall that for n ∈ N, a mapping P : E → F is a continuous n-homogeneous polynomial if there exists a 
continuous n-linear operator A from E to F such that P (x) = A(x, . . . , x). The vector space of all continuous 
n-homogeneous polynomials from E to F , Pn(E; F ), is a Banach space endowed with the supremum norm. 
Notice that for n = 0 we have the constant mappings and for n = 1, L(E; F ) is obtained. As usual, when 
F = K we write Pn(E) instead of Pn(E; K). The ideal of all continuous polynomials, consisting of linear 
combinations of continuous homogeneous polynomials, will be denoted by P.

Now we are in a position to show that the positive result for p-compact sets and polynomials is not true, 
in general, for A-compact sets. As usual, QN p denotes the ideal of quasi p-nuclear operators.

Example 1.1. Let P ∈ P2(�2; �1) be the polynomial defined by P (x) = (x2
1, x

2
2, . . .) for x = (x1, x2, . . .). 

Then, P is not (Πp; Πp)-compactifying for any 1 ≤ p < ∞.

Proof. Fix 1 ≤ p < ∞. It is enough to find a Πp-compact set K ⊂ �2 such that P (K) ⊂ �1 is not Πp-compact. 
Take n ∈ N, n ≥ p, and consider a sequence (aj)j ∈ c0 which is not in �2n. Take the set K = {ajej : j ∈ N} ⊂
�2, where ej denotes the canonical unit vector for each j ∈ N. As L = {ajej : j ∈ N} ⊂ �1 is compact and 
the inclusion ι : �1 → �2 is absolutely summing (see e.g. [13, Ex. 11.5]), K = ι(L) is a relatively Π1-compact 
set of �2 (and hence relatively Πp-compact for all p ≥ 1).

Let us suppose that P (K) = {a2
jej : j ∈ N} is a Πp-compact set. Since the sequence (a2

jej)j is also 
null, by [24, Proposition 1.4], (a2

jej)j is a Πp-null sequence. Then the operator T : �1 → �1 defined by 
T (ej) = a2

jej (canonically extended to �1) is a Πp-compact operator. By [24, Proposition 2.1], we know that 
KΠp

= (Πp ◦ F)sur. Also we have the inclusions

KΠp
(�1; �1) = (Πp ◦ F)sur(�1; �1) = (Πp ◦ F)(�1; �1) = QN p(�1; �1) ⊂ QNn(�1; �1).

Then, T belongs to QNn(�1; �1). The Persson–Pietsch multiplication table [27, Satz 48] gives that the 
composition operator T̃ = T ◦ n· · ·◦T belongs to QN (�1; �1). Now, consider S = T̃ ◦T̃ . By [28, Theorem 3.3.2], 
S belongs to N (�1; �1) and as S(ej) = a2n

j ej we conclude that (a2n
j )j ∈ �1 which is a contradiction. Therefore, 

P (K) cannot be a Πp-compact set. �
In the next example we appeal to the existence of a relatively compact set in �1 which is not uncondi-

tionally p-compact for 1 < p < ∞. If this were not the case, we would have K = Up which is a contradiction.

Example 1.2. Fix 1 < p < ∞ and n ∈ N such that n ≥ p′. Let P ∈ Pn(�p′ ; �1) be the polynomial defined by 
P (x) = (xn

1 , x
n
2 , . . .) for x = (x1, x2, . . .). Then, P is not (U(p,1); U(p,p′))-compactifying. As a consequence, P

is not (U(p,r); U(p,r))-compactifying for any 1 ≤ r ≤ p′.

Proof. Take L ⊂ �1 a compact set which is not unconditionally (p, p′)-compact. Then, there exists a sequence 
(aj)j ∈ c0 such that L ⊂ Γ{ajej : j ∈ N} and therefore the set M = {ajej : j ∈ N} is a compact set in �1
which is not unconditionally (p, p′)-compact.
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For each j ∈ N, take ej the canonical unit vector and let K = {a1/n
j ej : j ∈ N} ⊂ �p′ . As (a1/n

j ej)j ∈
�w,0
p (�p′), K is unconditionally (p, 1)-compact. With P as in the statement, P (K) = M and the result 

follows. �
The above examples motivate the definition of the distinguished class of n-homogeneous polynomials 

mapping A-compact sets into B-compact sets, for λ-Banach operator ideals A and B. We denote by Pn
(A;B)

the space of (A; B)-compactifying n-homogeneous polynomials which turns out to be a λ-Banach polynomial 
ideal with the λ-norm defined below. Recall that a λ-normed ideal (Q, ‖·‖Q) of polynomials is a subclass of 
P such that

(i) Qn(E; F ) = Q ∩Pn(E; F ) is a linear subspace of Pn(E; F ) for any Banach spaces E and F , and ‖ · ‖Q
is a λ-norm on it,

(ii) for any Banach spaces Z and W and operators T ∈ L(Z; E) and S ∈ L(F ; W ) and P ∈ Qn(E; F ), the 
polynomial S ◦ P ◦ T : Z −→ W belongs to Qn(Z; W ) with ‖S ◦ P ◦ T‖Q ≤ ‖S‖‖P‖Q‖T‖n,

(iii) z �→ zn belongs to Qn(K; K) and has norm one.

When (Qn(E; F ), ‖·‖Q) is complete for all Banach spaces E and F , we say that it is λ-Banach polynomial 
ideal.

The following result sets the framework for our study, its proof is straightforward and is omitted.

Proposition 1.3. Let A, B be λ-Banach operator ideals, E, F be Banach spaces and n ∈ N. For P ∈
Pn

(A;B)(E; F ) define

‖P‖(A;B) : = sup{mB(P (K)) : K ⊂ E is A-compact and mA(K) = 1}.

Then, ‖ · ‖(A;B) is a λ-norm on Pn
(A;B) and 

(
Pn

(A;B), ‖ · ‖(A;B)
)

is a λ-Banach polynomial ideal.

Clearly, Pn
(K;K) = Pn for all n. Also, by [4, Theorem 3.2], Pn

(Kp;Kp) = Pn for all n. Moreover, from [4, 
Corollary 3.3], we see that ‖P‖ ≤ ‖P‖(Kp;Kp) ≤ nn

n! ‖P‖ for any P ∈ Pn.
To initiate a systematic discussion, we first consider (A; A)-compactifying polynomials. We appeal to the 

definition of polynomial ideals coming from tensor norms. For a general background of symmetric tensor 
norms we refer to [17]. Let αs be a finitely generated symmetric tensor norm (s-tensor norm, for short) 
of order n and let E, F be Banach spaces. We say that P ∈ Pn(E; F ) is αs-continuous if its lineariza-
tion, denoted by LP , belongs to L(⊗̂n,s

αs
E; F ). Then, considering the continuous n-homogeneous polynomial 

ΔE
n,αs

: E → ⊗̂n,s
αs

E given by ΔE
n,αs

(x) = x ⊗ · · · ⊗ x, we have the following commutative diagram

E
P

ΔE
n,αs

F.

⊗̂n,s
αs

E

LP

(1)

We denote by Pn
αs

(E; F ) the class of all αs-continuous n-homogeneous polynomials, which is a Banach ideal 
endowed with the norm given by ‖P‖αs

= ‖LP ‖L(⊗̂n,s
αs

E;F ). This type of polynomials was first considered, 
in a more general setting, in [18, Section 4.2]. As usual, we denote by π (πs) the projective (symmetric) 
tensor norm and by ε (εs) the injective (symmetric) tensor norm. As it is well-known Pn

πs
(E; F ) = Pn(E; F )

isometrically. Also, for an operator T ∈ L(E; F ) we denote by ⊗nT : ⊗n,s E → ⊗n,sF the operator defined 
on the elementary symmetric tensors by T (x ⊗ · · · ⊗ x) = Tx ⊗ · · · ⊗ Tx and canonically extended. Besides, 
regarding A-compact sets, from [24, Corollary 1.9] and [24, Proposition 2.1] we can infer, for a λ-Banach 
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operator ideal A, that a set K ⊂ E is relatively A-compact if and only if there exists T ∈ KA(�1; E) such that 
K ⊂ T (B�1) and mA(K) = inf{‖T‖KA}, where the infimum is taken over all the operators T ∈ KA(�1; E)
such that K ⊂ T (B�1).

Proposition 1.4. Let A be a λ-Banach operator ideal and E be a Banach space. Fix n ∈ N and αs an s-tensor 
norm on ⊗n,sE. The following are equivalent.

(i) Pn
αs

(E; F ) ⊂ Pn
(A;A)(E; F ), for any Banach space F .

(ii) The polynomial ΔE
n,αs

: E → ⊗̂n,s
αs

E is (A; A)-compactifying.
(iii) For any T in KA(�1; E), the operator ⊗nT is in KA

(
⊗̂n,s

πs
�1; ⊗̂

n,s
αs

E
)
.

Moreover,

‖P‖(A;A) ≤ ‖ΔE
n,αs

‖(A;A)‖P‖αs
and ‖ ⊗n T‖KA ≤ ‖ΔE

n,αs
‖(A;A)‖T‖nKA ,

for all P ∈ Pn
αs

(E; F ) and T ∈ KA(�1; E).

Proof. Notice that with F = ⊗̂n,s
αs

E and P = ΔE
n,αs

: E → ⊗̂n,s
αs

E in (1), LP is the identity operator on 
⊗̂n,s

αs
E. Hence ΔE

n,αs
belongs to Pn

αs
(E; ⊗̂n,s

αs
E) and (i) implies (ii). The converse is straightforward since 

continuous linear operators preserve A-compact sets.
For any T ∈ L(�1; E) we have the diagram

�1
T

Δ�1
n,πs

E

ΔE
n,αs

⊗̂n,s
πs

�1
⊗nT

⊗̂n,s
αs

E.

Then the following inclusions are clear:

ΔE
n,αs

(T (B�1)) = ⊗nT ◦ Δ�1
n,πs

(B�1) ⊂ ⊗nT
(
B⊗̂n,s

πs
�1

)
, (2)

⊗nT
(
B⊗̂n,s

πs
�1

)
⊂ ⊗nT

(
Γ(Δ�1

n,πs
(B�1))

)
= Γ

(
ΔE

n,αs
(T (B�1))

)
. (3)

Now, fix T ∈ KA(�1; E) and consider the inclusions in (3). As T (B�1) is A-compact, (ii) implies that 
⊗nT

(
B⊗̂n,s

πs
�1

)
is an A-compact set and then ⊗nT is an A-compact operator. Hence, (iii) holds. On the 

other hand, given an A-compact set K ⊂ E, there exists an operator T ∈ KA(�1; E) such that K ⊂ T (B�1). 
Then, ΔE

n,αs
(K) ⊂ ΔE

n,αs
(T (B�1)) and, by (2), being ⊗nT an A-compact operator (ii) holds. Finally, with 

simple calculations the inequalities of the norms are obtained and the proof is complete. �
The proof of (iii) implies (i) in the above proposition uses the same ideas of [5, Theorem 3.5]. Preservation 

of A-compact sets is hereditary on the degree of homogeneity as the next result shows.

Proposition 1.5. Let A be a λ-Banach operator ideal, E, F be Banach spaces and let n ∈ N. If Pn
(A;A)(E; F ) =

Pn(E; F ) then Pm
(A;A)(E; F ) = Pm(E; F ) for all m < n.

Proof. As Pm(E; F ) = Pm
πs

(E; F ) for any m, by Proposition 1.4, it is enough to show that for any T ∈
KA(�1; E), the operator ⊗mT : ⊗̂m,s

π �1 → ⊗̂m,s
π E is A-compact.
s s
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As in [6, Proposition 11], for each m < n there exist continuous operators jm : ⊗̂m,s
πs

�1 → ⊗̂(m+1),s
πs

�1 and 

pm : ⊗̂(m+1),s
πs

E → ⊗̂m,s
πs

E such that the following diagram commutes

⊗̂m,s
πs

�1
⊗mT

jm

⊗̂m,s
πs

E

⊗̂(m+1),s
πs

�1
⊗(m+1)T

⊗̂(m+1),s
πs

E.

pm

(4)

Thus, ⊗mT = pm ◦ ⊗(m+1)T ◦ jm, for all m < n. As ⊗nT is A-compact, we see that ⊗n−1T is A-compact. 
The result follows by a recursive reasoning. �

From Examples 1.1 and 1.2 and the above proposition we have the following:

Example 1.6.

(a) For each n ∈ N and 1 ≤ p < ∞ there is a polynomial in Pn(�2; �1) which is not (Πp; Πp)-compactifying.
(b) For 1 < p < ∞, n ∈ N and 1 ≤ r ≤ p′ ≤ n there is a polynomial in Pn(�p′ ; �1) which is not 

(U(p,r); U(p,r))-compactifying.

We observe that Proposition 1.5 can be restated with Pn
αs

instead of Pn provided that the diagram (4)
remains commutative with continuity if we change ⊗̂m,s

πs
E by ⊗̂m,s

αs
E for every m < n. This happens for 

instance for εs or for any s-norm being part of a family of complemented symmetric tensor norms (see [6]
for definition).

2. Tensor stability and (A; A)-compactifying polynomials

The factorization technique used in (1) involving tensor products and the idea of preserving classes of 
sets determined by operator ideals, lead us to the notion of tensor stability. Based on the definition given 
in [10], fixed two tensor norms α and β we say that a λ-Banach operator ideal A is (α, β)-tensorstable if 
for any Banach spaces E, F, X, Y and any S ∈ A(E; F ) and T ∈ A(X; Y ) the tensor product operator 
S ⊗(α,β) T : E⊗̂αX → F ⊗̂βY belongs to A. If α = β the definition of a β-tensorstable ideal is covered 
(see [10] or [13, 34.1]). When the Banach spaces E and F are fixed we say that A is (α, β)-tensorstable 
for (E; F ). If in addition there is a constant C ≥ 1 satisfying ‖S ⊗(α,β) T‖A ≤ C‖S‖A‖T‖A, we say that 
A is (α, β)-tensorstable for (E; F ) with constant C. Such a constant always exists if the Banach spaces are 
not fixed (see [13, Sec. 34]). For C = 1 the term metrically (α, β)-tensorstable is used. Notice that when 
α̃ ≤ α and β ≤ β̃ are tensor norms, if A is (α̃, β̃)-tensorstable for (E; F ) (with constant C), then A is 
(α, β)-tensorstable for (E; F ) (with constant C).

As A-compact sets of a Banach space E are determined by operators in KA(�1; E) the next lemma will 
be of use.

Lemma 2.1. Let A be a λ-Banach operator ideal and β a tensor norm. Let E be a Banach space and suppose 
that A is (π, β)-tensorstable for (�1; E) (with constant C), then KA is (π, β)-tensorstable for (�1; E) (with 
constant C).

Proof. Let X, Y be Banach spaces. Take S ∈ KA(�1; E) and T ∈ KA(X; Y ). As S(B�1) and T (BX) are 
relatively A-compact sets, for ε > 0, there exist L1, L2 ⊂ B�1 compact sets and operators S̃ ∈ A(�1; E) and 
T̃ ∈ A(�1; Y ) such that S(B�1) ⊂ S̃(L1) and T (BX) ⊂ T̃ (L2) with ‖S̃‖A ≤ (1 + ε)‖S‖KA and ‖T̃‖A ≤ (1 +
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ε)‖T‖KA . To see that S⊗T : �1⊗̂πX → E⊗̂βY belongs to KA, note that the operator S̃⊗T̃ : �1⊗̂π�1 → E⊗̂βY

is in A and that

S ⊗ T (B�1⊗̂πX
) = Γ

(
S ⊗ T (B�1 ⊗BX)

)
⊂ Γ

(
S̃ ⊗ T̃ (L1 ⊗ L2)

)
.

Since the tensor product of relatively compact sets is relatively compact and L1 ⊗ L2 ⊂ B�1⊗̂π�1
we have 

S ⊗ T ∈ KA(�1⊗̂πX; E⊗̂βY ). Moreover, ‖S ⊗ T‖KA ≤ ‖S̃ ⊗ T̃‖A ≤ C‖S̃‖A‖T̃‖A ≤ C(1 + ε)2‖S‖KA‖T‖KA , 
and the proof follows. �

Observe that, with almost the same proof, Lemma 2.1 remains valid if we replace KA with Asur. Indeed, 
if S ∈ Asur(�1; E) and T ∈ Asur(X; Y ), S ∈ A(�1; E) and T ◦ qX ∈ A(�1(BX); Y ) for qX : �1(BX) → X the 
usual quotient map. The assertion follows from the inclusion

S ⊗ T (B�1⊗̂X) ⊂ Γ
(
S ⊗ (T ◦ qX)(B�1 ⊗B�1(BX))

)
.

The next theorem shows the relation between tensor stability and the preservation of A-compact sets 
under polynomials. As usual, σn : ⊗nE → ⊗n,sE denotes the symmetrization mapping.

Theorem 2.2. Let A be a λ-Banach operator ideal, E be Banach space and suppose that A is (π, π)-tensor-
stable for (�1; E). Then, every polynomial in Pn(E; F ) is (A; A)-compactifying for any Banach space F and 
any n ∈ N. Moreover, if A is (π, π)-tensorstable for (�1; E) with constant C, then

‖P‖ ≤ ‖P‖(A;A) ≤ Cn−1
∥∥∥σn : ⊗̂n

πE → ⊗̂n,s
πs

E
∥∥∥ ‖P‖ .

Proof. Let us prove that (iii) of Proposition 1.4 holds. Fix n ∈ N and T ∈ KA(�1; E) with ‖T‖KA
= 1. We 

shall show that ⊗nT belongs to KA(⊗̂n,s
πs

�1; ⊗̂
n,s
πs

E) and ‖⊗nT‖KA
≤ Cn−1

∥∥∥σn : ⊗̂n
πE → ⊗̂n,s

πs
E
∥∥∥. Denote 

by (⊗T )n : ⊗̂n

π�1 → ⊗̂n

πE the operator defined on the elementary tensors of the full tensor product by 
x1 ⊗ x2 ⊗ · · · ⊗ xn �→ Tx1 ⊗ Tx2 ⊗ · · · ⊗ Txn (extended by linearity and completion).

We claim that (⊗T )n ∈ KA(⊗̂n
π�1; ⊗̂

n
πE) and ‖(⊗T )n‖KA

≤ Cn−1. Let us reason by induction. First, 
note that (⊗T )2 = T ⊗(π,π)T : �1⊗̂π�1 → E⊗̂πE. By the hypothesis and Lemma 2.1, we know that (⊗T )2 is 
A-compact with norm at most C. Suppose that the operator (⊗T )n−1 is A-compact and 

∥∥(⊗T )n−1
∥∥
KA

≤
Cn−2. As π is an associative tensor norm, ⊗̂n

πF
1= F ⊗̂π(⊗̂n−1

π F ) for every Banach space F . As T ∈ KA(�1; E), 
(⊗T )n−1 is A-compact and A is (π, π)-tensorstable for (�1; E), the claim follows from the diagram

⊗̂n
π�1

(⊗T )n
⊗̂n

πE

�1⊗̂π(⊗̂n−1
π �1)

T⊗(⊗T )n−1

E⊗̂π(⊗̂n−1
π E).

Now, the commutative diagram, where ιn is the norm one inclusion,

⊗̂n,s

πs
�1

ιn

⊗nT ⊗̂n,s

πs
E

⊗̂n
π�1

(⊗T )n
⊗̂n

πE

σn

shows that ⊗nT ∈ KA. The proof follows from Proposition 1.4. �
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We have a similar result for (π, ε)-tensorstable ideals where the class of εs-continuous polynomials appear. 
With the proof of [7, Proposition 3.11] as prototype, we can see that the class Pεs corresponds to the ideal 
of weakly integrable polynomials. An n-homogeneous polynomial P : E → F is weakly integrable if for 
every linear functional y′ ∈ F ′, the scalar valued n-homogeneous polynomial y′ ◦P ∈ Pn(E) is integral (for 
definition see [15, Definition 2.23]).

Theorem 2.3. Let A be a λ-Banach operator ideal, E be Banach space and suppose that A is (π, ε)-tensor-
stable for (�1; E). Then, every polynomial in Pn

εs(E; F ) is (A; A)-compactifying for any Banach space F and 
any n ∈ N. Moreover, if A is (π, ε)-tensorstable for (�1; E) with constant C,

‖P‖(A;A) ≤ Cn−1 ‖P‖εs .

Proof. The result follows by mimicking the proof of the above theorem considering the pair (π, ε) instead of 
(π, π). For the norm inequality also use that 

∥∥∥σn : ⊗̂n
εE → ⊗̂n,s

εs E
∥∥∥ = 1 (see e.g. [16, Proposition 3.1]). �

Remark 2.4. Theorem 2.2 can be enunciated in a more general form. For instance, if we consider a family of 
symmetric tensor norms αs and a tensor norm β such that for a Banach space E, the operator σn : (E ⊗β

(E⊗β (E⊗β . . . (E⊗βE) . . .))) → ⊗n,s
αs

E is continuous for every n ∈ N. Under this assumption, if a λ-Banach 
operator ideal A is (π, β)-tensorstable for (�1; E), then Pn

αs
(E; F ) ⊂ Pn

(A;A)(E; F ) for every Banach space 
F and any n ∈ N.

Now, we give more examples of A-compact sets which are preserved under polynomials.

Example 2.5. Every polynomial is (N ; N )-compactifying. Moreover, for any Banach spaces E and F , n ∈ N

and P ∈ Pn(E; F ),

‖P‖ ≤ ‖P‖(N ;N ) ≤
∥∥∥σn : ⊗̂n

πE → ⊗̂n,s
πs

E
∥∥∥ ‖P‖ .

Proof. By [13, 34.1], N is a metrically (π, π)-tensorstable ideal. Then the result follows by Theorem 2.2. �
The above example can be reformulated in terms of the ideal of (Grothendieck) integral operators, I, 

since I- and N -compact set coincide [25, Proposition 2.2].
Example 1.1 shows the existence of a 2-homogeneous polynomial which is not (Πp; Πp)-compactifying for 

any 1 ≤ p < ∞. The following examples show positive partial results if we restrict the domain or the class 
of polynomials.

Example 2.6. Every polynomial in P(L1(μ); F ) is (Π1; Π1)-compactifying for any Banach space F . Moreover, 
for any n ∈ N and P ∈ Pn(L1(μ); F ),

‖P‖ ≤ ‖P‖(Π1;Π1) ≤
nn

n! ‖P‖ .

Proof. By [20, Theorem 3], Π1 is (π, π)-tensorstable for (�1; L1(μ)) and one may check that this holds with 

constant C = 1. As 
∥∥∥σn : ⊗̂n

πL1(μ) → ⊗̂n,s
πs

L1(μ)
∥∥∥ ≤ nn

n! (in fact, the bound is attained if the dimension of 
L1(μ) is at least n), an application of Theorem 2.2 completes the proof. �
Example 2.7. Every polynomial in Pεs is (Πp; Πp)-compactifying for every 1 ≤ p < ∞. Moreover, for any 
Banach spaces E and F , n ∈ N and P ∈ Pn

εs(E; F ),

‖P‖(Πp;Πp) ≤ ‖P‖εs .
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Proof. By [19, Theorem 3.2] (see also [13, Corollary 34.5.2]), Πp is metrically (ε, ε)-tensorstable. As ε ≤ π, 
Πp is metrically (π, ε)-tensorstable. An application of Theorem 2.3 completes the proof. �

The class of weakly extendible polynomials, introduced and studied by Carando [7] and Kirwan and 
Ryan [22], is another classical ideal associated to an s-tensor norm. Next, we show that weakly extendible 
polynomials also preserve Π1-compact sets. Following [7, Definition 3.10] an n-homogeneous polynomial 
P : E → F is weakly extendible if for every linear functional y′ ∈ F ′, the scalar n-homogeneous polynomial 
y′◦P ∈ Pn(E) can be extended to any superspace. That is, for any Banach space X with X ⊃ E there exists 
P̃ ∈ Pn(X) such that P̃ (x) = y′ ◦ P (x) for every x ∈ E. As shown in [7, Proposition 3.11] (see also [22]), 
the class of weakly extendible polynomials coincides with ηs-continuous polynomials for ηs, the s-tensor 
norm defined as follows. Fix a Banach space E and let JE : E ↪→ �∞(BE′) be the canonical (isometric) 
inclusion, for u ∈ ⊗n,sE, ‖u‖ηs

= ‖⊗n,sJE(u)‖πs
. Before proceeding, we need a technical result. Recall 

that an operator ideal A is right-accessible if A ◦ F = Amin, where Amin denotes the minimal kernel of A
(see [13, Proposition 25.2]). Also, we denote by Ainj the injective hull of A.

Lemma 2.8. Let A be a λ-Banach operator ideal. Then Kinj
A = KAinj isometrically.

Proof. Let E, F be Banach spaces. Consider qE : �1(BE) → E the canonical quotient and JF as above. As, 
by [24, Proposition 2.1], KA = (A ◦ F)sur we have the following:

T ∈ Kinj
A (E;F ) ⇔ JF ◦ T ◦ qE ∈ A ◦ F(�1(BE); �∞(BF ′)) ⇔ T ◦ qE ∈ Ainj min(�1(BE);F ),

where the last equivalence follows from a combination of [13, Corollary 25.2.2] and [13, Proposition 25.11], 
since both �∞(BF ′) and �1(BE)′ have the metric approximation property. Now,

T ◦ qE ∈ Ainj min(�1(BE);F ) ⇔ T ∈ (Ainj min)sur(E;F ) ⇔ T ∈ (Ainj ◦ F)sur(E;F ),

where the last equivalence follows from the fact that any injective λ-Banach ideal is right-accessible [13, 
21.2]. Another application of [24, Proposition 2.1] completes the proof. �
Proposition 2.9. Let A be a λ-Banach operator ideal and E be a Banach space. Suppose that every polynomial 
in Pn(E; F ) is (A; A)-compactifying for any Banach space F and any n ∈ N. Then, every polynomial in 
Pn
ηs

(E; F ) is (Ainj ; Ainj)-compactifying for any Banach space F and any n ∈ N. Moreover, if there exists 
C > 0 such that for every P ∈ Pn(E; F ), ‖P‖(A;A) ≤ C ‖P‖, then ‖P‖(Ainj ;Ainj) ≤ C‖P‖Pηs

for every 
P ∈ Pn

ηs
(E; F ).

Proof. Since KAinj = Kinj
A , by Proposition 1.4 (iii), it is enough to show that the tensor operator ⊗nT

belongs to Kinj
A (⊗̂n,s

πs
�1; ⊗̂

n,s
ηs

E) for any T ∈ Kinj
A (�1; E). As JE ◦T is in KA(�1; �∞(BE′)), by Proposition 1.4, 

we get that the operator ⊗n(JE ◦ T ) : ⊗̂n,s
πs

�1 → ⊗̂n,s
πs

�∞(BE′) is A-compact and satisfies

‖⊗n(JE ◦ T )‖KA
≤ C ‖JE ◦ T‖nKA

= C ‖T‖nKinj
A

.

Now, notice that ⊗n(JE◦T ) = ⊗nJE◦⊗nT with ⊗nJE : ⊗̂n,s
ηs

E → ⊗̂n,s
πs

�∞(BE′) a linear isometry. Therefore, 
⊗nT : ⊗̂n,s

πs
�1 → ⊗̂n,s

ηs
E belongs to the injective hull of the ideal of KA (see e.g. [29, Proposition 8.4.4]). Also,

‖⊗nT‖Kinj
A

≤ ‖⊗n(JE ◦ T )‖KA
≤ C ‖T‖nKinj

A
,

and the proof is complete. �
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Example 2.10. Every polynomial in Pηs
is (Π1; Π1)-compactifying. Moreover, for any Banach spaces E and 

F , n ∈ N and P ∈ Pn
ηs

(E; F ),

‖P‖(Π1;Π1) ≤
∥∥∥σn : ⊗̂n

πE → ⊗̂n,s
πs

E
∥∥∥ ‖P‖Pηs

.

Proof. By Example 2.5, every polynomial preserves N -compact sets, which coincide with I-compact sets. 
Since Iinj = Π1, Proposition 2.9 gives the result. The inequality of the norms follows by combining those 
of Example 2.5 and Proposition 2.9. �

To study the behavior of polynomials on (p, r)-compact sets and unconditionally (p, r)-compact sets, 
we give conditions on the tensor norms α and β under which the ideal N(t,p,q) is (α, β)-tensorstable. Let 
1 ≤ p ≤ ∞ and denote by dp the Chevet–Saphar tensor norm [32, p. 135]. For the sequence space �p, 
1 ≤ p < ∞, by [13, Corollary 15.10.2], the result stated in [13, 12.7] reads as follows: �p⊗̂dp

�p = �p(�p). Thus, 
�p⊗̂dp

�p is identified with �p via the mapping Λp defined on the elementary tensors as Λp(a ⊗ b) = (aibj)(i,j)
where the indexes (i, j) are considered, for instance, with the square ordering. Also, by [33, Theorem 4.6], 
c0 ⊗d∞ c0 = c0 ⊗ε c0. Therefore, the corresponding identification c0 ⊗d∞ c0 = c0 is also true.

Proposition 2.11. Let 1 ≤ p, q ≤ ∞ and 0 < t ≤ ∞ such that 1 + 1
t ≥ 1

p + 1
q . Let α, β be tensor norms such 

that dq′ ≤ α on �q′ ⊗ �q′ and β ≤ dp on �p ⊗ �p. Then, the ideal N(t,p,q) is metrically (α, β)-tensorstable.

Proof. For the proof, we borrow some ideas of [13, Proposition 34.5] and use the usual convention that 
�p = c0 when p = ∞. Fix Ei, Fi Banach spaces and Ti ∈ N(t,p,q)(Ei; Fi) for i = 1, 2. As it can be inferred 
from the factorization of (t, p, q)-nuclear operators [29, Theorem 18.1.3], given ε > 0 there exist operators 
Si ∈ F(Ei; �q′), Ri ∈ F(�p; Fi) and diagonal operators Dλi : �q′ → �p with λi ∈ �t such that Ti = RiDλiSi, 
and ‖Ri‖ = ‖Si‖ = 1 and ‖λi‖�t ≤ (1 + ε)‖Ti‖N(t,p,q) for i = 1, 2.

Now, define λ ∈ �t, indexed on pairs (i, j) with the square ordering, by λ(i,j) = λ1
iλ

2
j . Clearly, ‖λ‖�t =

‖λ1‖�t‖λ2‖�t . Also, note that as approximable operators are α-tensorstable for any α [13, 34.1] and dq′ ≤ α

on �q′ ⊗ �q′ , the operator S1 ⊗(α,dq′ ) S2 is approximable and ‖S1 ⊗(α,dq′ ) S2‖ ≤ 1. The same reasoning is 
valid for R1 ⊗(dp,β) R2. Thus, we have the following commutative diagram

E1⊗̂αE2

S1⊗S2

T1⊗T2
F1⊗̂βF2

�q′⊗̂dq′ �q′

Λq′

Dλ1⊗Dλ2
�p⊗̂dp

�p

R1⊗R2

�q′
Dλ

�p.

Λ−1
p

Another application of [29, Theorem 18.1.3] gives that T1 ⊗ T2 is in N(t,p,q) and

‖T1 ⊗ T2‖N(t,p,q) ≤ ‖R1 ⊗R2‖‖Λ−1
p ‖‖λ‖�t‖Λq′‖‖S1 ⊗ S2‖

≤ ‖λ1‖�t‖λ2‖�t ≤ (1 + ε)2‖T1‖N(t,p,q)‖T2‖N(t,p,q) .

Therefore, the proof is complete. �
Notice that the above result for 1 + 1

t = 1
p + 1

q also can be obtained by combining [13, Proposition 34.4(2)]
and [13, Proposition 34.5].
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Example 2.12. For 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p′, every polynomial is (K(p,r); K(p,r))-compactifying. Moreover, 
for any Banach spaces E and F , n ∈ N and P ∈ Pn(E; F ),

‖P‖(K(p,r);K(p,r)) ≤
∥∥∥σn : ⊗̂n

πE → ⊗̂n,s
πs

E
∥∥∥ ‖P‖ .

Proof. By [2, Proposition 2.4], (p, r)-compact sets are N(p,1,r′)-compact sets. As 1
p ≥ 1

r′ and dr ≤ π = d1; 
a direct application of Proposition 2.11 gives that N(p,1,r′) is metrically (π, π)-tensorstable. Now, the result 
follows by Theorem 2.2. �

When r = p′ in the above example, we cover [4, Theorem 3.2] and [3, Corollary 3.3]. Example 1.2
shows that if 1 < p < ∞ and n ≥ p′, there exists an n-homogeneous polynomial which is not 
(U(p,r); U(p,r))-compactifying for any 1 ≤ r ≤ p′. The following example shows a positive partial result 
if we restrict the class of polynomials.

Example 2.13. For 1 ≤ p < ∞ and 1 ≤ r ≤ p′, every polynomial in Pεs is (U(p,r); U(p,r))-compactifying. 
Moreover, for any Banach spaces E and F , n ∈ N and P ∈ Pn

εs(E; F ),

‖P‖(U(p,r);U(p,r)) ≤ ‖P‖εs .

Proof. By the paragraph above [2, Theorem 4.1], U(p,r)-compact sets are N(∞,p′,r′)-compact sets. As 1
p′ +

1
r′ ≤ 1, dr ≤ π and ε ≤ dp′ ; a direct application of Proposition 2.11 gives that N(∞,p′,r′) is metrically 
(π, ε)-tensorstable. Hence, the result follows by Theorem 2.3. �
3. On (A; B)-compactifying polynomials

There are two classical types of polynomial ideals generated by a λ-Banach operator ideal A. Namely, if 
n ∈ N, Pn

A = A ◦ Pn and Pn
[A] = Pn ◦ A, both ideals of homogeneous polynomials are considered with the 

usual composition λ-norm. Given the nature of their definitions, PA and P[A] have an expected behavior on 
different type of compact sets. Here we present some examples which involve well-known polynomial ideals 
and A-compact sets. We give an example of each type. Once this is done, it will be clear how to proceed 
with other examples.

We start with the class of (Grothendieck) integral homogeneous polynomials Pn
I . By [12, Proposition 2.5]

and [9, Proposition 1], it is the composition Banach polynomial ideal Pn
I = I ◦ Pn.

Example 3.1. Every polynomial in PI is (K; N )-compactifying and therefore is (K; A)-compactifying for 
every Banach operator ideal A. Moreover, if n ∈ N and P ∈ Pn

I ,

‖P‖(K;A) ≤ ‖P‖(K;N ) ≤ ‖P‖I .

Proof. Continuous mappings preserve compact sets and also I ⊂ L(K;I). As I- and N -compact sets coincide, 
the isometric identity Pn

I = I ◦ Pn shows that every polynomial in Pn
I is (K; N )-compactifying. As N ⊂ A

for any Banach operator ideal A, every polynomial in Pn
I is (K; A)-compactifying. The norm inequalities 

follow from the norm one inclusions

Pn
I = I ◦ Pn ⊂ L(K;I) ◦ Pn ⊂ Pn

(K;I) = Pn
(K;N ) ⊂ Pn

(K;A). �
Notice that Example 3.1 remains valid if instead of PI we consider the subclasses of nuclear or Pietsch 

integral polynomials. The next example deals with the ideal of p-dominated polynomials of Matos, which in 
fact is the polynomial composition ideal Pn

[Πp] = Pn◦Πp (see [34, Proposition 3.6] for multilinear mappings). 
For the ideal of p-summing operators we have the following:



JID:YJMAA AID:22146 /FLA Doctopic: Functional Analysis [m3L; v1.235; Prn:4/04/2018; 10:37] P.13 (1-17)
S. Lassalle, P. Turco / J. Math. Anal. Appl. ••• (••••) •••–••• 13
Lemma 3.2. Let 1 ≤ p, r ≤ ∞ and 0 < t ≤ ∞ such that 1
t ≥ 1

r − 1
p . Then, every operator in Πp is 

(N(t,p′,r′); K(s,r))-compactifying for 1
s = 1

t + 1
p .

Proof. By [29, Remark 20.2.2], Πp ◦ N(t,p′,r′) ⊂ N(s,1,r′). The result is immediate from the definition of 
compact sets given by operator ideals and the fact that N(s,1,r′) generates the (s, r)-compact sets [2, Propo-
sition 2.4]. �
Example 3.3. Let 1 ≤ p, r ≤ ∞ and 0 < t ≤ ∞. Then,

(a) If 1
t ≥ 1

r − 1
p , every polynomial in P[Πp] is (N(t,p′,r′); K(s,r))-compactifying for 1

s = 1
t + 1

p .
(b) If 1 ≤ r ≤ p′, every polynomial in P[Πp] is (U(p,r); K(p,r))-compactifying.

Proof. Statement (a) follows from the above lemma and Example 2.12 while (b) is a particular case of (a) 
where t = ∞ is considered. �
4. On (A; B)-compactifying holomorphic functions

In this section we focus on some classes of holomorphic functions. For E and F complex Banach spaces 
and U an open subset of E, we denote by H(U ; F ) the space of all holomorphic functions from U to F . 
Our aim is to understand to what extent the results obtained in the previous sections pass to the analytic 
setting. This type of study was initiated by Aron, Çalişkan, García and Maestre [3] where they treat the 
case of p-compact sets.

Recall that given E, F Banach spaces and an open set U ⊆ E, a function f : U → F is holomorphic if 
for each x0 ∈ U there exists a sequence of polynomials Pnf(x0) ∈ Pn(E; F ) such that

f(x) =
∞∑

n=0
Pnf(x0)(x− x0),

uniformly for all x in some neighborhood of x0. We say that 
∑∞

n=0 Pnf(x0), is the Taylor series expansion 
of f at x0 and that Pnf(x0) is the n-component of the series at x0.

Proposition 4.1. Let A, B be λ-Banach operator ideals, let E, F be Banach spaces and U ⊂ E an open set. If 
f ∈ H(U ; F ) is (A; B)-compactifying, then for each x0 ∈ U and every n ∈ N, the n-component of the series 
of f at x0 is (A; B)-compactifying.

Proof. Fix x0 ∈ U and take 
∑∞

n=0 Pnf(x0) the Taylor series expansion of f at x0. Take K ⊂ E an absolutely 
convex A-compact set and let us show that Pnf(x0)(K) is a B-compact set for each n. Set Δ = {z ∈ C : |z| ≤
1} and denote by Δ◦ its interior. There is δ > 0 so that L = {x0 + δtx : t ∈ (1 + δ)Δ, x ∈ K} is included in 
U . As f is (A; B)-compactifying and L is A-compact it suffices to prove that

{Pnf(x0)(x) : x ∈ δK} ⊂ Γ(f(L)).

Suppose this is not true and take z = Pnf(x0)(x̃) �∈ Γ(f(L)) for some x̃ ∈ δK. By the Hahn–Banach 
theorem, there is ϕ ∈ F ′ so that |ϕ(z)| > 1 and |ϕ(Γ(f(L))| ≤ 1. Now, defining g : (1 + δ)Δ◦ → C by 
g(t) = ϕ(f(x0 + tx̃)) we have a holomorphic function. By the Cauchy inequality, we obtain a contradiction 
since

1 < |ϕ(z)| =
∣∣∣g(n)(0)

n!

∣∣∣ ≤ sup{|g(t)| : |t| = 1} ≤ 1. �



JID:YJMAA AID:22146 /FLA Doctopic: Functional Analysis [m3L; v1.235; Prn:4/04/2018; 10:37] P.14 (1-17)
14 S. Lassalle, P. Turco / J. Math. Anal. Appl. ••• (••••) •••–•••
In virtue of Proposition 4.1, it is natural to inspect under which conditions a holomorphic function whose 
components in the Taylor series expansion are all (A; B)-compactifying is itself (A; B)-compactifying. In 
order to do so, we define for f in H(U ; F ) its radius of (A; B)-compactification at x0 ∈ U as

r(A;B)(f ;x0) = 1/ lim sup ‖Pnf(x0)‖1/n
(A;B) .

As usual, the radius is infinite if lim sup ‖Pnf(x0)‖1/n
(A;B) = 0 and the radius is zero if Pnf(x0) fails to be 

(A; B)-compactifying for some n. Notice that for r(f ; x0) = 1/ lim sup ‖Pnf(x0)‖1/n, the radius of uniform 
convergence of f at x0, we have r(A;B)(f ; x0) ≤ r(f ; x0). In what follows we will need the next result which 
is the λ-Banach version of [23, Lemma 3.1] (see also [37, Lemma 3]). We omit the proof.

Lemma 4.2. Let A be a λ-Banach operator ideal and E be a Banach space. Consider (Kn)n ⊂ E a sequence 
of A-compact sets such that 

∑∞
n=1 mA(Kn)λ < ∞. Then, the set K = {

∑∞
n=1 xn : xn ∈ Kn} is A-compact 

and mA(K)λ ≤
∑∞

n=1 mA(Kn)λ.

We first give a positive result for holomorphic functions mapping A-compact sets of small size into 
B-compact sets.

Lemma 4.3. Let A, B be λ-Banach operator ideals, let E, F be Banach spaces and U ⊂ E an open set. Fix 
x0 ∈ U and f ∈ H(U ; F ) whose Taylor series expansion at x0 is 

∑∞
n=0 Pnf(x0). Suppose that Pnf(x0) is 

(A; B)-compactifying for all n and r(A;B)(f ; x0) > 0. If K ⊂ U is an A-compact set and mA(K − x0) <
r(A;B)(f ; x0), then f(K) is B-compact.

Proof. As r(A;B)(f ; x0) ≤ r(f ; x0) for an A-compact set K ⊂ U such that mA(K − x0) < r(A;B)(f ; x0), we 
have

f(K) ⊂
{ ∞∑

n=1
xn : xn ∈ Pnf(x0)(K − x0)

}
.

Also

∞∑
n=1

mB(Pnf(x0)(K − x0))λ ≤
∞∑

n=1

(
‖Pnf(x0)‖(A;B) mA(K − x0)n

)λ

.

As lim sup(‖Pnf(x0)‖1/n
(A;B) mA(K − x0))λ < 1, the series is convergent. Then, by Lemma 4.2, f(K) is 

B-compact and the proof is complete. �
In order to deal with A-compact sets of arbitrary size we will need the following:

Lemma 4.4. Let A be a λ-Banach operator ideal, let E be a Banach space and K ⊂ E be a relatively 
A-compact set such that 0 ∈ K. Then, given ε > 0, there exist δ > 0 such that mA(K ∩ δBE) ≤ ε.

Proof. Take ε > 0 and K ⊂ E as in the statement. There exist a Banach space Z, a compact set L ⊂ BZ

and an operator T ∈ A(Z; E) such that K ⊂ T (L) and ‖T‖A ≤ (1 + ε)mA(K). Consider the quotient 
map q : Z → Z/ ker(T ) and the injective operator T̃ such that T = T̃ ◦ q . Then, T̃ ∈ Asur(Z/ ker(T ); E), 
‖T̃‖Asur ≤ ‖T‖A (see e.g. [29, Proposition 8.5.4]) and K ⊂ T̃ (q(L)) with q(L) compact. As 0 ∈ K, 0 ∈ q(L)
and there exists δ > 0 such that

K ∩ δBE ⊂ T̃ (q(L)) ∩ δBE ⊂ T̃ (q(L) ∩ εBZ) = ε T̃ (1 q(L) ∩BZ).
ε
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Since 1
ε q(L) ∩ BZ is relatively compact then K ∩ δBE is Asur-compact. Now, we use that relatively Asur-

and A-compact sets coincide [11, p. 79] with the same measure [24, Proposition 1.8], then

mA(K ∩ δBE) ≤ ε
∥∥T̃∥∥Asur ≤ ε(1 + ε)mA(K),

and the proof follows. �
Below we give the main theorem of this section from which all the examples we present are deduced.

Theorem 4.5. Let A, B be λ-Banach operator ideals, let E, F be Banach spaces and U ⊂ E an open set. Let 
f ∈ H(U ; F ) whose Taylor series expansion at x0 ∈ U is 

∑∞
n=0 Pnf(x0). Suppose that for each x0 ∈ U , 

Pnf(x0) is (A; B)-compactifying for every n and r(A;B)(f ; x0) > 0. Then f is (A; B)-compactifying.

Proof. Let K ⊂ U be an A-compact set. By Lemma 4.4, for each x ∈ K we may choose δx > 0 such that 
mA((K−x) ∩δxBE) < r(A;B)(f ; x). Take x1, . . . , xk ∈ K such that K =

⋃k
j=1 Kj with Kj = K∩(xj+δxj

BE). 
We claim that f

(
Kj) is relatively B-compact for j = 1, . . . , k.

Indeed, for each j, mA
(
Kj − xj

)
= mA

(
(K − xj) ∩ δxj

BE

)
< r(A;B)(f ; xj). Then, the claim follows from 

Lemma 4.3.
To end the proof, notice that f(K) =

⋃k
j=1 f(Kj) and finite union of B-compact sets is B-compact. �

The case on p-compact sets was treated in [3]. Let E, F be Banach spaces and U ⊂ E be a balanced 
open set. In [3, Theorem 3.5] the authors prove that if K ⊂ U is a p-compact set such that there exists a 
sequence (xn)n in �p(E) ∩ U with K ⊂

{∑∞
k=1 αkxk : (αk)k ∈ B�p′

}
⊂ U , then f(K) is p-compact for any 

f ∈ H(U ; F ). As a consequence, any entire function between Banach spaces is (Kp; Kp)-compactifying [3, 
Corollary 3.6]. For a discussion about the restriction considered on the p-compact sets K see [3, Remark 3.7]. 
Now, Theorem 4.5 allows us to prove in full generality [3, Theorem 3.5] as the next example shows.

Example 4.6. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p′. Let E, F be Banach spaces, U ⊂ E an open set. Then, every 
function in H(U ; F ) is (K(p,r); K(p,r))-compactifying.

Proof. By Example 2.12, every P ∈ Pn(E; F ) is (K(p,r); K(p,r))-compactifying and satisfies ‖P‖ ≤
‖P‖(K(p;r);K(p;r)) ≤ en ‖P‖. For each x0 ∈ U , write the Taylor series expansion of f at x0 as 

∑∞
n=0 Pnf(x0). 

As

1/ lim sup ‖Pnf(x0)‖1/n
(K(p;r);K(p;r)) ≥

1
er(f, x0) > 0,

the conclusion follows from Theorem 4.5. �
With a similar proof of the above example, using Example 2.6 instead of Example 2.12, we obtain the 

next result.

Example 4.7. Let U ⊂ L1(μ) be an open set. Every function in H(U ; F ) is (Π1; Π1)-compactifying for any 
Banach space F .

Now we apply Theorem 4.5 to the class of weakly extendible holomorphic functions. Given E, F Banach 
spaces and U ⊂ E an open set, f ∈ H(U ; F ) is weakly extendible if for every y′ ∈ F ′, y′ ◦ f ∈ H(U) is 
extendible.
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Lemma 4.8. Given E, F Banach spaces and U ⊂ E an open set. Let f ∈ H(U ; F ) whose Taylor series 
expansion at x0 ∈ U is 

∑∞
n=0 Pnf(x0). Then f is weakly extendible if and only if for each x0 ∈ U , Pnf(x0)

belongs to Pn
ηs

(E; F ) and lim sup ‖Pnf(x0)‖
1
n
ηs < ∞.

Proof. Fix x0 ∈ U and write f as f(x) =
∑∞

n=0 Pnf(x0)(x −x0). Since for every y′ ∈ F ′, y′ ◦f is extendible, 
by [8, Proposition 3.1] and the uniqueness of the Taylor series expansion of an holomorphic function, 
we get that for every y′ ∈ F ′ and every n ∈ N, y′ ◦ Pnf(x0) is an extendible scalar valued polynomial 
and lim sup ‖y′ ◦ Pnf(x0)‖e < ∞ (here, ‖y′ ◦ Pnf(x0)‖e is the extendible norm of the polynomial, see 
below [7, Proposition 3.2]). Thus, for every n ∈ N, Pnf(x0) ∈ Pn

ηs
(E; F ) and, by the Principle of Uniform 

Boundedness, lim sup ‖Pnf(x0)‖
1
n
ηs < ∞. �

With a similar proof of Example 4.6 and using Example 2.10 instead of Example 2.12, we obtain the 
next result.

Example 4.9. Let E, F be Banach spaces, U ⊂ E an open set. Then, every function H(U ; F ) which is weakly 
extendible is (Π1; Π1)-compactifying.

Our final example deals with the class of weakly integral holomorphic functions in the sense of Dimant, 
Galindo, Maestre and Zalduendo [14]. Given E, F Banach spaces we say that f ∈ H(B◦

E ; F ) is weakly 
integral if for every y′ ∈ F ′, y′ ◦ f ∈ H(B◦

E) is scalar valued integral as defined in [14, p. 86].

Lemma 4.10. Given E, F Banach spaces and f ∈ H(B◦
E ; F ) whose Taylor series expansion at x0 ∈ B◦

E is ∑∞
n=0 Pnf(x0). Suppose that f is weakly integral, then for each x0 ∈ B◦

E, Pnf(x0) belongs to Pn
εs(E; F ) and 

lim sup ‖Pnf(x0)‖
1
n
εs < ∞.

Proof. Recall that P ∈ Pn
εs(E; F ) if and only if for every y′ ∈ F ′, y′ ◦ P is an integral scalar valued 

polynomial (see the comment above Theorem 2.3). Then, the proof is analogous to that of Lemma 4.8
using [14, Proposition 2] instead of [8, Proposition 3.1]. �

Now, with a similar proof of Example 4.6 and using Example 2.13 instead of Example 2.12, we obtain 
the next result.

Example 4.11. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p′. Let E, F be Banach spaces. Every function in H(BE ; F )
which is weakly integral is (U(p,r); U(p,r))-compactifying.
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