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ABSTRACT
The effects of N and P depletion on the production and structural characterization of the cellular carbohydrate polymers of
the estuarine diatom Halamphora luciae in batch culture were examined using matrix-assisted laser desorption-ionization
time-of flight mass spectrometry (MALDI-TOF MS) complemented with monosaccharide composition determination and
structural analyses by methylation of aqueous extracted product. The MALDI MS analysis of the cells showed a similar
profile in control and N- and P-depleted media, with a displacement to higher molecular weight for cells grown in depleted
media. In the monosaccharide analyses, both nutrient depletion and culture ageing led to an increase in glucose content,
indicating that MALDI-TOF MS in whole cells was detecting the changes in chrysolaminarin. The maxima for the ions
from f/2-P and to a lesser extent in f/2-N were displaced to higher m/z values indicating a higher degree of polymerization
(DP). Methylation analysis confirmed the presence of chrysolaminarin, a (1→3)-β-D-glucan with branching in C2 and C6,
where the glucan backbone had a substitution every four glucose residues. The (1→3)-β-D-glucan was also detected in the
cingule by fluorescence with aniline blue.
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Introduction

Widespread in oceans and continental aquatic bodies,
in planktonic or benthic communities, diatoms are
responsible for more than 40% of oceanic primary
production (Nelson et al., 1995; Field et al., 1998;
Armbrust, 2009; Tréguer et al., 2017). Furthermore,
diatoms are a key component of the biological carbon
pump that exports carbon to the ocean interior, con-
tributing significantly to the long-term sequestration
of atmospheric CO2 (Bowler et al., 2010).

In rapidly growing cells, polysaccharides account
for 10–50% of organic matter. They can be classified
according to their location and function as cell-wall
or storage polysaccharides (Granum et al., 2002) or,
based on the usual extraction methods, into water
insoluble and soluble polymers. The former include
structural polysaccharides associated with cell walls
or frustules, such as mannans, glucuronomannans
(Chiovitti et al., 2003a; Le Costaouec et al., 2017)
and callose (Tesson & Hildebrand, 2013), and the
latter comprise the storage polysaccharide

chrysolaminarin (Caballero et al., 2016), exopolysac-
charides and free sugars (Takahashi et al., 2009).

Frustules are composed of silica and organic matter,
including protein, long-chain polyamines and com-
plex polysaccharides (Chiovitti et al., 2003b; Le
Costaouec et al., 2017). Recently, a sulphated glucur-
onomannan with an important role in cell wall biogen-
esis was isolated from the frustules of Phaeodactylon
tricornutum Bohlin (Le Costaouec et al., 2017). Finally,
the siliceous cell covering is enveloped by an external
organic coat that is trapped within the secreted muci-
laginous exopolysaccharide and/or glycoprotein dur-
ing cell motion (Gügi et al., 2015), usually termed
extracellular polymeric substance.

The β-D-glucan chrysolaminarin, the main storage
polysaccharide in diatoms, is located in vacuoles
(Granum et al., 2002). It consists of short chains of
(1→3)-β-D-linked glucopyranosyl residues (n =
20–60) branched at C6 and/or C2 (McConville
et al., 1986; Alekseeva et al., 2005; Storseth et al.,
2006). The average molecular weight and number of
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branches of chrysolaminarin can vary significantly
between species (Xia et al., 2014). Chrysolaminarin
contents of 12–33% DW (dry weight) have been
documented in different diatom species (Myklestad,
1989; Ju et al., 2011). In culture, the content of
chrysolaminarin is subject to diel variations
(Caballero et al., 2016) and has been reported either
to increase (Myklestad, 1989; Xia et al., 2014;
Hildebrand et al., 2017) or to show little variation
(Caballero et al., 2016) with nutrient exhaustion and
high irradiance. In diatom massive cultures, chryso-
laminarin can be readily obtained as a water soluble
product (Caballero et al., 2016). It must be noted that
the properties of β-glucans as immunostimulants and
antioxidants have recently received attention
(Barsanti et al., 2011; Xia et al., 2014).

From the point of view of biotechnological appli-
cations, inexpensive and rapid characterization of
metabolites and/or optimal conditions to proceed
with biomass harvest is highly desirable. Within this
context, a method for obtaining fingerprint profiles,
such as matrix-assisted ultraviolet laser-desorption
ionization time-of-flight mass spectrometry
(MALDI-TOF MS), is attractive. MALDI-TOF MS
has been used in diatoms to characterize the polya-
mines and silaffin fractions (Sumper et al., 2005,
2007; Sumper & Lehmann, 2006), lipids (Vieler
et al., 2007; Danielewicz et al., 2011), chlorophylls
(Suzuki et al., 2009), and recently, to establish mole-
cular mass fingerprinting profiles (Nicolau et al.,
2014) as well as the degree of polymerization of
polysaccharides (Liang et al., 2013; Ai et al., 2015).
Furthermore, MALDI-TOF MS is increasingly being
applied in routine protocols for the reliable identifi-
cation of bacteria (Ng, 2013; Sandrin et al., 2013),
fungi (Packeu et al., 2013; Pavlovic et al., 2014) and
microalgae (Nicolau et al., 2014; Andrade et al., 2015;
Emami et al., 2015) by referring to mass spectra in
databases (Zhang et al., 2015). It is claimed that
MALDI-TOF MS-based fingerprint methods have
greater taxonomic resolution than traditional mole-
cular techniques (Giebel et al., 2010; De Bruyne et al.,
2011) for economically relevant microorganisms
(Knoshaug & Darzins, 2011; Smith & Crews, 2014).

Halamphora luciae (Cholnoky) Levkov is a cosmo-
politan, brackish water species, present in the benthic
biofilm community of the intertidal mudflat of Bahía
Blanca Estuary, Argentina, that has recently been
included in a screening of diatom species with poten-
tial biotechnological applications. At present, a strain
of Halamphora coffeaeformis (C.Agardh) Levkov iso-
lated from the same site is being assayed for the
production of biodiesel (Martín et al., 2016) with
promising results. According to Hildebrand et al.
(2017), triacylglycerol (TAG) accumulation in
Thalassiosira pseudonana Hasle & Heimdal is corre-
lated with a reduction in chrysolaminarin storage.

Therefore, we considered it interesting to follow the
changes in the intracellular chrysolaminarin in
Halamphora luciae by testing different culture
media and harvesting points. This could provide
clues for the choice of the end-point of the cultures
and/or the culture conditions, depending on whether
the cellular biomass would eventually be employed
for the extraction of TAG or chrysolaminarin. The
aim of the present research was to employ MALDI-
TOF MS as a non-extractive method for attaining
fingerprint profiles of cellular polysaccharides of H.
luciae from different culture stages or under N and P
starvation. MALDI-TOF spectra were complemented
with monosaccharide composition and structural
analyses by methylation of the water-soluble carbo-
hydrate fraction extracted from the diatom cells to
assess their identity.

Materials and methods

Algal cultures

Halamphora luciae cells were isolated from a mudflat
located in Bahía Blanca Estuary (South Atlantic coast,
38º44′59.47′′S, 62º22′51′′W) by micropipetting.
Unialgal axenic cultures were obtained as in Daglio
et al. (2016). The strain has been maintained in our
laboratory since 2013 in standard f/2 medium
(Guillard, 1975) and grown at 13ºC in a 12:12 light-
dark cycle using cool-white fluorescent light (100
µmol photons m–2 s–1).

Experimental setting

To examine the effect of N and P on polysaccharides,
cells were grown in sterilized seawater f/2 medium
(control), f/2 without the addition of nitrate (f/2-N)
and f/2 without the addition of phosphate (f/2-P) for
15 days (Daglio et al., 2016). To initiate the assays,
exponentially growing cells in f/2 were repeatedly
washed and re-suspended in commercial seawater
(30 psu) for pre-starvation for 2 days before inocula-
tion in nutrient-depleted media.

For MALDI-TOF MS analysis of cells from differ-
ent culture phases, harvest proceeded at days 5 (early
exponential), 10 (late exponential), 15 (early station-
ary), 25 and 35 (late stationary) (Supplementary
fig. S1).

Extraction of cell polysaccharides and structural
analysis

Cellular polysaccharides were extracted from freeze-
dried cells of H. luciae (4 g) with water at room
temperature by magnetic stirring at 300 rpm for 30
min (product RTW). The supernatant was collected
by centrifugation (10 000 × g for 30 min) and the
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precipitate re-extracted with hot water at 100°C (pro-
duct W100) for 1 h. The extracts were lyophilized and
desalted with a Bio-Gel P-2 (Bio-Rad) column (RTW:
yield, 0.460 g; W100: yield, 1.22 g).

For the structural analyses, RTW (42 mg) was
methylated using powdered NaOH in dimethyl
sulphoxide-iodomethane (Ciucanu & Kerek, 1984).
The permethylated polysaccharide was extracted
with chloroform (4 times) and the extracts dried off.
The yield after the final methylation step (RTW-m)
was 10.5 mg.

Monosaccharide composition

Sugar composition was determined by gas-liquid
chromatography (GLC) after hydrolysis of the differ-
ent products (i.e. whole cells from different culture
conditions and products of extractions) with 2M tri-
fluoroacetic acid (2 h at 121ºC) followed by conver-
sion of the monosaccharides to their alditol acetates
(Albersheim et al., 1967).

GLC of the alditol acetates and the partially
methylated alditol acetates was carried out on a
Hewlett–Packard 5890A gas-liquid chromatograph
equipped with a flame ionization detector and fitted
with a fused silica column (0.25 mm i.d. × 30 m)
WCOT-coated with a 0.20 µm film of SP-2330.
Chromatography was performed: (a) isothermally at
220°C for the alditol acetates; and (b) from 160°C to
210°C at 2°C min–1, then from 210°C to 240°C at
5° min–1 followed by a 30-min hold for partially
methylated alditol acetates (Shea & Carpita, 1988).
Nitrogen was employed as the carrier gas at a flow
rate of 1 ml min–1 with a split ratio 80:1. The injector
and detector temperatures were set at 240°C.
Assignments were referred to a mixture of standard
alditol acetates. When necessary, GLC–MS analyses
were carried out on a Shimadzu QP 5050 A (Kyoto,
Japan) apparatus working at 70 eV using the same
column and conditions described above, but using
helium as a gas carrier at a total flow rate of 1 ml
min−1; the injector temperature was 240°C.

MALDI-TOF MS

Spectra were recorded on a BrukerUltraflex II TOF/
TOF, controlled by the FlexControl 3.0 software
(Bruker Daltonics, Bremen, Germany). Desorption/
ionization was carried out using a frequency tripled
Nd:YAG laser emitting at 355 nm with a 100 Hz shot
frequency. All mass spectra were taken in the posi-
tive-linear and reflectron modes. Experiments were
performed using first the full range setting for laser
firing position in order to select the optimal position
for data collection, and secondly fixing the laser firing
position in the sample sweet spots. The laser power
was adjusted to obtain high signal-to-noise ratio (S/

N) while ensuring minimal fragmentation of the par-
ent ions and each mass spectrum was generated by
averaging 500 laser pulses per spot. Spectra were
obtained and analysed with the programs
FlexControl and FlexAnalysis, respectively. MTP 384
target plate steel T F was used (Part No.: 209519;
target frame (# 74115); 384 circular spots, 3.5 mm
diameter; S/N 03630; Bruker, Bremen, Germany).

The following matrices were tested: 9H-pyrido[3,4b]
indole (nor-harmane); α-cyano-4-hydroxycinnamic
acid (CHCA); E-3,5-dimethoxy-4-hydroxycinnamic
acid (sinapinic acid, SA) and 2,5 dihydroxybenzoic
acid (DHBA). Mixtures of DHBA:CHCA (1:1; mol/
mol) and DHBA:SA (1:1; mol/mol) in 1 ml of metha-
nol:water (75:25, v/v) were also assayed. The stock
solutions of the matrices were made by dissolving 10
mg of the selectedmatrix (or themixture of matrices) in
1 ml of methanol (HPLC-grade)-H2O (75:25, v/v). For
external calibration β-cyclodextrin with nor-harmane
as matrix were employed. All chemicals were purchased
from Sigma-Aldrich.

For the MALDI-TOF MS analysis of the aqueous
extracts (RTW and W100) two sample preparation
methods were used. (a) Sandwich method or dry-
droplet method (Nonami et al., 1997): 0.5 μl of the
matrix were transferred on a MALDI sample plate
and dried at normal atmosphere. When the solvent
was almost evaporated 0.5 μl of the aqueous extracts
(10–20 mg ml–1) were added on the matrix layer,
dried at normal atmosphere and followed by further
addition of 0.5 μl (× 2) of matrix solution (matrix-
analyte ratio 3:1 (v/v)). (b) The experiments were also
conducted using the mixture method. The analyte-
matrix sample was prepared as a 1:1 (v/v) solution
mixture and transferred (0.5 μl) on a MALDI sample
plate and dried as described above.

For MALDI mass spectra of H. luciae entire cells,
algal suspensions were concentrated by centrifugation
at 500 × g for 3 min and 1 μl of diatom cell suspen-
sion was transferred on the MALDI sample plate,
and dried at normal atmosphere before adding 1 μl
of the matrix solution. All samples were dried at
normal atmosphere and room temperature and ana-
lysed in duplicate and the measurement repeated on
at least three different days. The degree of polymer-
ization (DP) of the polymers was calculated based on
the number of mass units (Ai et al., 2015).

�Mn (number average molecular weight) and �Mw

(weight average molecular weight) were calculated
(Young & Lovell, 1991). The �Mn is the arithmetic
mean of the molecular weight distribution of all the
polymer chains in the sample, and is defined by the
following equation:

�Mn ¼
P

Ni MiP
Ni
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where Ni is the number of chains of molecular
weight Mi.

The �Mw, defined by the following equation, repre-
sents the contribution of the major polymer chain:

�Mw ¼
P

NiM2
iP

NiMi

Fluorescence microscopy

To detect (1→3)-β-D-glucan, early stationary cells (12
days) of H. luciae growing in f/2 medium were incu-
bated for 1 h in 0.05% aniline blue in 0.01M phos-
phate buffer, pH 8.5 (Krishnamurthy, 1999). Slides
were examined under a Zeiss Axioscope microscope
(Jena, Germany) equipped with UV (Ex 330–380 nm,
FT 400 nm, Em 420 nm) and blue (Ex 450–490 nm,
FT 510 nm, Em 520 nm) filter combinations and a
digital photographic camera (Olympus C5000,
Tokyo, Japan).

Statistical analyses

Statistical analyses were performed using InfoStat
Release2014 (Di Rienzo et al., 2014). One-way analy-
sis of variance (ANOVA) was used to determine
statistical significance and Tukey’s honestly signifi-
cant difference tests were used for post hoc treatment
comparisons. The significance level was fixed at
P<0.05.

Results

Aqueous extracts RTW and W100 from cells in f/2
medium

Room temperature aqueous extraction from cells in f/
2 medium yielded a product RTW whose monosac-
charide composition, obtained after acid hydrolysis,
indicated that glucose was the main component
(Table 1). The product extracted with hot water
(W100) showed an increase in the molar percentages
of fucose and galactose and a decrease in glucose.

MALDI mass spectra of RTW and W100 extracts
(Fig. 1, Table 2) were similar, showing unit intervals

of m/z 162 in the molecular weight range, from m/z
1175.8 to 3105.9 for RTW and from m/z 1176.6 to
3286.5 for W100.

Methylation analysis of RTW indicated the pre-
sence of a (1→3)-linked glucan with branching at C2
and C6 (Table 3). The ratio of tetramethylated term-
inal glucose residues (20.8%) to the rest of the glucose

Table 1. Monosaccharide composition (mol%) of the dif-
ferent extracts from Halamphora luciae cells cultured in f/2
medium. Data are expressed as media ± SD.
Monosaccharidea RTW W100

Rha tr 3.7 ± 0.5
Fuc 8.5 ± 0.5 25.4 ± 2.1
Ara 2.9 ± 1.2 nd
Xyl 4.1 ± 0.9 3.2 ± 0.5
Man 5.9 ± 2.2 8.7 ± 2.4
Gal 13.9 ± 1.5 20.5 ± 0.6
Glc 64.7 ± 3.1 38.6 ± 0.3

aRha=Rhamnose; Fuc=Fucose; Ara=arabinose; Xyl=Xylose;
Man=Mannose; Gal=Galactose; Glc=Glucose; tr=trace (< 1 mol %);
nd=not determined.

Table 2. Average molecular weights obtained for MALDI
mass spectrometry of Halamphora luciae extracts in f/2
medium.

�Mn �Mw DPmax
a DPn

b DPrange
RTW 1769 1893 9 13 7–19
W100 2255 2120 11 14 7–20

a Degree of polymerization (DP) corresponding to the most abundant
ion. b Number-average degree of polymerization calculated consid-
ering all the observed ions.

Fig. 1. MALDI mass spectra of the (a) room temperature
(RTW) and (b) hot water (W 100) extraction from
Halamphora luciae cells grown in f/2 medium. Matrix:
DHBA-SA mixture.

Table 3. Composition (mol %) of monosaccharide pro-
duced by methylation and hydrolysis of the RTW extract
from Halamphora luciae. Data are expressed as media ±
SD.
Monosaccharidea Deduced glycosidic linkage RTW-m

2,3,4,6-Me4Glc Terminal 20.8 ± 1.4
2,4,6-Me3Glc 3-linked 47.4 ± 3.9
4,6-Me2Glc 3-linked

2-substituted
10.6 ± 1.7

2,4-Me2Glc 3-linked
6-substituted

12.7 ± 2.3

Glc 8.5 ± 1.9
a2,4-Me2Glc=1,3,5,6-tetra-O-acetyl-2,4-di-O-methylglucitol;
4,6-Me2Glc=1,2,3,5-tetra-O-acetyl-4,6-di-O-methylglucitol;
2,4,6-Me3Glc=1,3,5-tri-O-acetyl-2,4,6-tri-O-methylglucitol;
2,3,4,6-Me4Glc=1,5-di-O-acetyl-2,3,4,6-tetra-O-methylglucitol.
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units (79.2%) showed that the glucan backbone was
substituted every four glucose residues.

Hydrolysis of entire cells

The entire cells were hydrolysed and the monosac-
charide composition of the hydrolysates was deter-
mined (Table 4). At least c. 1.5–2 fold increase
(P<0.05) in glucose content was observed in P- and
N-depleted media with respect to control in f/2 in
cells harvested at day 10. Control cells also exhibited
high galactose and fucose molar percentages in con-
trast to cells in nutrient-depleted media. Xylose molar
percentage was high in cells grown in P-depleted
medium compared with the other two media.
Nevertheless, hydrolysed cells grown in f/2 over 20
and 30 days showed a significant increase (P<0.05) in
glucose molar percentage and a significant decline
(P<0.05) of galactose when compared with younger
f/2 cells (Table 4).

MALDI-TOF MS analysis of entire cells

Either in complete or in nutrient-deficient media,
MALDI mass spectra of the entire cells harvested at
day 15 exhibited unit intervals of m/z 162 (Fig. 2).
Cells grown in f/2 exhibited signals in the molecular
weight range from m/z 4256.5–6363.9 (Fig. 2a). For
cells from f/2-N, signals were detected in the mole-
cular weight range located from m/z 2473.4–7011.4
(Fig. 2b), while for cells from f/2-P a molecular-
weight range from m/z 4906.1–7660.2 was found
(Fig. 2c). The �Mw and �Mn of the cell polysaccharides
from f/2 and N-depleted media were lower than those
from P-depleted media (Table 5).

Representing the abundance relative to the most
intense signal for each polymer (Fig. 3a), the maxima
for the ions from f/2-P and to a lesser extent in f/2-N
were displaced to higher m/z values indicating a
higher DP. The polysaccharides from f/2-N and f/2-
P gave a higher proportion of molecular weight oli-
gomers with a DP range of 15–43 for the former and
27–47 for the latter (Fig. 3a, Table 5). It is worth
noting that the proportion of low molecular weight

polysaccharide also increased in f/2-N compared with
the control and f/2-P (Fig. 3a).

Since culture ageing is associated with nutrient
depletion, we also analysed cells from f/2 medium
harvested at different times. MALDI analysis showed
unit intervals of m/z 162 in all cases (Fig. 4). On day
5, two distributions of signals were detected, one
corresponding to low molecular weight oligomers
from m/z 2312.5–4420.7 and another incipient distri-
bution with oligomers of higher molecular weight

Table 4. Constituent monosaccharide (mol%) of extracts obtained from the hydrolysates of entire cells of Halamphora
luciae cultured in f/2, f/2-N and f/2-P media. Data are expressed as media ± SD.
Monosaccharidea f/210d

b f/220d
c f/230d

d f/2-Ne f/2-Pe

Rha 2.1 ± 0.4 3.4 ± 0.4 4.1 ± 0.4 tr 2.1 ± 1.4
Fuc 15.2 ± 0.3 11.5 ± 1.5 12.5 ± 1.6 2.2 ± 0.1 2.5 ± 0.9
Ara tr nd nd tr nd
Xyl tr 1.9 ± 1.2 nd tr 17.5 ± 2.3
Man 3.2 ± 0.9 2.4 ± 0.8 4.8 ± 1.5 tr 8.9 ± 4.1
Gal 34.6 ± 1.1 21.5 ± 0.4 16.1 ± 0.1 2.9 ± 0.9 6.2 ± 0.5
Glc 43.9 ± 0.8 58.9 ± 0.9 62.5 ± 0.5 94.9 ± 0.3 62.8 ± 1.3

a Rha=Rhamnose; Fuc=Fucose; Ara=arabinose; Xyl=Xylose; Man=Mannose; Gal=Galactose; Glc=Glucose; tr=trace (< 1 mol %), nd=not deter-
mined. b Cells were grown in f/2 medium and harvested at day 10. c Cells were grown in f/2 medium and harvested at day 20. d Cells were grown
in f/2 medium and harvested at day 30. e Cells harvested at day 10.

Fig. 2. MALDI mass spectra of Halamphora luciae cells
under different culture media harvested at day 15. (a) f/2
(control), (b) f/2-N and (c) f/2-P. Matrix: CHCA.
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from m/z 4582.7–6040.6 (Fig. 4a), with a higher rela-
tive intensity for the first group. At day 10, we
observed the same two groups of signals, but in this
case the higher signal intensity corresponded to the
oligomers of higher molecular weight in the range of

m/z 4094.4–6525.0 (Fig. 4b). Days 15 and 25 pre-
sented a dominant group of signals at high molecular
weight (day 15: m/z 4419.8–6849.7; day 25: m/z
3769.4–6688.9) (Fig. 4c–d). At day 35, signals were
detected in the molecular weight range m/z 2130.4–
7175.9 (Fig. 4e). Table 5 shows the gradual displace-
ment towards higher molecular weight ranges with
time. This is clearly reflected in Fig. 3b, where the
bimodality of the relative abundance of different DP
fragments is gradually lost after day 15.

Cells from f/2 exhibited a continuous fluorescent
strip in the cingule when stained with fluorochrome
aniline blue (Figs 5–7). Additionally, fluorescent
vacuoles could be detected in cells from control
cultures.

Discussion

Aqueous extraction of the cells of H. luciae (especially
at room temperature) rendered products with glucose
as the major component. The presence of a (1→3)-
linked glucan was proven by methylation analyses,
suggesting, as pointed out by Chiovitti et al. (2004),
that this glucan derives from chrysolaminarin.
Differing from the report of Caballero et al. (2016),
rising temperature did not improve glucose yield in
the extract. This can be attributed to the fact that
extraction at room temperature used lyophilized cells,
where leakage of cellular components could be
expected due to membrane rupture. As reported by
Xia et al. (2014), glucose in RTW was accompanied
by smaller molar percentages of galactose, fucose and
mannose probably derived from extracellular polysac-
charides with complex linkages and branching
(Caballero et al., 2016). The absence of these sugar
moieties in the permethylated product could reflect
the loss of soluble low molecular weight oligosacchar-
ides during dialysis after methylation.

According to our structural analyses by methylation,
chrysolaminarin in H. luciae has branching at C2 and
C6 as reported for analogous polymers in Stauroneis
amphioxys (McConville et al., 1986), Skeletonema cost-
atum (Paulsen & Myklestad, 1978), Craspedostauros

Table 5. Average molecular weights obtained for MALDI mass spectrometry of Halamphora luciae cells in different culture
conditions and culture ages.

�Mn
�Mw DPmax

c DPn
d DPrange

Growth mediuma

f/2 medium 5192 5243 32 32 26–38
N depleted medium 4921 5062 34 30 15–43
P depleted medium 5983 6073 38 38 27–47
Culture ageb

5-day culture 3936 4223 19 27 14–38
10-day culture 4666 4931 32 29 15–40
15-day culture 4703 5104 32 29 13–42
25-day culture 5187 5267 32 32 23–41
35-day culture 4973 5221 32 30 14–44

a The cells of H. luciae harvested at day 15. b Cells were grown in f/2 medium. c Degree of polymerization (DP) corresponding to the most
abundant ion. d Number-average degree of polymerization calculated considering all the observed ions.

Fig. 3. (a) Distribution of the polymerization of the poly-
mers from Halamphora luciae cells grown in f/2 medium
(black circles), f/2-N (white circles) and f/2-P (white trian-
gles), (b) Cells grown in f/2 medium and harvested at days
5 (black circles), 10 (white circles), 15 (black triangles), 25
(white triangles) and 35 (black squares). The relative abun-
dance was based on the polymer with the most abundant
ion, which was represented as one unit in the curve.
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Fig. 4. MALDI mass spectra of Halamphora luciae cells growth in f/2 medium harvested at days (a) 5, (b) 10, (c) 15, (d) 25
and (e) 35. Matrix: SA.
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australis and Thalassiosira pseudonana (Chiovitti et al.,
2004). Whether substitution in C2 is missing or not,
branching in C6 is always present, as reported for
Phaeodactylon tricornutum (Beattie et al., 1961;
Chiovitti et al., 2004; Caballero et al., 2016),
Aulacoseira baicalensis (Paulsen & Myklestad, 1978),
Cylindrotheca fusiformis (Chiovitti et al., 2004),
Stephanodiscus meyerii (Alekseeva et al., 2005),
Chaetoceros debilis (Storseth et al., 2006) and
Odontella aurita (Xia et al., 2014). It is worth noting
that the presence of β-(1→6)-linkages in chrysolami-
narin is considered a prerequisite for immunostimulant
activity (Kim et al., 2011). For the storage glucan of H.
luciae we estimated a DB (degree of branching) of 0.28.
A wide range of DB from 0.015 to 0.39 has been
reported (Beattie et al., 1961; Paulsen & Myklestad,
1978; Chiovitti et al., 2004; Alekseeva et al., 2005; Xia
et al., 2014; Caballero et al., 2016). This is not surprising,
since, according to our results, molecular weight can
vary with culture nutritional state and/or age and this
eventually may also modify the DB.

The presence of the structural polysaccharide cal-
lose cannot be ruled out, especially taking into
account aniline blue fluorescence of the cingules.
In fact, callose in frustules was reported previously
(Waterkeyn & Bienfait, 1987). Only recently Tesson
& Hildebrand (2013) assessed the role of callose in
frustule integrity and/or silica deposition by employ-
ing inhibitors of (1→3)- β-glucan synthase. Yet,
callose differs from chrysolaminarin as it is a non-
branched glucan and poorly soluble in water (Stone,
2006).

The MALDI MS analysis of the cells showed a
similar profile in the three culture media, with a
displacement to higher molecular weight for the
deprived media (Table 5). These changes in the
MALDI-TOF MS profiles in the whole cells, both in
nutrient-deprived media and in ageing cultures,
reveal changes in polysaccharide molecular weight
distribution. It should be kept in mind that

MALDI-TOF MS cannot account for differences in
hexose identity in the polysaccharides. However, the
increase in glucose content in the cell hydrolysates
allows us to assume that the molecular weight dis-
tribution observed in MALDI profiles is mainly due
to chrysolaminarin (Table 4). If we relate accumula-
tion of the storage glucan with the displacement to
increased relative abundance of higher DP signals,
this effect was evident in aged and N- and
P-deprived cultures of H. luciae. Moreover, DP was
higher in nutrient-limited cultures than in complete
f/2 medium, especially in the absence of
P. Accumulation of chrysolaminarin was reported
for Chaetoceros affinis S. costatum and Thalassiosira
fluviatilis (Myklestad, 1989) in stationary phase cul-
tures. The diatom Odontella aurita (Xia et al., 2014)
showed a maximum of chrysolaminarin content in
low N cultures. In P. tricornutum, Caballero et al.
(2016), when following the diel variations in the
chrysolaminarin pool under N starvation, concluded
that there was no daily oscillation, suggesting no
consumption in the dark to fuel heterotrophic meta-
bolism in N-limited conditions (Jallet et al., 2016).
On the other hand, signals of smaller DP in the
exponential and early stationary phase of H. luciae
point to active biosynthesis of the storage glucan in
earlier culture stages. As pointed out by Hildebrand
et al. (2017) diatoms do not fully rely on storage
carbohydrate for energy generation during cell divi-
sion, so small molecular weight fragments observed
in H. luciae would not derive from catabolism.

Under nutrient-replete, autotrophic conditions,
high CO2 assimilation by the Calvin cycle provides
carbon skeletons for amino acid biosynthesis (espe-
cially during the dark period), fatty acid biosynthesis
and mitochondrial TCA cycle for energy production
(Brembu et al., 2017). Diatoms allocate organic carbon
to two primary storage metabolites: the neutral lipid
triacylglycerol and the storage polysaccharide chryso-
laminarin (Wilhelm et al., 2006). Under nutrient

Figs 5–7. Halamphora luciae cells cultured in f/2 medium and stained with aniline blue. Fig. 5. Arrows in the light
micrographs indicate the chloroplast. Figs 6-7. Fluorescence micrographs with (Fig. 6) blue filter (Ex 450–490 nm, 510 nm
FT, and Em 520 nm) showing chlorophyll autofluorescence (black arrow) and (Fig. 7) with UV filter (Ex 330–380 nm, FT
400 nm, Em 420 nm) without chlorophyll autofluorescence. In Figs 6-7 the brighter fluorescence at the girdle bands
indicates the presence of a β-1,3 glucan (white arrows). Scale = 10 μm.
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deficiency, particularly nitrogen starvation, diatoms
accumulate TAGs (Abida et al., 2015; Caballero et al.,
2016), which is of great interest in relation to biodiesel
production (Hockin et al., 2012; Obata et al., 2013;
Alipanah et al., 2015; Levitan et al., 2015; Barnech
Bielsa et al., 2016). Under P and N limitation, cell
division eventually halts. Due to the reduced require-
ments of carbon skeletons for protein and phospholi-
pid biosynthesis, more CO2 is fixed through the Calvin
cycle than is consumed. In order to deal with the excess
carbon, carbon flow is instead directed toward storage
as TAG, chrysolaminarin and excretion from the cell as
extracellular polysaccharides (Daglio et al., 2016;
Brembu et al., 2017). Recently, Hildebrand et al.
(2017) demonstrated that under silicon starvation
there was an upregulation in the direction of gluconeo-
genesis in both the cytoplasm and the chloroplast,
consistent with the flux of carbon towards chrysolami-
narin biosynthesis and accumulation.

Assaying with different matrices allowed us to
reduce spectra baselines, a crucial feature in the dis-
tinction of different molecular weight fragments
depending on age and/or culture conditions (espe-
cially those appearing with low intensity). The finger-
print obtained for H. luciae showed a bimodality
which was not so evident in the spectra of the cells
of the centric diatoms T. pseudonana or
Coscinodiscus sp., which exhibited fragments in the
m/z of 2000–6300 with unit intervals of 162 (Nicolau
et al., 2014; Ai et al., 2015). It is noteworthy that the
spectra of the pennate diatom Seminavis robusta
showed great variability, which the authors attributed
to the contribution of different strains and/or mating
types in the samples analysed (Nicolau et al., 2014).

In conclusion, chrysolaminarin can be used as an
indicator of nutritional status by calibration of
MALDI signatures for different species in order to
select appropriate harvesting points in massive cul-
ture for the exploitation of this polysaccharide, with
potential application as immunostimulants or food
additives for farmed shrimp, fish, poultry and cattle.
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