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Abstract. In this article we study the behavior as p ↗ +∞ of the Fučik spectrum for p-
Laplace operator with zero Dirichlet boundary conditions in a bounded domain Ω ⊂ Rn. We
characterize the limit equation, and we provide a description of the limit spectrum. Furthermore,
we show some explicit computations of the spectrum for certain configurations of the domain.

1. Introduction

Given a bounded smooth domain Ω ⊂ Rn, we are interested in studying the
asymptotic behavior as p→∞ of the following non-linear eigenvalue problem

(1.1)

{
−∆pu(x) = αp(u

+)p−1(x)− βp(u−)p−1(x) in Ω,

u(x) = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplace operator and αp and βp are two
real parameters. As usual, u± = max{0,±u} mean the positive and negative parts
of u. Recall that the set

Σp := {(αp, βp) ∈ R2 : there exists a nontrivial solution u of (1.1)}

is currently known as the Fučík spectrum in honor to the Czech mathematician
Svatopluk Fučík, who in the late ’70s, studied this kind of equations in one space
dimension with periodic boundary conditions and their relationship with jumping
nonlinearities. More precisely, in [16] it was proved that Σ2 for Ω = (a, b) ⊂ R
consists in two trivial lines and a family of hyperbolic-like curves passing thought the
pairs (λ, λ), being λ an eigenvalue of the (zero) Dirichlet Laplacian in the interval
(a, b). Also, explicit formulas for such curves were found. When regarding the one-
dimensional case for p 6= 2, the structure of the spectrum is similar, see for instance
[13]. Through the last decades several works have been devoted to studying Σp in
Rn. The bibliography on this subject is vast. For the linear case, p = 2, we refer
to the reader the papers [10, 11, 12, 14, 17, 26, 32]. When p 6= 2 we address, for
instance, to references [8, 9, 28, 29, 30].
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Observe that problem (1.1) is closely related with the eigenvalue problem of the
(zero) Dirichlet p-Laplacian, since, when both parameters αp and βp are considered
to be the same, (1.1) becomes

(1.2)

{
−∆pu(x) = λ|u(x)|p−2u(x) in Ω,

u(x) = 0 on ∂Ω,

and it follows that the pair (λp, λp) belongs to Σp for each eigenvalue of the p-
Laplacian, λp. We refer to [18] for the existence of an unbounded sequence of eigen-
values λk,p of (1.2) (constructed as variational eigenvalues). It is also straightforward
to see that the trivial lines {λ1,p} ×R and R × {λ1,p} belong to Σp. The following
facts are well-known in the the literature, see [10, 11, 12, 14, 17, 26] and [8, 9, 28]:
the trivial lines are isolated in the spectrum and curves in Σp emanating from each
pair (λk,p, λk,p) exist locally. Moreover, it is proved that the spectrum contains a con-
tinuous non-trivial first curve passing though (λ2,p, λ2,p), which is, in fact asymptotic
to the trivial lines, and it admits a variational characterization.

Let us recall some important properties on the spectrum of the p-Laplacian. For
problem (1.2) there exists a sequence of eigenvalues tending to infinity (note that, in
general, it is not known if such a sequence constitutes the whole spectrum), that is,
(λk,p)k≥1 such that there are nontrivial solutions to the problem (1.2), see [18]. It is
also known (cf. [1]) that the first eigenvalue to (1.2) is isolated, simple and can be
variationally characterized as

(Eigenv.) λ1,p(Ω) = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖pLp(Ω)

‖u‖pLp(Ω)

.

In the last three decades there was an increasing number of works concerning
the study of limit for p-Laplacian type problems as p → +∞. In this direction,
pioneering works are [23] and [3] where it was studied the limit of torsional creep
type problems for the p-Laplacian, namely

−∆pup(x) = 1 in Ω,

obtaining as “limit equation” |∇u| = 1 in Ω (the well-known Eikonal equation)
in the viscosity sense. Moreover, u(x) = dist(x, ∂Ω) is the corresponding limiting
solution (we also recall that more general problems are studied there). On the other
hand, regarding the so-called∞-eigenvalue problem, the main reference is [22], where
the authors proved that such a quantity is obtained as a limit of the first eigenvalue
(Eigenv.) in the following way

λ1,∞(Ω) = lim
p→∞

λ
1/p
1,p (Ω).

An interesting piece of information is that such an ∞-eigenvalue admits a geometric
characterization in terms of the radius of the biggest ball inscribed in Ω:

(1.3) λ1,∞(Ω) =
1

r

where r(Ω) = maxx∈Ω dist(x, ∂Ω). Moreover, [22] also establishes that, up to sub-
sequences, as p → ∞ in (1.2), uniform limits, u(x) = limp→∞ up(x), satisfy the
following limit equation

(1.4)

{
min{−∆∞u(x), |∇u(x)| − λ1,∞(Ω)u(x)} = 0 in Ω,

u(x) = 0 on ∂Ω
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in the viscosity sense, where

∆∞u(x) :=
N∑

i,j=1

∂u

∂xj
(x)

∂2u

∂xj∂xi
(x)

∂u

∂xi
(x)

is the nowadays well-known infinity-Laplacian operator. Recall that solutions to (1.4)
minimize

(1.5)
‖∇u‖L∞(Ω)

‖u‖L∞(Ω)

over all function W 1,∞
0 (Ω) \ {0}. In spite of the fact that the function u(x) =

dist(x, ∂Ω) minimizes (1.5), it is not always a viscosity solution to (1.4) (cf. [22]
for more details). Thereafter, in [21] it is proved that the limit of the second eigen-
value of (1.2) (note that such an eigenvalue is also variational) exists and is obtained
as

λ2,∞(Ω) = lim
p→∞

λ
1/p
2,p (Ω).

Furthermore, as before, this value also admits a geometric characterization given by

(1.6) λ2,∞(Ω) =
1

R(Ω)

where

R(Ω) = sup
{
r > 0: ∃ B1

r , B
2
r ⊂ Ω such that B1

r ∩B2
r = ∅

}
.

In this case, a uniform limit to (1.2) satisfies the following limit equation in the
viscosity sense

min{−∆∞ u(x), |∇u(x)| − λ2,∞(Ω)u(x)} = 0 in {u > 0} ∩ Ω,

max{−∆∞ u(x),−|∇u(x)| − λ2,∞(Ω)u(x)} = 0 in {u < 0} ∩ Ω,

−∆∞ u(x) = 0 in {u = 0} ∩ Ω,

u(x) = 0 on ∂Ω.

Concerning limits of higher eigenvalues in (1.2) we also refer to reader the article
[21]. Despite the fact that has been proved in [21] that the set of such∞-eigenvalues
is unbounded, a geometric characterization beyond λ2,∞(Ω) has not been achieved.
However, when we bring to light the one-dimensional problem with Ω being the unit
interval (0, 1), the spectrum is computed to be the sequence {λk,∞}k∈N given by

(1.7) λ1,∞ = 2, λk,∞ = 2k, k ∈ N.

For more results concerning the ∞-eigenvalue problem we refer to [4, 7, 20, 27, 33]
the survey [24] and references therein.

According to our knowledge, up to date, there is no investigation on the asymp-
totic behavior of the Fučík spectrum as p diverges. Therefore, in this manuscript
we will turn our attention in studying both the structure and characterization of the
∞-Fučík spectrum. Furthermore, in some particular configurations of the domain Ω,
we are able to perform explicit computations of the spectrum.

In our first theorem we obtain the equation associated to the∞-Fučík spectrum,
which is obtained letting p→∞ in equation (1.1).
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Theorem 1.1. Let (αp, βp)p>1 ∈ Σp be such that α1/p
p , β

1/p
p are bounded as p

goes to infinity and up ∈ W 1,p
0 (Ω) a corresponding eigenfunction normalized with

‖up‖Lp(Ω) = 1. Then, up to a subsequence, the following limits exist

(α∞, β∞) = lim
p→∞

(
α1/p
p , β1/p

p

)
and lim

p→∞
up(x) = u∞(x) uniformly in Ω.

Moreover, any possible limit of up, u∞, belongs toW 1,∞
0 (Ω) and is a viscosity solution

to

(1.8)


min{−∆∞ u∞(x), |∇u∞(x)| − α∞u+

∞(x)} = 0 in {u∞ > 0} ∩ Ω,

max{−∆∞ u∞(x),−|∇u∞(x)|+ β∞u
−
∞(x)} = 0 in {u∞ < 0} ∩ Ω,

−∆∞ u∞(x) = 0 in {u∞ = 0} ∩ Ω,

u∞(x) = 0 on ∂Ω.

Regarding the limit equation, we define the ∞-Fučík spectrum as

Σ∞ :=
{

(α, β) ∈ R2 : there exists a nontrivial viscosity solution u of (1.8)
}
,

such a u is defined to be an eigenfunction of the pair (α, β). Observe that, by
construction, eigenfunction of (1.8) belong to W 1,∞

0 (Ω).
When Ω is the unit interval in R, a full characterization of the limit of the p-Fučík

spectrum is obtained.

Theorem 1.2. The limit of the spectrum Σp as p → ∞ when Ω is the unit
interval (0, 1) ⊂ R is given by

Σ∞ =
∞⋃
k=1

C±k,∞,

where

Ck,∞ =
{

(k(1 + s−1), k(1 + s)), s ∈ R+
}

if k is even,

C+
k,∞ =

{
(k − 1 + s−1(k + 1), k + 1 + s(k − 1)), s ∈ R+

}
if k is odd,

C−k,∞ =
{

(k + 1 + s−1(k − 1), k − 1 + s(k + 1)), s ∈ R+
}

if k is odd.

In the higher dimensional case the first nontrivial curve in the∞-Fučík spectrum
can be characterized as follows.

Theorem 1.3. The trivial lines in the spectrum of (1.8) are given by

C+
1,∞ = R×

{
1

r

}
and C−1,∞ =

{
1

r

}
×R,

where r = r(Ω) is the radius of the biggest ball inscribed in Ω. Moreover, the first
non-trivial curve in Σ∞ is parametrized as

(1.9) C2,∞ = {(α∞(t), β∞(t)), t ∈ R+},

where α∞(t) = t−1c∞(t) and β∞(t) = c∞(t), and

c∞(t) = inf
P2(Ω)

max

{
t

r(ω1)
,

1

r(ω2)

}
, t ∈ R+.

Here P2(Ω) denotes the class of all partitions in two disjoint and connected subsets
of Ω. Given (ω1, ω2) ∈ P2(Ω), we denote ri = ri(ωi) the radius of the biggest ball
inscribed in ωi (i = 1, 2).
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Moreover, the trivial curves C+
1,∞ and C−1,∞ intersect the second curve C2,∞ for

almost any domain. In fact, the only exception where C2,∞ is asymptotic to C+
1,∞ and

C−1,∞ is the ball, Ω = BR.

It is remarkable that, contrary to expectations, Theorem 1.3 shows that C2,∞ does
not behaves as a hyperbolic curve asymptotic to the trivial lines, in fact, in most cases
(the only exception is the ball) it intersect them (compare with [8, 9, 13, 28] for the
p-Laplacian counterpart). In Section 4, we will present a complete description about
the behaviour of C2,∞ (see in particular Corollary 4.1). Finally, in Section 5, we will
present some interesting examples in order to illustrate such an unusual phenomena
for C2,∞.

In conclusion, we would highlight that our approach is flexible enough in order
to be applied for other classes of degenerate operators with p-Laplacian structure.
Some enlightening examples are:
X Anisotropic operators like the pseudo p-Laplacian

∆̃pu :=
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
.

The eigenvalue problem and its corresponding limit as p→∞ for such a class
of operators were studied in [2].

X Nonlocal operators like the fractional p-Laplacian

(−∆)sp u(x) := CN,s,p.P.V.
ˆ
RN

|u(y)− u(x)|p−2(u(y)− u(x))

|x− y|n+sp
dy.

where p > 1, s ∈ (0, 1), P.V. stands for the Cauchy principal value and CN,s,p
is a normalizing constant. The mathematical tools in order to study the
∞-Fučík spectrum for this class of operators can be found in the following
articles [15, 19, 25, 31].

The manuscript is organized as follows: In Section 2 we introduce the mathemat-
ical machinery (notation and definitions) and several auxiliary results which play an
important role in order to prove Theorem 1.1. In Section 3 we prove Theorem 1.1.
In Subsection 4.1 we study in detail the one-dimensional case. The general case is
analyzed in Subsection 4.2. Finally, Section 5 is devoted to present several examples
where explicit computation of the spectrum are made, as well as the profile of such
solutions.

2. Preliminary results

In this section we introduce some definitions and auxiliary lemmas we will use
throughout this article.

Let us start by defining the notion of weak solution to

(2.1) −∆pu = g(u) in Ω,

where g : R → R is a continuous function. Since we will study the asymptotic
behavior as p→∞, without loss of generality we can assume that p > max{2, n}.

Definition 2.1. A function u ∈ W 1,p(Ω) is said to be a weak solution to (2.1) if
it fulfills ˆ

Ω

|∇u|p−2∇u · ∇φ dx =

ˆ
Ω

g(u)φ dx, ∀φ ∈ W 1,p
0 (Ω).
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Since p > 2, (2.1) is not singular at points where the gradient vanishes, and
consequently, the mapping

x 7→ ∆pφ(x) = |∇φ(x)|p−2∆φ(x) + (p− 2)|∇φ(x)|p−4∆∞φ(x)

is well-defined and continuous for all φ ∈ C2(Ω).
Next, we give the definition of viscosity solutions to (2.1). For the reader’s

convenience we recommend the survey [6] on theory of viscosity solutions.

Definition 2.2. An upper (resp. lower) semi-continuous function u : Ω → R is
said to be a viscosity sub-solution (resp. super-solution) to (2.1) if, whenever x0 ∈ Ω
and φ ∈ C2(Ω) are such that u− φ has a strict local maximum (resp. minimum) at
x0, then

−∆pφ(x0) ≤ g(φ(x0)) (resp. ≥ g(φ(x0))).

Finally, a function u ∈ C(Ω) is said to be a viscosity solution to (2.1) if it is simul-
taneously a viscosity sub-solution and a viscosity super-solution.

Throughout this article, we will consider g defined as

g(u(x)) = αp(u
+)p−1(x)− βp(u−)p−1(x).

The following lemmas will be useful for our arguments.

Lemma 2.3. Assume n < p < ∞ and let u ∈ W 1,p
0 (Ω) be a weak solution to

(1.1) normalized by ‖u‖Lp(Ω) = 1. Then, u ∈ C0,γ(Ω), where γ = 1 − n
p
. Moreover,

the following holds:
X L∞-bounds

‖u‖L∞(Ω) ≤ C1,

X Hölder estimate
|u(x)− u(y)|
|x− y|γ

≤ C2,

where C1 and C2 are constants depending on n and bounds for αp and βp.

Proof. Multiplying (1.1) by u and integrating by parts we obtainˆ
Ω

|∇u|p dx = αp

ˆ
Ω

up+ dx+ βp

ˆ
Ω

up− dx ≤ max{αp, βp}.

Now, by Morrey’s estimates and the previous inequality, there is a positive constant
C = C(n,Ω) independent on p such that

‖u‖L∞(Ω) ≤ C‖∇u‖Lp(Ω) ≤ Cmax
{
α1/p
p , β1/p

p

}
,

which proves the first statement.
For the second part, since p > n, combining the Hölder’s inequality and Morrey’s

estimates we have
|u(x)− u(y)|
|x− y|γ

≤ C‖∇u‖Ln(Ω) ≤ C|Ω|
p−n
pn ‖∇u‖Lp(Ω) ≤ Ĉ|Ω|

p−n
pn ,

where Ĉ depends only on n and Ω. �

The last result implies that any family of weak solutions to (1.1) with α
1/p
p ,

β
1/p
p bounded is pre-compact in the uniform topology. Therefore, the existence of a

uniform limit is established in Theorem 1.1.
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Lemma 2.4. Let {up}p>1 be a sequence of weak solutions to (1.1). Suppose that
(α

1/p
p , β

1/p
p )→ (α∞, β∞) as p→∞. Then, there exists a subsequence pi →∞ and a

limit function u∞ such that

lim
pi→∞

upi(x) = u∞(x)

uniformly in Ω. Moreover, u∞ is Lipschitz continuous with

|u∞(x)− u∞(y)|
|x− y|

≤ Cmax {α∞, β∞} .

Proof. Existence of u∞ as a uniform limit is a direct consequence of the Lemma 2.3
combined with an Arzelà–Ascoli compactness criteria. Finally, the last statement
holds by passing to the limit in the Hölder estimates from Lemma 2.3. �

The following lemma gives a relation between weak and viscosity sub and super-
solution to (2.1).

Lemma 2.5. A continuous weak sub-solution (resp. super-solution) u ∈ W 1,p
loc (Ω)

to (2.1) is a viscosity sub-solution (resp. super-solution) to

−
[
|∇u|p−2∆u+ (p− 2)|∇u(x)|p−4∆∞u

]
= g(u(x)) in Ω.

Proof. Let us proceed for the case of super-solutions. Fix x0 ∈ Ω and φ ∈ C2(Ω)
such that φ touches u by bellow at x = x0, i.e., u(x0) = φ(x0) and u(x) > φ(x) for
x 6= x0. Our goal is to establish that

−
[
|∇φ(x0)|p−2∆φ(x0) + (p− 2)|∇φ(x0)|p−4∆∞φ(x0)

]
− g(φ(x0)) ≥ 0.

Let us suppose, for sake of contradiction, that the inequality does not hold. Then,
by continuity there exists r > 0 small enough such that

−
[
|∇φ(x)|p−2∆φ(x) + (p− 2)|∇φ(x)|p−4∆∞φ(x)

]
− g(φ(x)) < 0,

provided that x ∈ Br(x0). Now, we define the function

Ψ := φ+
1

10
m, where m := inf

∂Br(x0)
(u(x)− φ(x)).

Notice that Ψ verifies Ψ < u on ∂Br(x0), Ψ(x0) > u(x0) and

(2.2) −∆pΨ(x) < g(φ(x)).

By extending by zero outside Br(x0), we may use (Ψ−u)+ as a test function in (2.1).
Moreover, since u is a weak super-solution, we obtain

(2.3)
ˆ
{Ψ>u}

|∇u|p−2∇u · ∇(Ψ− u) dx ≥
ˆ
{Ψ>u}

g(u)(Ψ− u) dx.

On the other hand, multiplying (2.2) by Ψ− u and integrating by parts we get

(2.4)
ˆ
{Ψ>u}

|∇Ψ|p−2∇Ψ · ∇(Ψ− u) dx <

ˆ
{ψ>u}

g(φ)(Ψ− u) dx.

Next, subtracting (2.4) from (2.3) we obtainˆ
{Ψ>u}

(|∇Ψ|p−2∇Ψ− |∇u|p−2∇u) · ∇(Ψ− u) dx <

ˆ
{ψ>u}

Gφ(u)(Ψ− u) dx,(2.5)
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where we have denoted Gφ(u) = g(φ)− g(u). Finally, since the left hand side in (2.5)
is bounded by below by

C(p)

ˆ
{Ψ>u}

|∇Ψ−∇u|p dx,

and the right hand side in (2.5) is negative, we can conclude that Ψ ≤ u in Br(x0).
However, this contradicts the fact that Ψ(x0) > u(x0). Such a contradiction proves
that u is a viscosity super-solution.

An analogous argument can be applied to treat the sub-solution case. �

3. The limiting problem: Proof of Theorem 1.1

In this section we deal with the limit equation obtained as p → ∞ in (1.1). We
prove that, as p→∞, weak solutions of (1.1) converge uniformly to a limit function
which, in fact, is characterized to satisfy (1.8) in the viscosity sense.

Proof of Theorem 1.1. First of all, we prove that the limiting function u∞ is
∞-harmonic in its null set, i.e.,

−∆∞u∞(x) = 0 in {u∞ = 0} ∩ Ω.

To this end, let x0 ∈ {u∞ = 0} ∩ Ω and φ ∈ C2(Ω) such that u∞ − φ has a
strict local maximum (resp. strict local minimum) at x0. Since, up to subsequence,
up → u∞ local uniformly, there exists a sequence xp → x0 such that up − φ has
a local maximum (resp. local minimum) at xp. Moreover, if up is a weak solution
(consequently a viscosity solution according to Lemma 2.5) to (1.1) we obtain

−
[
|∇φ(xp)|p−2∆φ(xp) + (p− 2)|∇φ(xp)|p−4∆∞φ(xp)

]
≤ g(u(xp)) (resp. ≥).

Now, if |∇φ(x0)| 6= 0 we may divide both sides of the above inequality by (p −
2)|∇φ(xp)|p−4 (which is different from zero for p large enough). Thus, we obtain that

−∆∞φ(xp) ≤
|∇φ(xp)|2∆φ(xp)

p− 2
+

g(u(xp))

(p− 2)|∇φ(xp)|p−4
(resp. ≥),

where the RHS tends to zero as p→∞, because g(u(xp))→ g(u(x0)) = 0. Therefore,

−∆∞φ(x0) ≤ 0 (resp. ≥ 0),

and since such an inequality is immediately satisfied if |∇φ(x0)| = 0 we conclude
that u∞ is a viscosity sub-solution (resp. super-solution) to the desired equation.

Next, we will prove that u∞ is a viscosity solution to

max{−∆∞u∞(x),−|∇u∞(x)|+ β∞u
−
∞(x)} = 0 in {u∞ < 0} ∩ Ω.

First let us prove that u∞ is a viscosity super-solution. Fix x0 ∈ {u∞ < 0} ∩ Ω
and let φ ∈ C2(Ω) be a test function such that u∞(x0) = φ(x0) and the inequality
u∞(x) > φ(x) holds for all x 6= x0. We want to show that

−∆∞φ(x0) ≥ 0 or − |∇φ(x0)|+ β∞φ
−(x0) ≥ 0.

Notice that if |∇φ(x0)| = 0 there is nothing to prove. Hence, as a matter of fact, we
may assume that

(3.1) −|∇φ(x0)|+ β∞φ
−(x0) < 0.
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As in the previous case, there exists a sequence xp → x0 such that up − φ has a
local minimum at xp. Since up is a weak super-solution (consequently a viscosity
super-solution according to Lemma 2.5) to (1.1) we get

−
[
|∇φ(xp)|p−2∆φ(xp) + (p− 2)|∇φ(xp)|p−4∆∞φ(xp)

]
≥ −βp(u−p (xp))

p−1.

Now, dividing both sides by (p − 2)|∇φ(xp)|p−4 (which is different from zero for p
large enough due to (3.1)) we get

−∆∞φ(xp) ≥ −
|∇φ(xp)|2∆φ(xp)

p− 2
−

β 1
p−4
p u−p (xp)

|∇φ(xp)|

p−4

(u−p )3(xp)

p− 2
.

Passing the limit as p→∞ in the above inequality we conclude that

−∆∞φ(x0) ≥ 0.

That proves that u∞ is a viscosity super-solution.
Now, we will analyze the another case. To this end, fix x0 ∈ {u∞ < 0}∩Ω and a

test function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and the inequality u∞(x) < φ(x)
holds for x 6= x0. We want to prove that

(3.2) −∆∞φ(x0) ≤ 0 and − |∇φ(x0)|+ βφ−(x0) ≤ 0.

Again, as before, there exists a sequence xp → x0 such that up − φ has a local
maximum at xp and since up is a weak sub-solution (resp. viscosity sub-solution) to
(1.1), we have that

−|∇φ(xp)|2∆φ(xp)

p− 2
−∆∞φ(xp) ≤ −

β 1
p−4
p u−p (xp)

|∇φ(xp)|

p−4

(u−p )3(xp)

p− 2
≤ 0.

Thus, we obtain −∆∞φ(x0) ≤ 0 letting p → ∞. If −|∇φ(x0)| + β∞φ
−(x0) > 0, as

p → ∞, then the right hand side goes to −∞, which clearly yields a contradiction
because φ ∈ C2(Ω). Therefore (3.2) holds.

The last part of the proof consists in proving that u∞ is a viscosity solution to

min{−∆∞u∞(x), |∇u∞(x)| − α∞u+
∞(x)} = 0 in {u∞ > 0} ∩ Ω.

The argument is similar to the previous case and for this reason we will omit it. �

4. Characterization of Σ∞: Proof of Theorems 1.2 and 1.3

4.1. The one-dimensional case. As we pointed out in the introduction, the
spectrum of (1.1) as p→∞ is completely understood when n = 1 since, in this case,
the structure of Σp is explicitly determined. When Ω = (0, 1), Σp it is composed by
the two trivial lines

C+
1,p = R× {λ1,p}, C−1,p = {λ1,p} ×R,

and the family of hyperbolic-like curves

Ck,p : α−1/p
p + β−1/p

p =
2

kπp
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when k is even, and

C+
k,p :

k − 1

2
α−1/p
p +

k + 1

2
β−1/p
p =

1

πp
,

C−k,p :
k + 1

2
α−1/p
p +

k − 1

2
β−1/p
p =

1

πp
,

when k is odd. Here πp is given by

πp = 2(p− 1)1/p

ˆ 1

0

ds

(1− sp)1/p
.

Observe that, since the eigenvalues of (1.2) are explicitly given by λk,p = (kπp)
p,

k ∈ N, the curves C±k can be rewritten in terms of them as

Ck,p :

(
λk,p
αp

) 1
p

+

(
λk,p
βp

) 1
p

= 2 if k is even,

C+
k,p :

(
λ(k−1)/2,p

αp

) 1
p

+

(
λ(k+1)/2,p

βp

) 1
p

= 1 if k is odd,

C−k,p :

(
λ(k+1)/2,p

αp

) 1
p

+

(
λ(k−1)/2,p

βp

) 1
p

= 1.

Proof of Theorem 1.2. In view of (1.6), the trivial lines C±1,p converge to

C+
1,∞ = R× {2}, C−1,∞ = {2} ×R.

as p→∞, since πp → 2 as p→∞.
Let us analyze the nontrivial curves C+

k,p as p → ∞ for k odd. According to the
previous expressions, this hyperbolic curve can be parametrized as

C+
k,p = {(αp(s), βp(s)), s ∈ R+}

where
α(s) =

(
λ

1
p
k−1
2
,p

+ s−1λ
1
p
k+1
2
,p

)p
, β(s) = spα(s).

Here (αp(s), βp(s)) denotes the intersection between Ck,p and the line of slope sp
passing through the origin in R2. Observe that when s = 1, it follows that αp =
βp = (kπp)

p = λk,p.
If we define the curve

C+
k,∞ := {(α∞(s), β∞(s)), s ∈ R+}

where
α∞(s) := lim

p→∞
αp(s)

1/p, β∞(s) := lim
p→∞

βp(s)
1/p,

from (1.3), we get

α∞(s) = k − 1 + s−1(k + 1), β∞(s) = k + 1 + s(k − 1).

Observe that, from (1.7), we have that λk,∞ = 2k. In particular, when s = 1, the
curve C+

k,∞ passes through the point (2k, 2k), as expected.
The previous expressions lead to the formula for C+

k,∞ in the case in which k is
odd. In a similar way can be obtain the formulas for the remaining curves, and the
proof is complete. �

4.2. The general case. As it was described in the introduction, one immedi-
ately observe that Σp contains the trivial lines {λ1,p}×R and R×{λ1,p}, being λ1,p the
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first eigenvalue given by (Eigenv.). However, in contrast with the one-dimensional
case, where a full description of the spectrum is available, when n > 1 it is only
known the existence of a curve C2,p beyond the trivial lines. Such a curve has an
hyperbolic shape and it is proved to be variational (see for instance [14]). As far
as we are concerned, we will consider the characterization given in [5], in which the
intersection of C2,p with the line of slope t ∈ R+ passing through the origin in R2

can be written as

(4.1) (αp(t), βp(t)) = (t−1cp(t), cp(t)), t ∈ R+

where
cp(t) = inf

P2

max{tλ1,p(ω1), λ1,p(ω2)}, t ∈ R+

being P2 = (ω1, ω2) the class of partitions in two disjoint, connected, open subsets of
Ω, and λ1,p(ω) the first eigenvalue of (1.2) in Ω = ω.

Proof of Theorem 1.3. The proof follows taking limit as p → ∞ in the charac-
terization of the curves C±1,p and C2,p.

The expression for C±1,∞ follows from (1.3). Now, if we define the function

c∞(t) := lim
p→∞

inf
P2

max
{
tλ1,p(ω1)

1
p , λ1,p(ω2)

1
p

}
, t ∈ R+

again, from (1.3), the following characterization holds

(4.2) c∞(t) = inf
P2

max

{
t

r1

,
1

r2

}
, t ∈ R+

where, given (ω1, ω2) ∈ P2(Ω), ri is the radius of the biggest ball contained in ωi, for
i = 1, 2.

For t ∈ R+, defining the functions

(4.3) α∞(t) = t−1c∞(t), β∞(t) = c∞(t),

from (4.1) it follows the desired parametrization of C2,∞.
Now, let us see that, in fact, there is no point in Σ∞ between the trivial lines and

C2,∞, i.e., the first nontrivial curve is lower isolated when it detaches from the trivial
lines. Suppose otherwise, that there is some (α0, β0) strictly between these curves,
and denote u the corresponding eigenfunction. Observe that u cannot have constant
sign in Ω, since this would imply that (α0, β0) ∈ C±1,∞. Then, there exists a nontrivial
partition (p1, p2) ∈ P2(Ω) such that u > 0 in p1 and u < 0 in p2. Now, if we consider
t0 = ρ1

ρ2
, it is clear that the inequalities

β(t0) > β0(t0), α(t0) > α0(t0)

are strict, being (α(t0), β(t0)) ∈ C2,∞ and ρi the radius of the biggest ball inside pi,
i = 1, 2. However, by the definition of the first nontrivial curve (4.3), it must hold
that

β(t0) = c∞(t0) = inf
P2

max

{
t0
r1

,
1

r2

}
= max

{
t0
ρ1

,
1

ρ2

}
= β0(t0),

a contradiction. Consequently, C2,∞ is lower isolated when it is different from the
trivial lines.

Finally, we observe the following: if we take a ball of radius

r(Ω) = max
x∈Ω

dist(x, ∂Ω)



304 Julio D. Rossi, Ariel M. Salort and João V. da Silva

inside Ω and there is some room left, that is, Ω \ Br 6= ∅, then we can consider as a
partition of Ω the sets ω1 = Br and ω2 = Ω \Br. Now, we choose

t∗ =
r(Ω)

r(Ω \Br)

and we get

c∞(t∗) = inf
P2

max

{
t∗

r(Ω)
,

1

r(Ω \Br)

}
=

1

r(Ω \Br)
.

Hence from (4.3),

α∞(t) = (t∗)−1c∞(t∗) =
1

r(Ω)
, β∞(t) = c∞(t) =

1

r(Ω \Br)
,

and we conclude that the points (1/r(Ω), 1/r(Ω\Br)) and (1/r(Ω\Br), 1/r(Ω)) belong
to C2,∞ ∩ C±1,p. Therefore, the curve C2,∞ intersects the trivial lines when Ω \ Br 6= ∅
and we just observe that this holds for every domain that is different from a ball. �

As a corollary, the following properties are fulfilled by C2,∞.

Corollary 4.1. The following statements hold true:
(a) C2,∞ is a continuous and non-increasing curve, symmetric with respect to the

diagonal.
(b) C2,∞ ⊂ {(x, y) ∈ R2 | x, y ≥ λ1,∞(Ω)} \ {(x, y) ∈ R2 | x, y > λ2,∞(Ω)}.
(c) (Courant nodal domain theorem) Any eigenfunction associated to (x, y) ∈
C2,∞ \ C±1,p admits exactly two nodal domains.

Proof. Symmetry of C2,∞ arises from interchanging the roles of ω1 and ω2 in
the the expression of c∞(t). Continuity and monotonicity of C2,∞ follow from the
definition of c∞(t).

The curve C2,∞ always is above or coincides with the trivial lines since λ1,∞(Ω) ≤
c∞(Ω). Furthermore, any point belonging to C2,∞ does not belong to {x, y > λ2,∞}.
In fact, since C2,∞ is continuous, all path linking (λ2,∞, λ2,∞) to any point in {x, y >
λ2,∞} should increase at some moment, which would contradict the non-increasing
nature of the curve.

Finally, by construction, any eigenfunction corresponding to a point of the curve
admits exactly two nodal domains. �

Remark 4.2. Let (α, β) a point in C2,∞ ∩ C±1,p, that is, for example a point of
the form (1/r(Ω), β) with β large. For those points there are at least two different
eigenfunctions (this point of the spectrum is not simple). In fact, there is a positive
eigenfunction (that comes from the limit as p → ∞ in the first eigenvalue for the
p−Laplacian) and another one that changes sign (that can be obtained from our
construction since we assumed that (α, β) ∈ C2,∞). Therefore, Σ∞ has eigenvalues
with multiplicity on the trivial lines (this fact does not happen for Σp since the first
eigenvalue of the p-Laplacian is simple, see [1]).

5. Classifying the ∞-Fučik spectrum

In this section we will study different families of domains based on the shape of
the curve C2,∞. As we will see, given a domain Ω ⊂ Rn, this classification will depend
only on r(Ω), the radius of the biggest ball contained in Ω, and R(Ω), the maximum
radius of a couple of balls of the same size fitted inside Ω.
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Regardless the configuration of Ω, it always holds that the lines y = 1
r(Ω)

and
x = 1

r(Ω)
define the trivial lines in the spectrum, and that the point

(
1

R(Ω)
, 1
R(Ω)

)
belongs to Σ∞. As we will see, the shape of C2,∞ depends on the relation between
r(Ω) and R(Ω).

Hereafter, given a partition (ω1, ω2) ∈ P2(Ω) we will denote r1 and r2 the radii
of the biggest balls contained in each component.

We will distinguish two classes of domain depending on whether the correspond-
ing curve C2,∞ intersects or not the trivial lines.

Figure 1. The first three curves in Σ∞ for a domain type I (left) and type II.A (middle and
right).

5.1. Type I. Here lies the domain Ω whose curve C2,∞ is hyperbolic and asymp-
totic to the trivial lines. As we have seen the only possibility is a ball.

Example 5.1. (A ball) Let us consider the domain Ω given by a open ball of
radius R in Rn. It is immediate that λ1,∞(Ω) = 1

R
.

Since the radii of two tangential balls fitted in Ω must satisfy r1 + r2 = R, the
expression of (4.2) will be minimized will be minimized when t

r1
= 1

r2
, i.e.,

t =
r1

R− r1

, which implies r1 =
Rt

1 + t
.

In such case it follows that
c∞(t) =

1 + t

R
.

Finally, observe that values of t approaching zero correspond to a partition
(ω1, ω2) ∈ P(Ω) in which the biggest ball in ω2 is almost the whole Ω and the
biggest one in ω1 is very small; values of t approaching +∞ correspond to a partition
in which the balls interchange their roles: the biggest ball in ω1 is almost the whole
Ω. See Figure 2.

Consequently, according equation (1.9), the curve C2,∞ is given by

C2,∞ =

{(
1 + t

Rt
,
1 + t

R

)
, t ∈ R+

}
.

Observe that when t = 1 the curve contains the point
(

2
R
, 2
R

)
, which is precisely

corresponds to (λ2,∞(Ω), λ2,∞(Ω)).

Example 5.2. (The unit interval) When Ω is considered to be an open interval
in the real line, the picture of Σ∞ is analogous to Σp for a fixed value of p, i.e., it
consists in a sequence of hyperbolic-like curves, as it is showed in Figure 3.



306 Julio D. Rossi, Ariel M. Salort and João V. da Silva

Figure 2. Partitions corresponding to t = 1 (r1 ∼ 0.16 and r2 ∼ 0.83), t = 1 (r1 = r2 = 0.5)

and t = 0.1 (r1 ∼ 0.909 and r2 ∼ 0.09) for Ω the unit ball.

Moreover, since explicit formulas for the eigenfunctions are known for a fixed
value of p, it is possible to describe the profile of the limit problem. For instance, if
(α, β) ∈ C2,∞, the corresponding eigenfunction u∞ will be given by

lim
p→∞

up(x) = u∞(x) =


x in

(
0, `

2

]
,

−x+ ` in
[
`
2
, `+1

2

]
,

x− 1 in
[
`+1

2
, 1
)
,

where ` ∈ (0, 1) and

up(x) =


sinp

(πpx
`

)
in (0, `],

− sinp

(
πpx

1− `

)
in [`, 1).

Finally, notice that u∞ is a viscosity solution to (1.8) with (α(l), β(l)) =
(

2
l
, 2

1−l

)
.

Figure 3. Σ∞ for the unit interval in R.

5.2. Type II. All domains Ω whose curve C2,∞ intersects the trivial lines. We
can also subdivide this category in domains such that C2,∞ is not contained in the
trivial lines (type II.A) and those for which C2,∞ is totally contained in the trivial
lines (type II.B).
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Example 5.3. (“Linked” balls) Given R1 ≤ R2, let us consider a domain Ω made
as the union of the balls of radii R1 and R2 by means of a tube of length ε < R1.

Since the radius of the biggest ball contained in Ω is R2, we get λ1,∞ = 1
R2

. Now,
the couple of biggest balls contained in Ω have radius R1. If we fix r such that r = R1,
the expression of c∞ will be minimized when t

r
= 1

R1
, that is, when both coefficients

inside the maximum in the expression of c∞ are the same. In this case, c∞ = 1
R1

.
Observe that the case r = R1, corresponds to t = 1. As r increases, the value of

t decreases. This process finishes when r = R2, which corresponds to t = R2

R1
.

Analogously, this process can be made interchanging the roles of R1 and R2,
leading to the following expression for the second non-trivial curve

C2,∞ =

{(
1

tR1

,
1

R1

)
, 1 ≤ t ≤ R2

R1

}
∪
{(

1

R1

,
1

tR1

)
, 1 ≤ t ≤ R2

R1

}
.

It is remarkable to see that in the extremal case R1 = R2 the curve C2,∞ is
contained in the trivial curves. This situation occurs when the radius of the biggest
ball contained in Ω coincides with the radius of biggest couple of balls of the same
size fitted in Ω (for example in an annular domain or more generally in a stadium
domain).

It is also straightforward to see that the analysis made above only depends of
radius of the biggest ball contained in Ω and the radius of biggest couple of identical
balls contained in Ω. Consequently, the three domains exhibited in Figure 4 have the
same first curves C±1,∞ and C2,∞.

Figure 4. Three domains for which the first three curves in Σ∞ coincide.

Example 5.4. (The unit cube) Let us consider Ω be the unit square in R2,
Ω = (0, 1) × (0, 1). In this case, since the biggest ball fitted in Ω has radius R = 1

2

we have that λ1,∞(Ω) = 2.
Let us analyze the second nontrivial curve. When we compute c∞(t) we must

consider two balls of radii r1 and r2 contained in Ω such that t
r1

and 1
r2

coincide.
Notice that for t = 1 we obtain

r1 = r2 =

√
2

2(1 +
√

2)
.

But we can also consider a partition such that r2 increases and r1 decreases; since
both balls are fitted in Ω, they must verify

r1 + r2 =

√
2

1 +
√

2
.

In this case, if

t =
1

r1

√
2

1 +
√

2
− 1

we can guarantee that t
r1

and 1
r2

coincide. Observe that the computations made to
enlarge r1 (and then to obtain a smaller r2) with the previous expression of t can be
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performed provided that r1 ≤ 1
2
. This procedure gives that

(5.1) c∞(t) =
t

r1

=
1

r2

= (t+ 1)
(

1 +

√
2

2

)
,

2
√

2

1 +
√

2
− 1 ≤ t ≤ 1.

Now we can fix the value r2 = 1
2
to be the maximum radius of a ball fitted in Ω

and to continue decreasing the value of r1. In this case, when considering

t = 2r1

we can assure that t
r1

and 1
r2

coincides to be equal to 2. This process can be continued
as r2 → 0 obtaining

(5.2) c∞(t) = 2, 0 ≤ t ≤ 2
√

2

1 +
√

2
− 1.

From (5.1) and (5.2) we get that

C1
2,∞ =


(

2

t
, 2

)
, 0 ≤ t ≤ 2

√
2

1 +
√

2
− 1,(

τ(t+ 1)

t
, τ(t+ 1)

)
,

2
√

2

1 +
√

2
− 1 ≤ t ≤ 1,

where τ = 1 +
√

2
2
.

Observe that this construction can be made, analogously, interchanging the roles
of r1 and r2, leading to

C2
2,∞ =


(

2,
2

t

)
, 0 ≤ t ≤ 2

√
2

1 +
√

2
− 1,(

τ(t+ 1),
τ(t+ 1)

t

)
,

2
√

2

1 +
√

2
− 1 ≤ t ≤ 1,

and consequently, C2,∞ = C1
2,∞ ∪ C2

2,∞. See Figure 5.

Figure 5. Partitions corresponding to Ω the unit cube in R2 for t = 1, i.e., r1 = r2 =
√
2

2(1+
√
2)

(left); t = 2
√
2

1+
√
2
, i.e., r2 = 1

2 , r1 =
√
2

1+
√
2
− 1

2 (middle) and t = 0.16 with r2 = 2
√
2

1+
√
2
and r1 = 0.08

(right).

It is remarkable to see that for values of t in the range [0, 2
√

2
1+
√

2
− 1], the curve

C2,∞ is contained in the trivial lines, i.e., the first intersection among the second
nontrivial curve and the trivial lines occurs at (τ0, 2) and (2, τ0), where τ0 = 2(

√
2+1)√
2−1

.
See Figure 6.
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Figure 6. The curve C2,∞ for the unit cube in R2.
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