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We provide a framework connecting several well-known theories related to the linearity
of graded modules over graded algebras. In the first part, we pay a particular attention
to the tensor products of graded bimodules over graded algebras. Finally, we provide
a tool to evaluate the possible degrees of a module appearing in a graded projective
resolution once the generating degrees for the first term of some particular projective
resolution are known.
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1. Introduction

Koszul algebras were introduced by Priddy in [13]. We will apply the notion of a
Koszul algebra for algebras presented by quivers with relations. It can be stated as

∗Corresponding author.
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follows. Suppose that k is a field, Q is a finite quiver, I is a homogeneous ideal of
the path algebra kQ and A = kQ/I. The algebra A is called Koszul if the maximal
semisimple graded quotient A0 of A has a graded A-projective resolution (P•, d•)
such that for all i ≥ 0, the A-module Pi is generated in degree i. Such a resolution
is called a linear resolution and it is minimal whenever it exists, in the sense that
di(Pi+1) ⊂ PiA>0 for all i ≥ 0.

Green and Mart́ınez-Villa proved in [10] that the quadratic algebra A is Koszul if
and only if its Yoneda algebra, E(A) =

⊕
i≥0 Exti

A(A0, A0) is generated in degrees
0 and 1, which in turn is equivalent to the Yoneda algebra being isomorphic to the
quadratic dual A! of A.

Koszulness has been generalized to various settings. Next, we describe some of
these generalizations.

Berger introduced in [3] the notion of “nonquadratic Koszul algebra” for algebras
of the form A = TkV/I, where V is a finite-dimensional k-vector space and I is
a two-sided ideal generated in degree s, for some s ≥ 2. He required the trivial
A-module k to have a minimal graded projective resolution (P•, d•) such that each
Pi is generated in degree is

2 for i even and (i−1)s
2 + 1 for i odd.

The authors of [9] considered, under the name of s-Koszul algebras, non-
necessarily quadratic Koszul algebras of the form A = kQ/I, with Q a finite quiver
and I an ideal generated by homogeneous elements of degree s, connecting this
notion with the Yoneda algebra: the algebra A is s-Koszul if and only if E(A) is
generated in degrees 0, 1 and 2. Observe that 2-Koszul algebras are just Koszul
algebras.

Later on, Green and Marcos generalized this notion defining δ-Koszul and δ-
determined algebras. See [7] for details.

Moreover, Green and Marcos also introduced in [8] a family of algebras that they
called 2-s-Koszul. They proved that these algebras also have the property that their
Yoneda algebras are generated in degrees 0, 1, and 2.

The main objective of the current work is to place all these definitions in a
unique framework. We next sketch how we will do this.

Let A =
⊕

i≥0 Ai be a graded k-algebra generated in degrees 0 and 1, such that
A0 is a finite direct product of fields and A1 is finite-dimensional. Given a graded
A-module X , we consider a minimal graded projective resolution (P•(X), d•(X))
and we take into account in which degrees Pi(X) is generated for each i ≥ 0. We
are specially interested in what we call S-determined case.

In Sec. 2, we prove that, given graded k-algebras A, B and C, a graded A − B

bimodule X and a graded B − C bimodule Y , if X has a linear minimal A −
B-projective graded resolution, Y has a linear minimal B − C-projective graded
resolution, and TorB

i (X, Y ) vanishes for i ≥ 1, then X ⊗B Y has a linear minimal
A − C-projective graded resolution. This is a particular case of Theorem 2 below.
Note that this theorem shows that any graded bimodule over a Koszul algebra which
is linear as a right module and flat as a left module is also linear as a bimodule and
the tensor product with such a module gives a functor from the category of linear
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graded modules to the category of linear graded modules. Moreover, it recovers and
generalizes the fact that the tensor product of two Koszul algebras is Koszul. The
same holds for the S-determined (see Definition 1).

Section 3 is devoted to Gröbner bases. Loosely speaking, we show how one can
use them to obtain generating degrees for the nth term of the minimal graded
projective resolution of a module if one knows the generating degrees for terms of
its projective presentation of a special form.

We fix a field k. All algebras will be k-algebras and all modules will be right
A-modules unless otherwise stated. We will simply write ⊗ for ⊗k and N0 for the
set of non-negative integer numbers.

We thank the referee for the suggestions and for a careful reading of a previous
version of this paper.

2. Tensor Products of S-Determined Modules

In this section, we will prove Lemma 1, which is a graded version of the spectral
sequences (2) and (3) from [4, p. 345].

Let A, B and C be k-algebras. Let X be an A−B-bimodule, Y a B−C-bimodule
and Z an A − C-bimodule. Given a ∈ A, we will denote left multiplication by a

on X by La ∈ EndB(X). We recall that for each n ∈ N, Extn
C(Y, Z) is an A − B

bimodule with the structure given by

aT b := (Extn
C(Lb, Z) ◦ ExtnC(Y, La))(T ), for T ∈ Extn

C(Y, Z), a ∈ A, b ∈ B.

Suppose now that A is a Z-graded algebra and M is a graded A-module. Given
i ∈ Z, M [i] will denote the i-shifted graded A-module with underlying A-module
structure as before, whose grading is such that M [i]r = Mi+r. For any graded
A-module N and any n ∈ N, we will denote by HomGrA(M, N) the set of degree
preserving A-module maps from M to N and by Extn

GrA(M, N) the set of equiva-
lence classes of exact sequences of graded A-modules with degree zero morphisms

0 → N
fn−1−−−→ Tn−1

fn−2−−−→ · · · f0−→ T0
f−1−−→ M → 0.

Let us consider as usual extn
A(M, N) :=

⊕
i∈Z

ExtnGrA(M, N [i]), which is a subset
of ExtnA(M, N) in a natural way. Moreover, if M has an A-projective resolution
with finitely generated modules, then both sets coincide.

Suppose now that A, B and C are Z-graded algebras, and that the bimodules
X, Y and Z are graded. For each n ≥ 0, the A−B-bimodule structure on Extn

C(Y, Z)
induces a graded A − B-bimodule structure on extn

C(Y, Z) whose ith component
is Extn

GrC(Y, Z[i]). Note also that extn
C(Y, Z[i]) ∼= extn

C(Y, Z)[i] as graded A − B-
bimodule, moreover for any n ≥ 0, TorB

n (X, Y ) is a graded A − C-bimodule in a
natural way.

The main tool of this section is the following lemma.

Lemma 1. Let A, B and C be Z-graded algebras, X a graded A − B-bimodule,
Y a graded B − C-bimodule, and Z a graded A − C-bimodule. There are two first
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quadrant cohomological spectral sequences with second pages

Ei,j
2 = ExtiGr(Aop⊗B)(X, extj

C(Y, Z)) and Ẽi,j
2 = ExtiGr(Aop⊗C)(TorB

j (X, Y ), Z)

that converge to the same graded space.

Proof. Let

· · · dn(X)−−−−→ Pn(X)
dn−1(X)−−−−−→ · · · d0(X)−−−−→ P0(X)(

µX−−→ X)

be a graded A − B-projective resolution of X and

(Z ιZ−→)I0(Z)
d0(Z)−−−→ · · · dn−1(Z)−−−−−→ In(Z)

dn(Z)−−−−→ · · ·
be a graded A−C-injective resolution of Z. Consider two bicomplexes whose (i, j)-
components are respectively

HomGr(Aop⊗B)(Pi(X), homC(Y, Ij(Z)))

and

HomGr(Aop⊗C)(Pj(X) ⊗B Y, Ii(Z)).

Since there is an isomorphism of complexes

F• = HomGr(Aop⊗C)(P•(X) ⊗B Y, I•(Z))

∼= HomGr(Aop⊗B)(P•(X), homC(Y, I•(Z))),

the respective total complexes are isomorphic. Here, as usually, for two complexes
of graded modules (U•, dU,•) and (V •, dV,•) over the algebra D, we denote by
HomGrD(U•, V •) the complex with (HomGrD(U•, V •))n =

⊕
i∈Z

HomGrD(Ui−n,

V −i) and differential d• defined by the equality dn(f) = dV,−if +(−1)nfdU,i−n for
f ∈ HomGrD(Ui−n, V −i).

The first two pages of the spectral sequence E corresponding to the first bicom-
plex are

Ei,j
1 = HomGr(Aop⊗B)(Pi(X), extj

C(Y, Z)) and

Ei,j
2 = ExtiGr(Aop⊗B)(X, extj

C(Y, Z)),

while the first two pages of the spectral sequence Ẽ corresponding to the second
bicomplex are

Ẽi,j
1 = HomGr(Aop⊗C)(TorB

j (X, Y ), Ii(Z)) and

Ẽi,j
2 = Exti

Gr(Aop⊗B)(TorB
j (X, Y ), Z).

Since both spectral sequences converge to the homology of F•, the lemma is
proved.

From now on, any Z-graded algebra A is assumed to be non-negatively graded,
that is A =

⊕
i≥0 Ai, where A0 is isomorphic to a finite product of copies of k as

1850191-4



August 9, 2018 9:49 WSPC/S0219-4988 171-JAA 1850191

Generating degrees for graded projective resolutions

an algebra, dimk A1 < ∞, and A is generated as an algebra by A0 ⊕ A1. This is
equivalent to say that A ∼= (kQ)/I, where Q is a finite quiver and I is an ideal
generated by homogeneous elements of degree greater or equal 2.

Definition 1. Let S = (Si)i≥0 be a collection of subsets Si ⊂ Z. A graded A-
module X is called S-determined if it has a graded projective resolution P•(X)
such that Pi(X) is generated as A-module by elements of degrees belonging to Si,
i.e. Pi(X) = 〈⊕j∈Si

Pi(X)j〉A for all i ≥ 0. We say that X is S-determined up to
degree r if the condition on Pi(X) holds for 0 ≤ i ≤ r.

If the set Si = {i}, i.e. each Pi(X) is generated in degree i, then we say that the
resolution is linear.

Equivalently, a graded A-module X is S-determined if and only if for any i ≥ 0
and any graded A-module Y with support not intersecting Si — that is,

⊕
j∈Si

Yj =
0 — the space ExtiGrA(X, Y ) is zero. Analogously, the graded A-module X is S-
determined up to degree r if and only if the last mentioned condition holds for
0 ≤ i ≤ r.

The notion of an S-determined module provides a general framework for
some well-known situations. We will now exhibit some well-known examples of
S-determined modules.

• Consider a function δ : Z≥0 → Z, and define Si = {δ(i)} for all i ≥ 0, the
S-determined modules are called δ-determined modules. If A0 is a δ-determined
module over A, then the graded algebra A is called δ-determined.

• With the same notations, if moreover the Ext algebra, E(A), of A is finitely
generated, then A is called δ-Koszul, see [7]. In particular, if δ is the identity,
then δ-determined modules are called linear modules and δ-Koszul algebras are
exactly Koszul algebras [13].

• Also, given s ∈ N, let us define χs : N0 → Z by

χs(i) =




is

2
if i is even,

(i − 1)s
2

+ 1 if i is odd.

The χs-linear modules are called χs-determined modules and χs-Koszul algebras
are s-Koszul algebras, see [3]. Denoting by Si the set {j | j ≤ χs(i)}, S-determined
modules correspond to 2-s-linear modules. If moreover A0 is a 2-s-determined
module over A, then the graded algebra A is called 2-s-determined, see [8].

Using minimal graded projective resolutions, it is not difficult to see that the
A-module A0 is S-determined if and only if A is an S-determined module over
Aop ⊗ A. This fact follows, for example, from [14, Theorem 2].
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Given two collections S = (Si)i≥0 and R = (Ri)i≥0 of subsets of Z we define
the collection S ⊗R =

(
(S ⊗R)i

)
i≥0

by

(S ⊗R)i =
⋃

j + k = i
j, k ≥ 0

{n + m |n ∈ Sj , m ∈ Rk}.

Lemma 1 allows us to prove the following theorem, which generalizes some
well known results about Koszul algebras and Koszul modules concerning tensor
products.

Theorem 2. Let S = (Si)i≥0 and R = (Ri)i≥0 be two collections of subsets of Z.
Let A, B and C be Z-graded algebras, and finally let X be a graded A−B-bimodule
which is S-determined as bimodule and Y be a graded B −C-bimodule which is R-
determined as C-module. If TorB

i (X, Y ) = 0 for 1 ≤ i ≤ r − 1, then X ⊗B Y is an
S⊗R-determined until rth degree A−C-bimodule. In particular, if TorB

i (X, Y ) = 0
for all i ≥ 1, then X ⊗B Y is an S ⊗R-determined A − C-bimodule.

Proof. Let us fix n and r such that 0 ≤ n ≤ r. For any graded A−C-bimodule Z

such that
⊕

m∈(S⊗R)n
Zm = 0, we will prove that Extn

Gr(Aop⊗C)(X ⊗B Y, Z) = 0.
By Lemma 1, there are spectral sequences

E2
i,j = Exti

Gr(Aop⊗B)(X, extj
C(Y, Z)) and Ẽ2

i,j = Exti
Gr(Aop⊗C)(TorB

j (X, Y ), Z)

that converge to the same graded space T•. It follows easily from the condi-
tion on TorB

∗ (X, Y ) that Tn = Extn
Gr(Aop⊗C)(X ⊗B Y, Z) if n < r and that

Tr = Extr
Gr(Aop⊗C)(X ⊗B Y, Z) ⊕ V for some V ⊂ HomGr(Aop⊗C)(TorB

r (X, Y ), Z).
Thus, it is enough to prove that E2

i,j = 0 for all integers i, j ≥ 0 such that
i + j = n. Let us fix such i and j. If k ∈ Si, then for any l ∈ Rj it is clear that
k + l ∈ (S ⊗R)n and so Z[k]l = Zk+l = 0. Since Y is an R-determined C-module,
we know that extj

C(Y, Z)k = Extj
GrC(Y, Z[k]) = 0 for any k ∈ Si; from this, since X

is an S-determined Aop ⊗ B-module, E2
i,j = Exti

Gr(Aop⊗B)(X, extj
C(Y, Z)) = 0. We

have proven that for any 0 ≤ n ≤ r and any graded A − C-bimodule Z such that⊕
m∈(S⊗R)n

Zm = 0 one has ExtnGr(Aop⊗C)(X ⊗B Y, Z) = 0. Consequently, X ⊗B Y

is an S ⊗R-determined until rth degree A − C-bimodule.

Example 1. Let A be the k-algebra with generators x and y subject to the relations
xy = yx = 0 and x3 = y3. Let X = A/〈x〉 and Y = A/〈y〉. Note that X is a graded
A-module and Y is a graded A-bimodule in a natural way. We will show that the
conclusion of Theorem 2 about the tensor product X ⊗A Y of k-A-bimodule X

and A-A-bimodule Y does not hold. One can easily see that there are short exact
sequences

Y [1] ↪→ A � X

and

X [1] ↪→ A � Y

1850191-6
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of graded right A-modules. It follows from these two short exact sequences that X

and Y are linear as right A-modules. On the other hand, X ⊗A Y ∼= A/〈x, y〉 is the
unique simple A-module whose minimal projective resolution P• is not linear at P2.
This example shows that Theorem 2 is not valid without the vanishing condition
on TorB

∗ (X, Y ).

Corollary 2. Let X be a graded A − B-bimodule. If A0 is an S-determined right
A-module and X is an R-determined B-module, then X is an S ⊗ R-determined
A − B-bimodule. In particular, if A is 2-s-determined and X is a 2-s-determined
B-module, then X is a 2-s-determined A−B-bimodule. When s = 2 we obtain that
if A is Koszul and X is a linear B-module, then X is a linear A − B-bimodule.

Proof. Since A0 is an S-determined right A-module, A is an S-determined module
over Aop⊗A. Since A is flat as a right A-module, the result follows from Theorem 2,
since A ⊗A X ∼= X .

It was proved in [2, 10] that if A and B are Koszul algebras, then A ⊗ B is a
Koszul algebra too. In the next corollary, we give a very short and easy proof of a
generalization of this fact. Note that this generalization follows from [12, Chap. 3,
Proposition 1.1] for algebras A, B such that A0 = B0 = k.

Corollary 3. If X is an S-determined A-module and Y is an R-determined B-
module, then X ⊗ Y is an S ⊗ R-determined module over A ⊗ B. In particular, if
A and B are 2-s-determined, then A ⊗ B is 2-s-determined. It also follows that if
A and B are Koszul, then A ⊗ B is Koszul.

Proof. It follows from Theorem 2 since any k-module is flat. The second part
follows from the fact that (A ⊗ B)0 = A0 ⊗ B0.

It is interesting to mention also the following special case of Theorem 2.

Corollary 4. Let X be a graded A − B-bimodule that is flat as a left A-module.
If X is 2-s-determined as B-module, then the functor − ⊗A X : ModA → ModB

induces a functor from the category of 2-s-determined A-modules to the category of
2-s-determined B-modules. In particular, if X is a linear B-module, then − ⊗A X

induces a functor from the category of linear A-modules to the category of linear
B-modules.

3. Using Gröbner Bases

In this section, we will use Gröbner bases techniques to study graded projective
resolutions of a graded module X over an algebra A = kQ/I, where Q is a finite
quiver and I is a homogeneous ideal contained in (kQ>0)2. Our aim is to estimate
the degrees of the modules appearing in the minimal projective resolution of X

using Gröbner basis of I and a particular graded projective presentation of X .
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We fix a set of paths S ⊂ Q≥2. Next, we introduce some notation. Given two
paths p and q in Q, we write p | q if there are paths u and v in Q — possibly of
length 0 — such that q = upv. If q = pv (respectively, q = up) we say that p divides
q on the left (respectively, right) and we write p|lq (respectively, p|rq). We say that
S is reduced if for any q ∈ S, there is no p ∈ S, p 
= q such that p | q. Let us write
len(q) = n if q ∈ Qn.

We next define, for n ∈ N, the notion of n-overlap for S. These elements will
provide a minimal set of generators for each projective module of the minimal
projective resolution of A0 as A-module. Note that n-overlaps are called n-chains
by Anick in [1] and n-ambiguities by Chouhy and Solotar in [5].

Given a quiver Q we also denote by Q the set of paths in Q, the context makes
it clear what we mean.

Definition 3. Let Q be a quiver and S ⊂ Q≥2 is a set of paths. We say that p ∈ Q

is an S-path if there exists s ∈ S such that s|rp. We denote by QS the set of S-paths
in Q. Suppose that p = qu for some u, q ∈ Q. We say that q S-vanishes p if there
is no s ∈ S dividing u. We say that q almost S-vanishes p if q does not S-vanish
p and, for any presentation u = u1u2 with u2 ∈ Q>0, q S-vanishes qu1. We write
q|Sp if q S-vanishes p and q|aSp if q almost S-vanishes p (note that the relations |S
and |aS are not transitive). If q|aSp, then we automatically have p ∈ QS .

We next define the set of n-overlaps On(S) ⊂ Q and the set of n-quasioverlaps
QOn(S) ⊂ Q × Q>0 inductively on n.

• For n =0, we define O0(S)=Q1 and QO0(S)= {(w, v) |w∈Q0, v ∈Q>0, vw = v}.
• For n = 1, we define O1(S) = S and QO1(S) = {(w, v) |w, v ∈ Q>0, vw ∈ S}.
• For n > 1, we define

On(S) = {w | ∃w1 ∈ On−1(S), w2 ∈ On−2(S) such that w1|Sw, w2|aSw}
and

QOn(S) = {(w, v) | ∃ (w1, v) ∈ QOn−1(S), (w2, v) ∈ QOn−2(S) such that

w1|Sw, w2|aSw}.
Lemma 5. Suppose that S is reduced and n ≥ 1. If w ∈ On(S), then there is a
unique w′ such that w′|lw and w′ ∈ On−1(S). If (w, v) ∈ QOn(S), then there is a
unique w′ such that w′|lw and (w′, v) ∈ QOn−1(S).

Proof. We will only prove the assertion about n-overlaps since the proof for n-
quasioverlaps is similar. The existence of w′ is a direct consequence of the defini-
tion of an n-overlap. Thus we only need to prove the uniqueness. We proceed by
induction on n. For n = 1, the assertion is obvious. For n = 2, the assertion follows
directly from the fact that S is reduced. Suppose now that n > 2 and we have
already proven the statement for n−1 and n−2. Suppose that there are two differ-
ent paths w′, w′′ ∈ On−1(S) such that w′|lw and w′′|lw. Without loss of generality,
we may assume that w′′ = w′u for some u ∈ Q>0. By the definition of On−1(S),

1850191-8
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there exist w′
1 ∈ On−2(S) and w′

2 ∈ On−3(S) such that w′
1|Sw′ and w′

2|aSw′. The
inductive hypothesis assures that w′

1 and w′
2 are unique elements of On−2(S) and

On−3(S), respectively such that w′
2|lw′

1|lw′′. Then w′
2|aSw′′. Since u ∈ Q>0, we have

w′
2|Sw′. Since this is a contradiction, the proof is complete.

Given w ∈ On(S), and i such that 0 ≤ i ≤ n, ρi(w) will denote the unique
element of Oi(S) that divides w on the left. Analogously, for (w, v) ∈ QOn(S),
0 ≤ i ≤ n, ρv

i (w) will denote the unique element such that (ρv
i (w), v) ∈ QOi(S)

and ρv
i (w)|lw. The next two lemmas give alternative definitions for n-overlaps and

n-quasioverlaps.

Lemma 6. Consider a reduced set of paths S and an integer n such that n ≥ 1.
Given a path w ∈ Q, w ∈ On(S) if and only if it can be represented in the form
w = v0u1v1u2 · · ·un−1vn−1unvn, where u1, . . . , un ∈ Q, v1, . . . , vn−1 ∈ Q>0, and
v0, vn ∈ Q0 are such that

(1) vi−1uivi ∈ S for 1 ≤ i ≤ n,

(2) for all 1 ≤ i ≤ n − 1, there are no u, v ∈ Q>0 such that vviu ∈ S, u|lui+1vi+1

and v|rui,

(3) len(u1) > 0 if n ≤ 2.

Proof. Suppose that w ∈ On(S). Given i, 1 ≤ i ≤ n, there exists a unique wi ∈ S

such that wi|rρi(w). It follows from the definition of Oi(S) that, for 2 ≤ i ≤ n, there
exist vi−1, u

′
i ∈ Q>0 such that ρi(w) = ρi−1(w)u′

i and wi = vi−1u
′
i. We also define

u′
1 = ρ1(w). Using again the definition of i-overlap, we get vi|ru′

i for 1 ≤ i ≤ n− 1.
It remains to define ui from the equality u′

i = uivi for 1 ≤ i ≤ n − 1 and un = u′
n.

It is clear that v0 and vn are simply the ending and the starting vertices of w.
Now, if u1, . . . , un ∈ Q, v1, . . . , vn−1 ∈ Q>0, and v0, vn ∈ Q0 satisfy all the

required conditions, then the induction on 1 ≤ i ≤ n shows that u1v1 · · ·uivi ∈
Oi(S).

Lemma 7. Let S be a reduced set of paths and let n be an integer, n ≥ 1. Given
paths w ∈ Q and v0 ∈ Q>0, the element (w, v0) ∈ QOn(S) if and only if w can
be represented in the form w = u1v1u2 · · ·un−1vn−1unvn, where u1, . . . , un ∈ Q,

v1, . . . , vn−1 ∈ Q>0, and vn ∈ Q0 are such that

(1) vi−1uivi ∈ S for 1 ≤ i ≤ n,

(2) for all 1 ≤ i ≤ n − 1, there are no u, v ∈ Q>0 such that vviu ∈ S, u|lui+1vi+1

and v|rui,

(3) len(u1) > 0 if n = 1.

Proof. The proof is analogous to the proof of Lemma 6 and so it is left to the
reader.

Example 2. Let Q be the quiver with Q0 = {e} and Q1 = {x, y}. Fix S =
{x2y3, x3}. The element (w0, v0) = (xxxyyy, xx) is a 3-quasioverlap with ρv0

2 (w0) =
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xxx and ρv0
1 (w0) = x. The elements u1 = e, v1 = u2 = v2 = x, and u3 = yyy provide

the partition of Lemma 7. At the same time, the element w = v0w0 = xxxxxyyy

is a 3-overlap with ρ2(w) = xxxx and ρ1(w) = xxx ∈ S. In this case, the paths
u1 = x, v1 = xx, u2 = e, v2 = x, and u3 = xyyy provide the partition of Lemma 6.
Note that, though v0w0 is a 3-overlap, we have ρ2(v0w0) 
= v0ρ

v0
2 (w0) and this fact

causes differences in the partitions of v0w0 and (w0, v0).

Example 3. Let us take Q as in the previous example and S = {x3, xy2}. Consider
(w0, v0) = (xxxyy, xx). It is a 3-quasioverlap with ρv0

2 (w0) = xxx and ρv0
1 (w0) = x.

The elements u1 = e, v1 = u2 = v2 = x, and u3 = yy provide the partition of
Lemma 7. At the same time, v0w0 = xxxxxyy 
∈ O3(S) while w = xxxxyy is a
3-overlap with ρ2(w) = xxxx and ρ1(w) = xxx ∈ S. The paths u1 = x, v1 = xx,
u2 = e, v2 = x, and u3 = yy provide the partition of Lemma 6. This example shows
that it is possible that (w0, v0) ∈ QOn(S) while v0w0 
∈ On(S).

Let us introduce the following notation. Given n ∈ N,

maxon(S) = sup{len(w) |w ∈ On(S)},
minon(S) = inf{len(w) |w ∈ On(S)},

maxqon(S) = sup{len(w) | ∃ v such that (w, v) ∈ QOn(S)},
minqon(S) = inf{len(w) | ∃ v such that (w, v) ∈ QOn(S)}.

By definition, we set minon(S) = +∞ and maxon(S) = −∞ if On(S) is empty
and minqon(S) = +∞ and maxqon(S) = −∞ if QOn(S) is empty. Note that under
this convention, we have minon(S) ≥ n+1 and maxon(S) ≤ len(S)n−n+1, where
len(S) denotes the maximal length of the paths in S.

Now, we are going to prove a theorem that allows to estimate the values of
maxon(S) and minon(S) using maxqon(S) and minqon(S).

Theorem 8. Given n ≥ 0, for any reduced set S, we have

• maxqon(S) ≤ maxon(S) − 1,

• minqon(S) ≥ minon(S) − len(S) + 1.

Proof. The result is obvious for n = 0. For n ≥ 1, we are going to prove the
following assertion. If (w, v) is an n-quasioverlap, then there is v′ ∈ Q>0 such that
v′|rv and v′w is an n-overlap. Since it follows easily from the definition of 1-overlap
that len(v) < len(S), we have

len(v′w) − len(S) + 1 ≤ len(w) + len(v) − len(S) + 1 ≤ len(w) ≤ len(v′w) − 1

for such v′. Thus, after proving the existence of v′, we will be done.
More precisely, we will prove the following statement by induction on n. If

(w, v) ∈ QOn(S), then there exists v′ ∈ Q>0 such that v′|rv, v′w ∈ On(S),
v′ρv

i (w)|lρi(v′w) for odd i, and ρi(v′w)|lv′ρv
i (w) for even i.

1850191-10



August 9, 2018 9:49 WSPC/S0219-4988 171-JAA 1850191

Generating degrees for graded projective resolutions

For n = 1, we define v′ = v.
Let us now consider the case n = 2. If vw cannot be presented in the form

vw = u′su with u, u′ ∈ Q>0 and s ∈ S, then we can take v′ = v and obtain the 2-
overlap wv satisfying all the required conditions. Suppose that it is possible to write
vw = u′su with u, u′ ∈ Q>0 and s ∈ S. Choose such a presentation with minimal
len(u). It follows from the definition of 2-quasioverlap that len(u′) < len(v), i.e.
there is v′ ∈ Q>0 such that v = u′v′. It is easy to see that v′w is a 2-overlap with
ρ1(v′w) = s satisfying all the required conditions.

Let us now prove the inductive step. Suppose that the assertion above is true
for all (n − 1)-quasioverlaps. We will prove it for n by induction on len(v). Since
the assertion is obvious for any (w, v) ∈ QOn(S) with len(v) = 1, we may assume
that, when we try to prove the assertion for some n-quasioverlap, we have already
proved it for all n-quasioverlaps with length smaller than len(v).

Let us consider (w, v) ∈ QOn(S) and denote by w′ the path ρv
n−1(w). Since

(w′, v) ∈ QOn−1(S), we can apply the induction hypothesis. Thus, there exists ṽ ∈
Q>0 such that ṽ|rv, ṽw′ ∈ On−1(S), ṽρv

i (w′)|lρi(ṽw′) for odd i, and ρi(ṽw′)|lṽρv
i (w

′)
for even i. Note also that ρv

i (w
′) = ρv

i (w) for 0 ≤ i ≤ n − 1. Let us consider three
cases:

Case 1: ρn−2(ṽw′)|aS ṽw. In this case, we can simply define v′ = ṽ. It is easy to
see that v′w is an n-overlap with ρn−1(v′w) = v′w′ satisfying all the required
conditions.

Case 2: ρn−2(ṽw′)|S ṽw. In this case, ṽρv
n−2(w)|lρn−2(ṽw′), ṽρv

n−2(w) 
= ρn−2(ṽw′),
and, hence, 2 � n.

Suppose that i is odd and ρi(ṽw′)|S ṽρv
i+2(w). Since

ρi(ṽw′)|lρi+1(ṽw′), ρi+1(ṽw′)|lṽρv
i+1(w

′),

ṽρv
i+1(w

′)|lṽρv
i+2(w), and ρi(ṽw′) 
= ρi+1(ṽw′),

we know that ρi(ṽw′) 
= ṽρv
i+2(w).

Also, ṽρv
i (w)|aS ṽρv

i+2(w) implies ṽρv
i (w)|Sρi(ṽw′) and ṽρv

i (w) 
= ρi(ṽw′). Thus,
it follows from ρi−2(ṽw′)|aSρi(ṽw′) that ρi−2(ṽw′)|S ṽρv

i (w).
Now, the descending induction on i gives us ρi(ṽw′)|S ṽρv

i+2(w) and
ṽρv

i (w)|Sρi(ṽw′) for all odd i such that 1 ≤ i ≤ n − 2. As before, we have
ṽρv

1(w) 
= ρ1(ṽw′). Consequently, ṽ 
= v and there is v0 ∈ Q>0 such that v = v0ṽ.
Then (ṽw, v0) ∈ QOn−1(S) and len(v0) < len(v). Thus, we have v′0 such that
v′0ṽw ∈ On(S) satisfies all required conditions. It is easy to check that we can take
v′ = v′0ṽ in this case.

Case 3: There is a presentation ṽw = ρn−2(ṽw′)u′su with u ∈ Q>0, u′ ∈ Q

and s ∈ S. Let us choose such a presentation with minimal len(u′). Since
ρn−2(ṽw′)|lṽρv

n−2(w) and ρn−2(ṽw′) 
= ṽρv
n−2(w), n must be even.
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It follows from the minimality of u′ that ρn−2(ṽw′)|aSρn−2(ṽw′)u′s. Since
ρn−2(ṽw′)|S ṽw′, we know that ṽw′|lρn−2(ṽw′)u′s and, hence, ρn−2(ṽw′)u′s|S ṽw.
Since ṽρv

n−2(w)|aS ṽw, we have also ṽρv
n−2(w)|Sρn−2(ṽw′)u′s.

For even 2 ≤ i ≤ n − 2, we have ṽρv
i−1(w)|lρi−1(ṽw′)|lρi(ṽw′)|lṽρv

i (w) and
ṽρv

n−1(w)|S ṽρv
i (w). Thus, ρi(ṽw′)|S ṽρv

i (w) for such i. Suppose that ρi(ṽw′)|S ṽρv
i (w)

and ρi(ṽw′) 
= ṽρv
i (w) for some 2 ≤ i ≤ n − 2. Since ṽρv

i−2(w)|aS ṽρv
i (w), we have

ṽρv
i−2(w)|Sρi(ṽw′). Moreover, ρi−2(ṽw′)|aSρi(ṽw′) implies ρi−2(ṽw′) 
= ṽρv

i−2(w).
Thus, the descending induction on i gives us ρi(ṽw′)|S ṽρv

i (w) and
ṽρv

i−2(w)|Sρi(ṽw′) for even i, 2 ≤ i ≤ n − 2. In particular, we get ṽ|Sρ2(ṽw′).
On the other hand, there is r ∈ S such that r|rρ2(ṽw′) and r 
= ρ2(ṽw′). As
a consequence, ρ2(ṽw′) = v′0r and ṽ = v′0v0 for some v0, v

′
0 ∈ Q>0. In particu-

lar, len(v0) < len(v). It follows from our arguments that (w, v0) ∈ QOn(S) with
v′0r

v0
n−1(w) = ρn−2(ṽw′)u′s. We thus have got v′ such that v′w ∈ On(S) satisfies all

required conditions.

Corollary 9. For any reduced set of paths S,

maxon+m(S) ≤ maxon(S) + maxom(S) − 1

and

minon+m(S) ≥ minon(S) + minom(S) − len(S) + 1.

Proof. The proof follows from Theorem 8 and the fact that any w ∈ On+m(S) can
be represented in the form w = w′w′′ with w′ ∈ On(S) and w′′ ∈ QOm(S).

From now on, we fix an admissible order ≥ on the set of paths in Q, [6]. More pre-
cisely, this means that there is a well order ≥ such that for any paths p, q, u, v ∈ Q,

• if p ≥ q, then upv ≥ uqv if the products are paths.
• p ≥ q if q|p.

Given a linear space V , its basis B, and x ∈ V , we call the sum
∑m

i=1 αibi a
reduced expression of x as a linear combination of the elements of B if αi ∈ k∗,
bi ∈ B for 1 ≤ i ≤ m, bi 
= bj for 1 ≤ i < j ≤ m, and x =

∑m
i=1 αibi.

For x ∈ kQ, tip(x) is the maximal path of Q, with respect to the order ≥,
appearing in the reduced expression of x as a linear combination of paths. A subset
G ⊂ I is called a Gröbner basis of I if for any x ∈ I, there exists g ∈ G such that
tip(g) | tip(x).

From now on, we fix A = kQ/I, where I is an ideal of kQ that has a finite
Gröbner basis G.

We will use the notation of Green and Solberg in [11]. Let X be a graded A-
module and let P0(X)

µX−−→ X be its minimal graded projective cover. Suppose also
that X is finitely presented. The projective module P0(X) can be presented in the
form P0(X) =

⊕
i∈T0

f0
i A, where T0 is a finite set and, for any i ∈ T0 there exist
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ei ∈ Q0, mi ∈ Z, and an isomorphism of graded modules f0
i A ∼= eiA[mi] that sends

f0
i to ei.

Consider the graded space VX =
⊕

i∈T0
f0

i kQ. The set whose elements are of
the form f0

i p, where i ∈ T0 and p is a path ending in ei, is a basis of VX , we denote
this set by BX and introduce the following well order on it. We set f0

i p ≥ f0
j q if

either p > q or p = q and i ≥ j. We say that f0
i p divides f0

j q on the right if i = j

and p|rq. For x ∈ VX , we write tip(x) for the maximal element of BX , with respect
to the order ≥, appearing in the reduced expression of x as a linear combination
of elements of BX . The set x1, . . . , xl of nonzero elements of VX is called right tip
reduced if tip(xi) does not divide tip(xj) on the right for any 1 ≤ i, j ≤ l, i 
= j.

By [11, Proposition 5.1], there are finite sets T1 and T ′
1, elements h1

i ∈ VX

(i ∈ T1), and elements h1
i
′ ∈ VX (i ∈ T ′

1) such that

(1) any element h in the kernel of the composition VX � P0(X)
µX−−→ X can be

uniquely represented in the form h =
∑

i∈T1
fi +

∑
i∈T ′

1
f ′

i , where fi ∈ h1
i kQ

and f ′
i ∈ h1

i
′kQ,

(2) for any element h ∈ {h1
i }i∈T1 ∪ {h1

i
′}i∈T ′

1
, there exists eh ∈ Q0 such that

heh = h,
(3) h1

i
′ ∈ ⊕

j∈T1
h0

jI for any i ∈ T ′
1,

(4) the set {h1
i }i∈T1 ∪ {h1

i
′}i∈T ′

1
is right tip reduced.

Moreover, it is clear that all the elements in the set {h1
i }i∈T1 ∪ {h1

i
′}i∈T ′

1
can be

chosen homogeneous. Let us define P̄1(X) =
⊕

i∈T1
f1

i A, where, for any i ∈ T1

there exists an isomorphism of graded modules f1
i A ∼= eh1

i
A[−deg(h1

i )] that sends
f1

i to eh1
i
. Here deg(h1

i ) denotes the degree of h1
i . Note that the order in the basis of

VX induces an order on the set {f1
i }i∈T1 . In this way, we obtain a graded projective

presentation

P̄1(X)
d̄0(X)−−−−→ P0(X)

µX−−→ X

of X , where d̄0(X) sends f1
i to the class of h1

i in P0(X) for any i ∈ T1. Let also

· · · dn(X)−−−−→ Pn(X)
dn−1(X)−−−−−→ · · · d0(X)−−−−→ P0(X)(

µX−−→ X)

be the minimal graded A-projective resolution of X .
As before, given a graded A-module M , we will denote by Mj its jth homo-

geneous component. The next theorem will be crucial for us. It allows to estimate
the degrees of the generators of the terms of the resolution constructed using the
algorithm from [11].

Theorem 10. Let us fix the notation as above. If k and l are the minimal and the
maximal degrees of f1

i , i ∈ T1, then, for any

n ≥ 1, Pn(X) =




l+maxqon(tip(G))⊕
j=k+minqon(tip(G))

Pn(X)j


A.
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Proof. The algorithm described in [11, Sec. 3] gives a graded projective resolution

· · · d̄n(X)−−−−→ P̄n(X)
d̄n−1(X)−−−−−→ · · · d̄0(X)−−−−→ P0(X)(

µX−−→ X),

of X . Due to this algorithm P̄n(X) can be presented in the form P̄n(X) =⊕
i∈Tn

fn
i A and d̄n−1(X) sends fn

i to hn
i ∈ ⊕

i∈Tn−1
fn−1

i A, where all these ele-
ments satisfy the following property. If tip(hn

i ) = fn−1
j p, then tip(hn−1

j )p ∈ QS and
if q|ltip(hn−1

j )p, q 
= tip(hn−1
j )p, then q is not S-path.

For i ∈ Tn, let us introduce pi ∈ Q and t(i) ∈ Tn−1 by the equality tip(hn
i ) =

fn−1
t(i) pi. It is possible to prove inductively on n that (w, v) ∈ QOn(S) for w =

ptn−2(i) . . . pt(i)pi and some v ∈ Q>0 such that v|rtip(h1
tn−1(i)). Consequently, the

required statement follows from the equality

deg(fn
i ) = deg(f1

tn−1(i)) +
n−2∑
m=0

len(ptm(i)) = deg(f1
tn−1(i)) + len(w).

In other words, for any n ≥ 1, we are able to deduce the possible degrees of
the generators of Pn(X) from those of the generators of P̄1(X) and the lengths of
n-quasioverlaps for tip(G).

We obtain two corollaries.

Corollary 11. Let A = kQ/I, X be a graded finitely presented A-module and let
G be a homogeneous Gröbner basis for I such that tip(G) is reduced. Let P•(X) be
a minimal graded A-projective resolution of the graded A-module X and P̄1(X) be
as above. If k and l are the minimal and the maximal degrees of f1

i , i ∈ T1, then,

for any

n ≥ 1, Pn(X) =




l+maxon(tip(G))−1⊕
j=k+minon(tip(G))−len(tip(G))+1

Pn(X)j


 A.

Proof. It follows directly from Theorems 8 and 10.

Corollary 12. Let A = kQ/I where I has a homogeneous Gröbner basis G such
that len(tip(G)) ≤ s and maxo2(tip(G)) ≤ s+1. If additionally mino1(tip(G)) = s,

then the algebra A is s-Koszul.

Proof. It follows from Corollaries 9 and 11 since P̄1(A0) =
⊕

α∈Q1
eαA[−1], where

eα is the starting vertex of the arrow α. More precisely, we get by induction on i ≥ 3
that

maxoi(tip(G)) ≤ maxoi−2(tip(G)) + maxo2(tip(G)) − 1 ≤ χs(i − 2) + s = χs(i).

If additionally mino1(tip(G)) = s, then all the elements of tip(G) have length
s. Then we get that P2(A0) is generated in degree s + 1 and that if the minimal
generating degree for Pi(A0) is m, then the minimal generating degree for Pi+2(A0)
is not less than m+ s. Then we get by induction that Pi(A0) is generated in degree
χs(i).
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