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A B S T R A C T

Argentine citrus industry stands out among the top ten largest producers of citrus of the world. Traceability is a
key point of the quality control in the international trade context. Discrimination between orange juices pro-
duced from different geographical regions in Argentina (San Pedro and Entre Ríos), has been achieved by ap-
plying principal components analysis (PCA) and partial least-squares – discriminant analysis (PLS–DA) to 1H
NMR spectra of the juices. Different regions of the spectra were analyzed in view of the large range of signal
intensities and the chemometric treatment of the NMR data has successfully distinguished the juice of different
origins/varieties, as well as the metabolites responsible for their separation. Examination of the PCA loadings
showed that citric acid and ethanol levels were the main chemical variables for sample discrimination.

1. Introduction

Citrus is one of the world's major fruit crops, with global availability
and popularity contributing to human diets [1]. Citrus production is
very important within the Argentine fruit growing, and represents a
significant source of revenue, both from domestic and international
trade (exports are mainly sent to Europe, Russia and Paraguay). With
around 130,000 ha cultivated from the northeast to the northwest,
and>2.6 million tons produced per year, Argentine is among the ten
largest citrus producers of the world. This resulted in a large number of
jobs (> 100,000) [2].

Quality control is a constant challenge in food industry with respect
to contamination and fraud, like wrong labelling of the product type or
the type and origin of ingredients. One of the main current issues that
are presented to the Argentine official control institution (e.g.: Servicio
Nacional de Sanidad y Calidad Agroalimentaria, SENASA) is determining
the geographical origin of citrus. Citrus traceability is vital since the
production area is directly related to its organoleptic characteristics
and, consequently, to their acceptability by consumers and commercial
value [3]. Oranges are produced in the northeastern and northwestern
regions of Argentina. The northeastern region, which includes San
Pedro and Entre Ríos, is the main supplier for the international market.
Characteristic climate and soil conditions in this region facilitate the

production of different orange varieties. The Salustiana variety from
Entre Ríos and Ombligo from San Pedro are the most required for their
organoleptic characteristics (sweet/acid ratio) in the international
market. The assurance of origin and variety is important in order to
meet the demands that each market requires. The National system of
traceability in Argentina involves a rigorous registration methodology
of the whole process of citrus from the field to the final destination.
Chemical analysis data are not used at all for this purpose.

Several instrumental techniques have been evaluated for de-
termining the geographical origin of food products, including mass
spectrometry, spectroscopy, separation techniques, etc. [4–8]. Some
techniques such as isotopic composition of orange sugars [9], GC–MS
[10], fluorescence spectroscopy [11], HPLC-UV [12], HPLC-MS [13]
inductively coupled plasma [14], neutron activation analysis [15] and
near-infrared spectroscopy [16] among others have demonstrated to be
particularly useful for citrus classification.

Today, NMR is a major tool in a wide range of metabonomics re-
lated applications among which food science is included [17]. NMR can
detect a wide range of different compounds in one sample run. Fur-
thermore, is non-destructive, rapid, reproducible, and stable over time,
requiring only a very simple sample preparation. 1H NMR spectra of
mixtures are very rich in information, thus its combination with che-
mometric analysis can reveal latent patterns in the data, which may
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enable classification of the samples in terms of varietal, geographical
origin, adulteration, etc. Other analytical techniques (GCMS, HPLC,
among other) may be cheaper than NMR, however they usually mea-
sure only compounds from one specific chemical class (i.e., volatile
compounds, sugars, flavonoids, amino acids, etc.). These methods are
appropriate for target analysis. In 2007, the control organisms of Eur-
opean community (one of the leading markets for Argentine citrus)
started to use systematically NMR based SGF Profiling for testing semi-
finished goods for fruit juiced. Therefore, the method presented in our
manuscript would provide a more robust origin certification that would
ensure the required quality compliance.

Multivariate or pattern recognition techniques such as principal
component analysis (PCA) [18] are important tools for the analysis of
the data obtained by NMR. The fingerprint of mixtures generated by 1H
NMR spectra in combination with PCA is a useful tool that has been
applied for analyzing and sorting of different foods like apple [19],
coffee [20], milk [21], mozzarella [22], among others. The potential of
NMR spectroscopy in combination with PCA has been demonstrated in
the detection of the adulteration of orange juices [23,24] and the dis-
crimination between orange juice and pulp wash [25], in a fully auto-
mated quality control analysis of citrus juice called Spin Generated
Fingerprint Profiling [26], in the discrimination of orange varieties
[27], as well as in studies to extend the shelf life of fruit juices [28].

This methodology has been used in the citrus analysis worldwide.
Nevertheless, to our knowledge, there are no reports of orange classi-
fication conducted with products in our territory. In this study, we re-
port an NMR spectroscopic method, coupled to PCA, for the metabo-
lomic analysis of Argentine citrus. In addition, six discrimination
models based on partial least-squares – discriminant analysis (PLS–DA)
were done for samples classification. Based on these data, classification
and discrimination were performed for the six Citrus species, five bo-
tanical varieties of oranges and oranges of two different Argentine
production regions. This leads to a clear differentiation based on a
variety of metabolites. The results indicate that chemometric treatment
of the 1H NMR data represent a useful methodology to differentiate the
geographical origin of oranges from two of the main production areas
from Argentina, representing a suitable method for traceability of or-
ange and/or orange juice production in Argentina.

2. Material and methods

2.1. Reagents and standards

All reagents were analytical grade unless stated otherwise. Buffer
solution HPCE pH 3.0, sodium azide≥ 99.5%, deuterium oxide (deu-
terium degree 99.9%) and 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid
sodium salt (deuterium degree 98%) were purchased from
Aldrich–Sigma. HCl was purchased from Cicarelli (San Lorenzo,
Argentina).

2.2. Citrus samples

The studies were conducted with orange fruits (Citrus sinensis (L.)
Osbeck) of six different varieties grown in the Estación Experimental
Agropecuaria (INTA) from Entre Ríos and San Pedro, Argentina. The
varieties selected were: Navelate, Salustiana and Navelina from Entre
Ríos, New Hall, Ombligo and Lana Latex and Verano (this variety was
used only in studies of species differentiation) from San Pedro. The
authenticity of oranges was assessed by INTA inspectors. Fruits were
collected at commercial maturity. Other citrus samples were bought in
local greengrocers in Rosario, Argentina. These included lemons (Citrus
limon (L.) Burm.), pink grapefruit (Citrus paradisi L.), mandarin (Citrus
reticulata Blanco), lime (Citrus aurantifolia (Christm.) Swingle) and
bitter orange (Citrus aurantium L.). The results shown in the present
work correspond to fruits harvested in two subsequent years (2010/
2011).

The fresh juice was extracted using an electric fruit squeezer. Before
the NMR experiments, all samples were centrifuged (12,000×g,
20min), and the supernatant pH was adjusted. Three methodologies
were evaluated: 1) addition of phosphate buffer pH=3 (80% of the
supernatant juice with 10% buffer), 2) addition of commercial buffer
(80% of the supernatant juice with 10% buffer) or 3) 2200 μL of the
supernatant mixed with microliter amounts of 1M NaOH or 1M HCl
solutions. After adjusting the pH (3.02 ± 0.02) the solution was made
up to 2250 μL with MilliQ water (enough amount for four replicates).

A volume of 540 μL of the each sample was mixed with 60 μL of D2O
containing 0.2% w/w of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid,
sodium salt (TMSP) and sodium azide (0.013% w/w), and was trans-
ferred to a 5-mm NMR tube. No additional treatment was necessary.
The D2O was used as the field frequency lock signal, TMSP for internal
referencing of 1H chemical shifts and sodium azide to suppress micro-
organism activity. Each sample was acquired in triplicate.

The sample preparation order and the acquisition of spectra were
carried out based on a completely random experimental design, so as to
avoid clustering generated for the acquisition in set of sample types.

2.3. NMR spectroscopy

All NMR spectra were recorded on a 300MHz Bruker Avance
spectrometer fitted with an autosampler with a 5mm internal diameter
smart probe with ATMA (Automatic Tunning Matching), holding the
temperature stable at 300 K and the same acquisition parameters. The
suppression of H2O signals was carried out by using noesygppr-1d
(Bruker standard pulses sequence) applying continuous waves during
the relaxation delay (10 s) with a mixing time of 10ms. Gradients were
applied right after the relaxation delay and mixing time. Each spectrum
was recorded with 64 scans and 48 K data points. The spectral width
was adjusted to 20.0233 ppm (6009.615 Hz) with an acquisition time of
4.0 s per scan. The water signal was suppressed by using a low power
irradiation frequency (53.52 dB) during both the relaxation delay and
the mixing time. Spectra were Fourier transformed, phased, and ap-
k0.noe Bruker's processing routine was applied (Fourier transform,
phasing 0.order, and base line correction). The resulting spectra were
aligned using the TMSP signal as reference, saved as .1r Bruker files,
and transferred to a personal computer for data analysis.

2.4. Software and data pre-processing

All calculations were made using MATLAB (version 7.10; The
Mathworks Inc., Natick, MA). PCA was run using an in-house MATLAB
code. PLS-DA analysis was performed with MVC1, a new version of the
MATLAB toolbox already reported in the literature [29] and available at
http://www.iquir-conicet.gov.ar/eng/div5.php?area=12. Additional
statistical parameters of the PLS-DA models were obtained with the
Classification Toolbox 5.0 (http://michem.disat.unimib.it/chm/
download/classificationinfo.htm) [30]. All programs were run on a
personal computer with an Intel Core i5-3330, 3.00GHz (Ivy Bridge
Technology) microprocessor and 8GB of RAM. The MATLAB code Pro-
Metab [31], originally written for metabolomics data analysis, was used
to extract raw NMR data between 0.2 and 10.0 ppm from the original
Bruker 1r files. Subsequently, all samples were aligned with the Icoshift
algorithm [32] in the organic acids region (2.70–3.05 ppm). In addition,
regions containing the signals from water and TMSP were excluded.
Therefore, each sample subjected to analysis consisted of a vector of
7857 data points (10–0.2 ppm taken in steps of 0.00125 ppm; i.e.,
0.375 Hz).

3. Results and discussion

3.1. General considerations

Visual inspection of a 1H NMR spectrum of an orange juice shows
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three defined regions (Fig. 1a): the region of hydrogen atoms belonging
to organic- and amino acids appear between 0.7 and 3.0 ppm; the re-
gion of carbohydrates such as sucrose, α-glucose, β-glucose, and fruc-
tose between 3.0 and 6.0 ppm, wherein hydrogens of anomeric carbons
are clearly separated from the remaining sugar signals (Fig. 1b), and the
phenolic metabolites region between 6.0 and 10.0 ppm. When the first
region is analyzed (Fig. 1c), the intensity of citric acid signals (dd,
2.87 ppm) reveals that this compound overcomes by far the amount of
other acids present in the orange juice sample. Moreover, another signal
of particular interest in this region is the triplet assigned to the CH3

group of the ethanol molecule (t, 1.17 ppm). This compound is gener-
ated in by unwanted alcoholic fermentation that naturally occurs when
cutting the orange to make the juice. Although all sample spectra were
recorded immediately after the oranges were squeezed and the pH
adjusted, an amount of ethanol is always produced by the micro-
organisms present in the fruit [27].

3.2. Sources of variation of chemical shifts

The position in the frequency axis (chemical shift) of many NMR
signals is pH dependent. Molecules whose ionization state changes with

changing pH (organic acid, amino acids, etc.) show different shifts at
different pH values. These spectral variations can be produced even by
small pH differences and can be detrimental for the analysis, in parti-
cular because the multivariate analysis procedures require the corre-
sponding signals in different samples to have the same chemical shift. In
order to minimize this variation, we evaluated different options:
phosphate buffer (pH=3), a commercial buffer [26] and basic or acid
solution for regulate the pH [25,33]. The best results were obtained
with the last alternative (pH=3.02 ± 0.02). In this case, the most
problematic signal (citric acid) shows a very narrow variation in che-
mical shifts in comparison with the methodologies in which a buffer
was used for pH regulation.

3.3. Multivariate data analysis

3.3.1. Data pre-processing
Before applying PCA to the NMR data, the effects of various data

pre-processing techniques such as baseline correction, alignment, and/
or normalization were analyzed. The data matrix was mean-centered
and normalized by adjusting the total intensity of each spectrum (row)
to total spectral area. Despite the careful pH adjustment commented
above (Section 3.2), the organic acids signals (2.70–3.05 ppm, mostly
citric acid) were not aligned across samples. The differences in peak
positions of the same analyte signal among samples did not conform to
the bilinearity assumptions for the application of most chemometric
models, and thus they deteriorate the multivariate analysis. Many dif-
ferent algorithms are available for spectral matrix alignment, such as
DMW [34], COW [35], Coshift [34], Icoshift [36], PAFFT [37], etc. In
our hands, Icoshift algorithm yielded the best results. This algorithm,
namely interval-correlation-shifting, independently aligns each NMR
signal to a target by maximizing the cross-correlation between user-
defined intervals, by using the FFT (Fast Fourier Transform) to boost
the simultaneous alignment of all spectra in a dataset. Fig. 2 shows a
zoomed selection (2.70–3.02 ppm) of the 1H NMR spectra of all samples
before (Fig. 2a) and after (Fig. 2b) the alignment. In this region, seven
intervals were selected for the application of Icoshift to the NMR data
(one signal per interval). Sample N° 9 (Lana Latex variety, San Pedro

Fig. 1. (A) Typical noesypr1d spectrum of Citrus sinensis (Salustiana variety,
Entre Rios origin) fresh orange juice. (B) Expanded region 3.0–5.5 ppm. (C)
Expanded region −0.2–3.1 ppm. TMSP: 3-(Trimethylsilyl)propionic-2,2,3,3-d4
acid sodium salt, Sucr: sucrose, α-Glu: α-glucose, β-Glu: β-glucose, Fru: fruc-
tose, CA: citric acid and EtOH: ethanol.

Fig. 2. Expanded region (2.70–3.02 ppm) of noesypr1d spectra of all C. sinensis
fresh orange juice superimposed samples. (A) Before and (B) after the alignment
with Icoshift algorithm.
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origin) was used as reference for the alignment of the remaining ones.
As shown in the Fig. 2, an almost perfect alignment of the signals was
achieved.

3.3.2. Principal component analysis (PCA)
To perform sample discrimination, the obtained data were pro-

cessed by PCA. This statistical method achieve data reduction by a
linear combination of the original variables, highlighting the variance
within the original dataset, and retaining most of the relevant in-
formation of the variables in the new first components. For the ex-
amination of authenticity (geographical origin), we started the study
with 56 samples, 25 from San Pedro and 31 from Entre Ríos (Table 1).
An initial exploratory study was done by applying PCA to the whole 1H
NMR raw spectra (56×7857; samples and 0.2–10 ppm data points
respectively). Unfortunately, this analysis did not lead to a significant
conclusion, because the PCA score plots did not allow for the differ-
entiation between the samples according oranges varieties or geo-
graphical origin.

Accordingly, both manual and chemometric (variable selection
techniques) searches of regions were done with the original NMR data
in order to locate variables that gave the best results. In this case,
manual selection achieved the best results by choosing the NMR regions
of characteristic organic compounds that most contribute to fruit juice:
sugars and acids. Furthermore, the CH3 ethanol signal was added to the
previous regions in order to study the presence of this unexpected but
naturally occurring compound. Therefore, regions selected for principal
component analysis were the anomeric carbons signals (5.44–5.36,
4.24–4.17, 5.25–5.20, 4.67–4.60, and 4.12–4.08 ppm, from sucrose, α-
glucose, β-glucose, and fructose respectively), organic acid region
(3.08–2.59 ppm), and CH3 ethanol signal (1.25–1.06 ppm).

The PCA score plot for the selected regions of the data summarizes
the relationships between the 56 samples. The cumulative percentage of
explained data variance with the two first PC is above 91% (69.54%
and 22.09% for PC1 and PC2 respectively), so data loss is negligible.
Fig. 3 shows the PC1 vs PC2 score plot, in which we can observe the
successful discrimination between three defined regions: San Pedro;
Salustiana (Entre Rios); and, Navelate and Navelina (Entre Rios). Most
samples from San Pedro have negative values for PC1 and positives for
PC2. On the other hand, Salustiana variety from Entre Ríos have posi-
tives values both for PC1 and PC2, while other two Entre Ríos varieties
(Navelate and Navelina) have negative values both for PC1 and PC2.
Hence, PCA analysis of the selected NMR regions allows discrimination
by geographical origin between San Pedro and Entre Rios orange
samples. Furthermore, in this figure we can also observe discrimination
by botanical origin of the Salustiana variety from the rest of Entre Rios
samples.

Examination of the loadings resolved by PCA reveals which che-
mical compounds were decisive for orange discrimination. In Fig. 4 we
can observe that the organic acids region (predominantly citric acid)
and CH3 ethanol signal displayed the largest contributions to PC1
(black line), and anomeric carbons signals in absolute values (sucrose,
α-glucose, β-glucose, and fructose) and also CH3 ethanol signal were
the largest contributors to PC2 (red slash line). This means that the
ethanol variable contributes to both principal components analyzed.

Comparison of areas for the signals corresponding to organic acid
region of the orange NMR spectra showed a significant difference for all
the samples (Wilcoxon test, p < 0.05). On average, areas of the signals
found in the range δ=3.08–2.59 ppm account for a 68.7% of the total
area of the spectrum for spectra of orange from Entre Ríos (SE= 19.3),
whereas the integration of the signals in the same range for the samples
of orange from San Pedro represents on average 50.9% of the total area
of the spectrum (SE=17.7). Similarly, significant difference for the
signals corresponding to ethanol region was observed (Wilcoxon test,
p < 0.05). In this case, the integration of the signals in the range
δ=1.14–1.20 ppm account on average 6.5% (SE= 5.3) and 2.1%
(SE=1.2) of the total area of the spectrum the samples of orange from
Entre Ríos and San Pedro respectively. Finally, the differences were not
significant for sucrose, α-glucose, β-glucose, and fructose (Wilcoxon
test, p > 0.05).

Table 1
Description of the analyzed orange samples according to geographical origin
and botanical varieties.

Geographical origin Botanical variety Number of samples

San Pedro Lana Latex 9
Ombligo 6
New Hall 10

Entre Ríos Salustiana 11
Navel Late 9
Navelina 11

Fig. 3. Score plot of PC1 vs PC2 from selected 1H NMR regions: Navelate (circle
bold), Salustiana (square) and Navelina (circle) from Entre Ríos; New Hall
(triangle), Ombligo (inverted triangle) and Lana Latex (asterisk) from San
Pedro.

Fig. 4. Loadings plot of PC1 (black line) and PC2 (red slash line). Displayed
range 5.44–4.08 ppm correspond to the selected signals of anomeric carbons
(5.44–5.36, 4.24–4.17, 5.25–5.20, 4.67–4.60, and 4.12–4.08 ppm, from sucrose
(Hglu-1), α-glucose, β-glucose, sucrose (Hfru-3) and fructose respectively).
Range from 3.08–2.59 ppm correspond to organic acid region, and
1.25–1.06 ppm region correspond to CH3 ethanol signal. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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In summary, alcoholic fermentation is the source of ethanol, and
organic acids in media with high sugar concentrations have an en-
ormous impact on metabolism of microorganisms such as S. cerevisiae
[38]. Therefore, classification of orange juices both for geographical
and botanical origin achieved with the contribution of ethanol variable
imply that microorganisms naturally present in orange fruit play a key
role in the classification, but further studies are needed to validate this
finding.

Apart from the origin, with this methodology we evaluated the
ability of differentiating citrus species. In the score plots (matt supp
Fig. 1) it is possible to differentiate orange sweet, orange bitter, tan-
gerine, grapefruit, lemon and lime. Of course, the macroscopic differ-
entiation of different species is rarely a reason for complaints. If well
the colors of extracts obtained from citrus fruits have clear differences
in some cases in others the difference is not clear (orange sweet, orange
bitter and tangerine). Even the adulteration of orange juice with tan-
gerine juice (lower cost), pulp wash, preservatives, sugar, or other in-
gredients added the difference respect to pure orange juice may not be
distinguishable. Preliminary results indicate that this methodology can
also be extended to discriminate oranges from different harvest time
and/or inadequate conservation processes.

3.3.3. Partial least-squares – discriminant analysis (PLS-DA)
Partial least-squares regression is a versatile technique for multi-

variate data analysis that finds a regression model by projecting the
predicted variables (Y) and the observable variables (X) to a new space
[39]. In classical PLS analysis, the values of Y are analyte concentra-
tions or sample properties. When classification is the objective of the
PLS modeling, the values of Y are coded so that they reflect the different
sample categories. This can be done using digital values such as 0 and 1,
as in the present case. Employed in this manner the model is called PLS-
DA, for partial least-squares – discriminant analysis [40].

Although PCA showed good differentiation between the geo-
graphical origin of the samples (San Pedro vs Entre Ríos), all oranges
varieties were not satisfactory discriminated within each other with
PCA method. Therefore, we select different PLS-DA models in order to
discriminate between oranges varieties. The data selected for this
analysis was the same NMR regions selected for the PCA analysis (i.e.,
anomeric carbons signals, organic acid region, and CH3 ethanol signal).
Due to the high variability in the NMR data for both botanical and
geographical origin, selection of PLS-DA models was directed to form
well-defined groups for each classification model. Therefore, we design
five different PLS-DA models in order to discriminate the orange sam-
ples by botanical origin, and one PLS-DA model to confirm the classi-
fication by geographical origin achieve previously with PCA analysis.
Consequently, classification models were designed as follows with the
intention of discriminating orange samples according to: (1) geo-
graphical origin (PLS-DA1), (2) Lana Latex variety (PLS-DA2), (3)
Ombligo variety (PLS-DA3), (4) New Hall variety (PLS-DA4), (5)
Salustiana variety (PLS-DA5), and (6) Nave Late plus Navelina varieties
(PLS-DA6). In the PLS-DA1 model, two classes were considered: 1
(Entre Ríos) and 0 (San Pedro), whereas in the varieties discrimination
models (PLS-DA2 to PLS-DA6), the two considered classes were: 1
(variety) and 0 (remaining samples not belonging to the selected
variety). In PLS-DA6 model, two orange varieties define together a
unique class. Initially, two separate classification models were designed
for Nave Late and Navelina varieties but unfortunately neither of these
two models could discriminate any of the varieties under study.
Therefore, PLS-DA6 model was proposed in order to differentiate at
least these two varieties from the remaining samples.

In the PLS-DA1 model, the number of samples belonging to each
class was equivalent between San Pedro and Entre Ríos. On the other
hand, discriminations models PLS-DA2 to PLS-DA6 presented un-
balanced datasets; i.e., there is a greater number of samples that do not
belong to the variety that is intended to discriminate. Moreover, all
PLS-DA models were built with few samples in the datasets. Therefore,

the samples partitioning between calibration and validation datasets
were done by the application of the Kennard–Stone algorithm [41] to
each class separately. Accordingly, for each PLS-DA model, one-half of
the orange samples was used for calibration, and the other half was
used for validation.

Fig. 5 shows the discrimination of the orange samples by geo-
graphical origin achieved with the PLS-DA1 model. Moreover, Fig. 6
shows the PLS-DA models designed for discrimination of the oranges
samples by botanical origin (PLS-DA2 to PLS-DA6). Discrimination
threshold (DT) for each PLS-DA model were defined with the analysis of
the Receiver operating characteristic (ROC) curves obtained from the
Classification Toolbox 5.0 [30]. Except for PLS-DA5 (four latent vari-
ables), for all the PLS-DA models two PLS latent variables, estimated
from leave-one-out cross-validation, accounted for most of the varia-
bility of the data, capturing between 88 and 92% and 85–88% of the X
and Y variables, respectively.

Table 2 resumes the classification parameters obtained for each PLS-
DA model such as precision (Pr), sensitivity (Sn), specificity (Sp) along
with the mean prediction errors related to the application of the de-
signed models to the NMR data. Analysis of the designed models shown
that PLS-DA3 (Ombligo variety) was the less accurate model with
misclassified samples, as can be observed in the lower values of Pr
(60%) and Sp (92%). The remaining PLS-DA discrimination models
both for botanical and geographical origin yielded excellent classifica-
tion parameters with perfect separation among the orange samples.
Obviously, as can be seen both from Table 2 as Figs. 5 and 6, the mean
square errors (RMSEC and RMSEP) did not equal for all the models.
PLS-DA5 (Salustiana variety), PLS-DA1 (geographical origin), and PLS-
DA2 (Lana Latex variety) account for the most accurate classification
models. Furthermore, these three models had the closest DT to the
mean value (0.5); i.e., PLS-DA5, PLS-DA1, and PLS-DA2 were the
models with lower differences in the dispersions of the estimated values
for each discriminated class.

These results were consistent with those obtained previously by PCA
analysis; i.e., regarding geographical origin discrimination, San Pedro
oranges were correctly differentiated from Entre Ríos samples.
Furthermore, Salustiana variety was clearly separated from the rest of
oranges varieties; and Nave Late and Navelina varieties could not be
differentiated from each other.

Fig. 5. Class values obtained after the application of PLS-DA1 model to dis-
criminate the samples by geographical origin. Code one stand for Entre Ríos
oranges and code zero for San Pedro oranges. aDT: discrimination threshold.
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4. Conclusions

Untargeted metabolic profiling is a valuable exploratory tool cap-
able of providing extensive chemical information for use of fingerprint
with classification purposes. In this preliminary study we have been
able to distinguish the origin of oranges from two of the main pro-
duction areas in Argentina, representing a rapid method for quality
control of orange in Argentina. Citric acid and ethanol and were the
chemical variables which have greater influence on the differentiations.

The alcoholic fermentation appears to be particularly sensitive to al-
terations in the pH of the medium. This could justify the relationship
between the variables that have the largest effect on the observed
classifications. Besides oranges classification by geographical origin,
this methodology was able to differentiate citrus species and orange
varieties.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.microc.2018.05.037.

Fig. 6. Class values obtained in the varieties discrimination models (PLS-DA2 to PLS-DA6). Code one stand for variety and code zero for the remaining samples not
belonging to the selected variety. PLS-DA2 (Lana Latex), PLS-DA3 (Ombligo), PLS-DA4 (New Hall), PLS-DA5 (Salustiana), and PLS-DA6 (Nave Late plus Navelina).
aDT: discrimination threshold.

Table 2
Discrimination models for orange samples according to geographical origin (PLS-DA1) and botanical origin (PLS-DA2 to PLS-DA6).

Model Class Pra (%) Snb (%) Spc (%) LVd DTe RMSECf RMSEPg

PLS-DA1 Entre Ríos 100 100 100 2 0.553 0.166 0.181
San Pedro 100 100 100

PLS-DA2 Lana Latex 100 100 100 2 0.440 0.108 0.145
Other 100 100 100

PLS-DA3 Ombligo 60 100 92 2 0.617 0.183 0.133
Other 100 92 100

PLS-DA4 New Hall 100 100 100 2 0.635 0.181 0.120
Other 100 100 100

PLS-DA5 Salustiana 100 100 100 4 0.489 0.090 0.091
Other 100 100 100

PLS-DA6 Navel Late+Navelina 100 100 100 2 0.358 0.201 0.191
Other 100 100 100

a Pr: precision.
b Sn: sensitivity.
c Sp: specificity.
d LV: latent variable number.
e DT: discrimination threshold.
f RMSEC: root mean square error of calibration.
g RMSEP: root mean square error of prediction.
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