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Abstract. Recent observations of Gravitational Waves (GW) generated by black-hole collisions have opened
a new window to explore the universe in diverse scales. Detection of primordial gravitational waves is
expected to happen in the next years. However, the standard theory to describe these effects was developed
for weak gravitational waves, when their dynamics can be linearized. In this work we develop a non-
perturbative formalism to describe GW using the Unified Spinor Fields (USF) theory. The tensor index is
calculated and we obtain that it must be 0.0283 < nT < 0.0407, in order for the + and × polarisations
modes to have the same spectrum. This imposes some restriction on the constant of self-interaction 3.0018 <
ξ2 < 3.0025 of the fermionic source. The most relevant result here obtained is that the intensity of energy
density for GW during inflation is 1.25 × 10−4(m

H
)2 < ΩGW < 1.75 × 10−4(m

H
)2, where m is the mass of

the spin-(1/2) fermionic fields and H the Hubble parameter during inflation. This cut imposes restrictions
on the mass of these fields: (m

H
)2 � 1.1h2

0 × 10−11.

1 Introduction and motivation

Gravitational waves were predicted close to 100 years ago by A. Einstein in the framework of his theory of General
Relativity (GR) [1], and revisited by him with N. Rosen twenty years later [2]. In the last few years, Advanced LIGO
has opened a new era in the modern astrophysical research [3–8], by detecting gravitational waves (GW), coming
from collisions of pairs of black-holes. It is expected that in the future, new detectors like LISA, can measure GW
emitted during the early universe [9–11], in particular, when the universe suffered a quasi-exponential expansion during
inflation. During this epoch the energy density of the Universe was dominated by some scalar field (the inflaton), with
negligible kinetic energy density, in such a way that its corresponding vacuum energy density is responsible for the
exponential growth of the scale factor of the universe. Along this second-order phase transition a small and smooth
region of the order of the size of the Hubble radius, grew so large that it easily encompassed the comoving volume
of the entire presently observed universe, and consequently the observable universe become so spatially homogeneous
and isotropic on scales today of the range [108–1010] light years. A general prediction of cosmological inflation [12–14]
is the generation of a stochastic background of primordial gravitational waves (GW) [15,16]. Its detection would be
of great importance for the understanding and corroborating of inflation during the early phase of the expansion of
the universe [17]. Under the standard model of cosmology plus the theory of inflation, it is very natural to predict the
existence of the GW with respect to the background geometry of the universe. In the standard single-field, slow-roll
inflationary scenario the tensor fluctuations of the metric are characterized by a nearly scale-invariant power-spectrum
on super-Hubble scales. The amplitude of the GW signal is described by the tensor-to-scalar ratio r, defined as the
ratio between the tensor and the scalar power-spectrum amplitudes at a given wave number k = k∗ ≃ 0.05Mpc−1,
assuming r = −8nT , where nT is the tensor spectral index.
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However, the existence of a background Riemann geometry should be explained from a more fundamental basis.
In a recent work [18] some of the authors have proposed a unified spinor field (USF) formalism in order to describe
non-background relativistic systems which are quantum-mechanical in nature. This is a non-perturbative theory of
unification for quantised spinor fields on extended manifolds, taking into account the self-interactions of the spinor
fields. Each component of spin Ŝμ, is defined as the momentum corresponding to the inner dimension Φ̂μ, such that

one can define a universal bi-vectorial invariant: 〈B| S←→
←→
Φ |B〉 = (2πn�)I4×4. The non-perturbative description for

GW in this formalism is a non-trivial issue. In this work we develop the dynamics for GW on an extended manifold
characterized by the spinor fields components Ψ̂μ. This theory is described in sect. 2. Firstly we describe the quantum
spacetime, in order to introduce the extended theory taking into account the boundary conditions on the minimum-
action principle. With the aim to illustrate the theory, we describe the dynamics of GW in a model of inflation. This
is done in sect. 3. Finally, in sect. 4 we conclude with some final comments.

2 Quantum structure of spacetime and unified spinor fields

It is expected that the background spacetime can emerge from the expectation value of a quantum structure of
spacetime. In order to propose a description we shall consider that this spacetime is generated by a base of 4 × 4-
matrices, γ̄α. The γ̄α = Eμ

αγμ matrices which generate the background metric are related by the vielbein Eμ
α to the

basis γμ in the Minkowsky spacetime (in Cartesian coordinates). In this paper we shall consider the Weyl basis, such
that: {γa, γb} = 2ηab

I4×4. The elements γ̄μ comply with the Clifford algebra:

γ̄μ =
I

3!
ǫμ
αβν γ̄αγ̄β γ̄ν , {γ̄μ, γ̄ν} = 2gμν

I4×4,

where I = γ0γ1γ2γ3 is the pseudoscalar, I4×4 is the identity matrix, and we define ǫμ
αβν = gμρǫραβν , with

ǫραβν =

⎧

⎪

⎨

⎪

⎩

1, if ραβν is an even permutation of 0123,

−1, if ραβν is an odd permutation of 0123,

0, in any other case.

We will consider the Weyl representation:

γ0 =

(

0 I

I 0

)

, γ1 =

(

0 −σ1

σ1 0

)

,

γ2 =

(

0 −σ2

σ2 0

)

, γ3 =

(

0 −σ3

σ3 0

)

,

where the Pauli matrices are

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

.

The idea to introduce these matrices is describe the spinor information in the spacetime and construct a non-
commutative basis that can describe quantum effects in a relativistic framework. The Dirac and Majorana matrices
are good candidates, but in general it is possible to use any basis that describe a globally hyperbolic spacetime, which
is the global geometry necessary to obtain relativistic causality. To describe the quantum structure of spacetime we
shall consider a the variation, δX̂μ, of the quantum operator X̂μ:

X̂α(xν) =
1

(2π)2

∫

d4kγ̄α
[

bkX̂k(xν) + b†kX̂∗
k(xν)

]

,

such that b†k and bk are the creation and destruction operators of spacetime, with 〈B|[bk, b†k′ ]|B〉 = δ(4)(�k − �k ′).

Moreover, we shall define in the analogous manner the variation δΦ̂μ of the quantum operator Φ̂μ that describes the
quantum inner space:

Φ̂α(φν) =
1

(2π)2

∫

d4sγ̄α
[

csΦ̂s(φ
ν) + c†sΦ̂

∗
s(φ

ν)
]

,

where c†s and cs are the creation and destruction operators of the inner space, such that 〈B|[cs, c
†
s′ ]|B〉 = δ(4)(�s − �s ′).

These operators can be applied to some background quantum state, and describe a Fock space on an arbitrary Riemann
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curved spacetime |B〉. The states |B〉 do not evolves with time because we shall consider the Heisenberg representation,
in which only the operators evolve with time. They comply with

δX̂μ|B〉 = dxμ|B〉, δΦ̂μ|B〉 = dφμ|B〉, (1)

where φα are the four compact dimensions related to their canonical momentum components sα that describe the
spin. In order to describe the effective background spacetime, we shall consider the line element

dS2δBB′ = dx2δBB′ + dφ2δBB′ =
〈

B
∣

∣

∣

ˆδXμ
ˆδX

μ
∣

∣

∣
B′

〉

+
〈

B
∣

∣

∣

(

δ̂Φμδ̂Φν

)

(γ̄μγ̄ν)
∣

∣

∣
B′

〉

, (2)

where
〈

B
∣

∣

∣

ˆδXμ
ˆδX

μ
∣

∣

∣
B

〉

= dx2
I4×4,

〈

B
∣

∣

∣

(

δ̂Φμδ̂Φν

)

(γ̄μγ̄ν)
∣

∣

∣
B

〉

=

〈

B

∣

∣

∣

∣

1

4

{

δ̂Φμ, δ̂Φν

}

{γ̄μ, γ̄ν} − 1

4

[

δ̂Φμ, δ̂Φν

]

[γ̄μ, γ̄ν ]

∣

∣

∣

∣

B

〉

= dφ2
I4×4. (3)

Therefore, we have obtained an effective line element which comes from the expectation value on the inner product of

vectors 〈B| ˆδXμ
ˆδX

μ|B〉, and the inner product of bi-vectors: 〈B|(δ̂Φμδ̂Φν)(γ̄μγ̄ν)|B〉.

2.1 Boundary conditions on Einstein-Hilbert action

In order to revise the minimum-action principle in general relativity, taking into account the boundary conditions
produced by quantum effects from a geometrical point of view, we shall consider the Einstein-Hilbert (EH) action for
an arbitrary matter Lagrangian density L

I =

∫

d4x
√−g

[

R

2κ
+ L

]

, (4)

that, after variation, is given by

δI =

∫

d4x
√−g

[

δgαβ(Gαβ + κTαβ) + gαβδRαβ

]

, (5)

where κ = 8πG, Rαβ is the background Ricci tensor, R = gαβRαβ is the background scalar curvature, gαβ is the
symmetric background metric tensor, G is the gravitational constant and

gαβδRαβ = [δWα]‖α − (gαǫ)‖ǫδΓ
β
αβ + (gαβ)‖ǫδΓ

ǫ
αβ , (6)

such that δWα = δΓ ǫ
βǫg

βα−δΓα
βγgβγ(see footnote1). We shall consider that the flux that crosses the Gaussian hypersur-

face is due to the existence of some source (quantum in origin), and that it must be described on an extended manifold

1 We define the covariant derivative of some vector field Υ β : [Υ β ]‖α

[Υ β ]‖α = ∇αΥ β + ξ2δΓ β
ǫαΥ ǫ, (7)

where ξ is the self-interaction constant, ∇αΥ β is the covariant derivative on the Riemann manifold and δΓ β
ǫα is the displacement

of the manifold with respect to the Riemann one. In this work we shall extend the Riemann manifold to describe quantum
geometric spinor fields Ψ̂α, by using the connections

Γ̂ α
βγ =

(

α

βγ

)

+ Ψ̂αgβγ . (8)

Here
δ̂Γ

α

βγ = Ψ̂αgβγ (9)

describes the quantum displacement of the extended manifold with respect to the classical Riemann background, which is
described by the Levi-Civita symbols { α

βγ } in (8). Notice that the background expectation value of the manifold displacement

is null: 〈B|δ̂Γ
α

βγ |B〉 = 0. Therefore, it will be possible to calculate the covariant derivatives of the spacetime operators (1) using
the connections (9).
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whose connection is different from the Levi-Civita one. When this flux, that cross the Gaussian-like hypersurface defined
on an arbitrary region of the spacetime is zero, the resulting equations that minimize the EH action are the background
Einstein equations: Gαβ + κTαβ = 0. However, when this flux is non-zero, one obtains in the last term of eq. (5), that
gαβδRαβ = δΘ(xα), such that δΘ(xα) is an arbitrary scalar field. This flux becomes zero when there are no sources in-
side this hypersurface. This arbitrary hypersurface must be viewed as a 3D Gaussian-like hypersurface situated in any
region of spacetime. Hence, in order to make δI = 0 in eq. (5), we must consider the condition: Gαβ + κTαβ = Λgαβ ,
where Λ is the cosmological constant. Additionally, we must require the constriction δgαβΛ = δΘgαβ , in order to
obtain: ¯δWα = δWα − ∇αδΘ, where the scalar field δΘ complies gαβ∇α∇βδΘ ≡ �δΘ = 0 [19,20], in order for the

flux of both ¯δW
α

and δWα to be zero on the Riemann (background) manifold.
Moreover, we can make the transformation

Ḡαβ = Gαβ − Λgαβ , (10)

and the transformed Einstein equations with the equation of motion for the transformed gravitational waves, hold

Ḡαβ = −κTαβ . (11)

Equation (11) provides us with the Einstein equations with cosmological constant included. Furthermore, since
δΘ(xα)gαβ = Λδgαβ , the existence of the cosmological constant Λ, is related to the existence of some source en-
closed by ∂M.

The variations and exact differentials of the operators X̂μ and Φ̂μ on the extended Weylian manifold, are given,
respectively, by

δX̂μ|B〉 =
(

X̂μ
)

‖α
dxα|B〉, δΦ̂μ|B〉 =

(

Φ̂μ
)

‖α
dφα|B〉, (12)

dX̂μ|B〉 =
(

X̂μ
)

,α
dxα|B〉, dΦ̂μ|B〉 =

(

Φ̂μ
)

,α
dφα|B〉, (13)

with covariant derivatives
(

X̂μ
)

‖β
|B〉 =

[

∇βX̂μ + Ψ̂μX̂β − X̂μΨ̂β

]

|B〉, (14)

(

Φ̂μ
)

‖β
|B〉 =

[

∇βΦ̂μ + Ψ̂μΦ̂β − Φ̂μΨ̂β

]

|B〉. (15)

In the next subsection we shall use these spinor fields Ψ̂μ as generators of an extended manifold from which we can
develop an extended theory of general relativity including the quantum effects.

2.2 Dynamics of spinor field

The variation of the extended Ricci tensor δRα
βγα = δRβγ : δRβγ = (δΓα

βα)‖γ − (δΓα
βγ)‖α, is

δ̂Rβγ = ∇γ Ψ̂β − 3

(

1 − ξ2

3

)

gβγ

(

Ψ̂ν Ψ̂ν

)

− gβγ

(

∇ν Ψ̂ν
)

+

(

1 − ξ2

3

)

Ψ̂βΨ̂γ = Ûβγ + V̂βγ . (16)

Notice that, although the background Ricci tensor is symmetric, its variation has both, symmetric and antisymmetric
contributions. The former are due to the non-commutative algebra of the operators. The tensors Ûβγ and V̂βγ , are the

symmetric and antisymmetric parts of δ̂Rβγ [18]:

Ûβγ =
1

2

(

∇βΨ̂γ + ∇γ Ψ̂β

)

− gβγ

(

∇ν Ψ̂ν
)

− 3

(

1 − ξ2

3

)

gβγ

(

Ψ̂ν Ψ̂ν
)

+ 3

(

1 − ξ2

3

)

{

Ψ̂β , Ψ̂γ

}

,

V̂βγ = −1

2

(

∇βΨ̂γ −∇γ Ψ̂β

)

+
3

2

(

1 − ξ2

3

)

[

Ψ̂β , Ψ̂γ

]

.

The coupling ξ takes into account the self-interaction of the spinor fields Ψ̂γ because they alter the spacetime and

therefore they alter itself. Its contribution can be seen in those terms which are quadratic in Ψ̂γ .

The antisymmetric tensor δ̂R
α

αβγ ≡ Σ̂βγ , is

Σ̂βγ =
(

∇βΨ̂γ −∇γ Ψ̂β

)

− (1 + ξ2)
[

Ψ̂β , Ψ̂γ

]

. (17)
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Now we can introduce the varied Einstein tensor on the extended manifold by taking into account only the symmetric

contributions of the Ricci tensor: ˆδGβγ = Ûβγ − 1
2gβγÛ , where Û = gαβÛαβ :

ˆδGβγ =
1

2

(

∇βΨ̂γ + ∇γ Ψ̂β

)

+
1

2
gβγ

[(

1 − ξ2

3

)

(

Ψ̂αΨ̂α

)

+
(

∇ν Ψ̂ν
)

]

+
1

2

(

1 − ξ2

3

)

{

Ψ̂β , Ψ̂γ

}

. (18)

Taking into account the gauge-transformations (10): ˆ̄δGαβ = ˆδGαβ − gαβΛ̂, we obtain that

Λ̂ = −3

4

[

∇αΨ̂α +

(

1 − ξ2

3

)

Ψ̂αΨ̂α

]

. (19)

Of course, the extended Einstein equations must be evaluated on the background expectation value defined on the
Riemann manifold

〈

B
∣

∣

∣

ˆδGαβ − gαβΛ̂
∣

∣

∣
B

〉

= −8πG
〈

B
∣

∣

∣
δ̂Tαβ

∣

∣

∣
B

〉

, (20)

where the variation of the stress tensor δ̂Tμν with respect to the background, is

δT̂μν = 2
δL̂

δgμν
− gμνL̂, (21)

such that the Lagrangian density is given by L̂ = 2
3κ Λ̂. The expectation value of Λ̂ provides the contribution of the

spinor fields to the cosmological constant, and therefore to the flux that crosses the closed hypersurface ∂M. On the
other hand, by considering the two antisymmetric tensors V̂βγ and Σ̂βγ , we can define other two antisymmetric tensors

N̂βγ = 1
2 V̂βγ − 1

4 Σ̂βγ and M̂βγ = 1
2 V̂βγ + 1

4 Σ̂βγ

N̂βγ = −1

2

(

∇βΨ̂γ −∇γ Ψ̂β

)

+
[

Ψ̂β , Ψ̂γ

]

, (22)

M̂βγ =
1

2
(1 − ξ2)

[

Ψ̂β , Ψ̂γ

]

, (23)

such that we can construct the theory with three tensors; the symmetric tensor ˆδGβγ , and the antisymmetric ones

N̂βγ and M̂βγ . Notice that N̂βγ is free of self-interacctions. Therefore, now we have three tensors which contain all

the geometric information of the theory: ˆδGβγ , N̂βγ and M̂βγ . We shall require that all these tensors to be conserved
on the extended manifold

〈

B

∣

∣

∣

∣

(

ˆ̄δGβγ
)

‖γ

∣

∣

∣

∣

B

〉

= 0,

〈

B

∣

∣

∣

∣

(

M̂βγ
)

‖γ

∣

∣

∣

∣

B

〉

= 0,

〈

B

∣

∣

∣

∣

(

N̂ βγ
)

‖γ

∣

∣

∣

∣

B

〉

= 0. (24)

In the next section we shall see how fermion fields are the source of gravitational waves, and we shall illustrate it
with an example.

3 Gravitational waves from USF

In order to describe GW, we shall propose the existence of a 2-rank quantum operator ĥμν such that

1

2
�δ̂hμν = − ˆδUμν . (25)

The d’Alambertian on the left side of (25) ensures the wave nature of δ̂hμν , and the right side is the quantum source
of these waves. This source is the variation of the symmetric Ricci tensor

ˆδUμν = −1

2

(

∇μΨ̂ν + ∇ν Ψ̂μ

)

+
1

2
(ξ2 − 3)

{

Ψ̂μ, Ψ̂ν

}

+
2

3
gμνΛ̂, (26)

where, using (19), we obtain that Λ̂ is given by

Λ̂ = −3

4

[

∇αΨ̂α +
1

2

(

1 − ξ2

3

)

gαβ
{

Ψ̂α, Ψ̂β

}

]

(27)
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and takes into account the source of the gravitational waves. The expectation values of δ̂Rμν and Λ̂ (on the Riemann
background), are

〈

B
∣

∣

∣

ˆδUμν

∣

∣

∣
B

〉

= −
〈

B

∣

∣

∣

∣

1

2
(ξ2 − 3)

{

Ψ̂μ, Ψ̂ν

}

∣

∣

∣

∣

B

〉

+
2

3
gμν

〈

B
∣

∣

∣
Λ̂

∣

∣

∣
B

〉

, (28)

〈

B
∣

∣

∣
Λ̂

∣

∣

∣
B

〉

= −3

8

〈

B

∣

∣

∣

∣

(

1 − ξ2

3

)

gαβ
{

Ψ̂α, Ψ̂β

}

∣

∣

∣

∣

B

〉

, (29)

where we have used the fact that 〈B|∇αΨ̂α|B〉 = 0. Since it can be proved that 〈B| ˆδU |B〉 = 4〈B|Λ̂|B〉, the wave
equation is

〈

B
∣

∣

∣
�δĥμν

∣

∣

∣
B

〉

= −2κ
〈

B
∣

∣

∣
δ̂Tμν

∣

∣

∣
B

〉

, (30)

where κ = 8πG/c4. Therefore, using (21) to obtain the stress tensor in (30), we obtain

κδ̂Tαβ = −1

2

(

∇αΨ̂β + ∇βΨ̂α

)

− 1

2
gαβ∇ν Ψ̂ν − 1

4
gαβ

(

1 − ξ2

3

)

gμν
{

Ψ̂μ, Ψ̂ν

}

+
1

2
(ξ2 − 3)

{

Ψ̂α, Ψ̂β

}

. (31)

We are interested in the study of gravitational waves produced during inflation. In that case we must adopt a co-
moving frame with Û0|B〉 = I4×4|B〉 and Û j |B〉 = 0. The TT (Transverse-Traceless) components of these waves:
ˆ̄δhij = δ̂hij − 1

2gijδh, have a dynamics governed by the equations

�
〈

B
∣

∣

∣

ˆ̄δhij

∣

∣

∣
B

〉

= −2κ
〈

B
∣

∣

∣
Ŝij

∣

∣

∣
B

〉

, (32)

where Ŝαβ = δ̂Tαβ − 1
2gαβ δ̂T , is

−2κŜαβ =
(

∇αΨ̂β + ∇βΨ̂α

)

− 2gαβ

[

∇ν Ψ̂ν +
3

2

(

1 − ξ2

3

)

gμν
{

Ψ̂μ, Ψ̂ν

}

]

− (ξ2 − 3)
{

Ψ̂α, Ψ̂β

}

. (33)

Finally, the expectation values of the source terms in the wave equations, are

−2κ
〈

B
∣

∣

∣
Ŝij

∣

∣

∣
B

〉

= −3gij

(

1 − ξ2

3

)

gμν
〈

B
∣

∣

∣

{

Ψ̂μ, Ψ̂ν

}∣

∣

∣
B

〉

− (ξ2 − 3)
〈

B
∣

∣

∣

{

Ψ̂i, Ψ̂j

}∣

∣

∣
B

〉

. (34)

Notice that the source of 〈B|Ŝij |B〉 is exclusively given by fermion fields, with mass m

〈

B
∣

∣

∣

{

Ψ̂μ(x,φ), Ψ̂ν (x′,φ′)
}∣

∣

∣
B

〉

= m2 s2

�2
gμνI4×4

√

η

g
δ(4) (x − x

′) δ(4) (φ − φ′) . (35)

Therefore, the expectation value for the source term in the wave equation (32), is

−2κ
〈

B
∣

∣

∣
Ŝij

∣

∣

∣
B

〉

= 3m2gij
s2

�2

√

η

g
(ξ2 − 3)I4×4δ

(4)(x − x
′)δ(4)(φ − φ′). (36)

The factor
√

η
g takes into account the ratio between the determinants of tensor metrics in a Minkowsky metric: η, and

in a generic metric: g. Furthermore, the factor s2

�2 takes into account the spin of the fermions in the source.

4 GW during inflation

To explore the model we shall consider a de Sitter (inflationary) expansion, where the background spacetime is
described by the line element

dS2 = a2(τ)[dτ2 − δijdxidxj ], (37)

where τ , that runs from −∞ to zero, is the conformal time of the universe, which is considered as spatially flat,
isotropic and homogeneous. If the expansion is governed by the inflaton field ϕ, and it is non-minimally coupled to
gravity, the universe can be described by the action

I =

∫ √−g

[ R
2κ

+ Lϕ

]

, (38)
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where Lϕ = −[12 (ϕ′)2 − V (ϕ)]. In a de Sitter expansion the scale factor of the universe is a(τ) = − 1
Hτ , and the scalar

potential is a constant V (ϕ) = 3H2

κ . Furthermore, the kinetic component of Lϕ is zero, so that ϕ(τ) = ϕ0.

Now, we must calculate the equation of motion for GW (32), during inflation. The ij-components of 〈B| ˆ̄δhij |B〉 ≡
h̄ij , can be expanded as

h̄ij =
1

(2π)8

∫

d4s

∫

d4k

(n)
∑

n=+,×

ǫij

[

[

C
(n)
k,s

]

θk(τ)eikjxj

e
i
�

sαφα

+
[

C
(n)
k,s

]†

θ∗k(τ)e−ikjxj

e−
i
�

sαφα

]

, (39)

where +, × denote the polarisation states in the Transverse-Traceless (TT) gauge, defined by

h̄0j = 0, h̄ = 0. (40)

For (n)ǫ00 = 0, the polarization tensor is transverse: ki(n)ǫji = 0 to the propagation of the wave characterized by the

wavenumber components ki. Accounting for h = 0 and (n)ǫij = (n)ǫji, we can define

(n)ǫ11 =
1

2
{γ̄1, γ̄1} , (n)ǫ22 = −(n)ǫ11,

(n)ǫ12 =
1

2
{γ̄1, γ̄2} , (n)ǫ21 =

1

2
{γ̄2, γ̄1} . (41)

The creation and destruction operators satisfy

〈

B

∣

∣

∣

∣

[

C
(n)
k,s

] [

C
(n′)
k′,s′

]†
∣

∣

∣

∣

B

〉

= m2δnn′δ(4)
(

�k − �k ′
)

δ(4) (�s − �s ′) , (42)

where m is the mass of the fermion fields. By imposing that

〈B|
∑

n=1,2

(n)ǫij

[

C
(n)
k,s

]

= 〈B|(n)ǫijmθ∗k(τ ′)e−ikjxj′

e−
i
�

sαφα′

, (43)

we obtain the following differential equation for the time-dependent modes, for a de Sitter expansion2:

θ′′k(τ) − 2

τ
θ′k(τ) + k2θk(τ) = − 6

τ2

s2

�2
(ξ2 − 3)θk(τ), (44)

where the Hubble parameter in a de Sitter expansion is a constant H, kμ = (ω, kj) and xμ = (τ, xj). If we impose the
normalization condition for the modes θk(τ) = τζk(τ):

ζk(τ)[ζ∗k(τ)]′ − ζ∗k(τ)[ζk(τ)]′ = i
4π

9
, (45)

we obtain the solution for eq. (44)

θk(τ) =
iπ

3
τ3/2H(2)

ν [ζ(τ)], (46)

where H(2)
ν [η(τ)] is the second-kind Hankel function with argument η(τ) = kτ , and parameter

ν =
1

2

√

9 +

[

24
s2

�2
(3 − ξ2)

]

, (47)

such that, due to the fact that the tensor index is given by nT = 3 − 2ν [17], we obtain

nT = 3 −
√

9 + 24
s2

�2
(3 − ξ2). (48)

2 We use representation on the background spacetime (37), of the Dirac functions:

δ(4)(x − x′) =
4π

(2π)4

Z ∞

−∞

dkθk(τ)θ∗
k(τ ′)

Z ∞

−∞

dkk2ei�k·(�x−�x ′),

δ(4)(φ − φ′) =
1

(2π)4

Z ∞

−∞

d4seisα(φα−φ′α).



Page 8 of 9 Eur. Phys. J. Plus (2018) 133: 507

Evidence from Planck 2015 [21] estimates the tensor index nT = 1 − ns, in the range

0.0283 < nT < 0.0407, (49)

for a spectral index: ns = 0.9655 ± 0.0062. For fermions with spin s = (1/2)�, these values correspond to

3.0018 < ξ2 < 3.0025, (50)

which implies that, if this supposition were correct, nT would depend very weakly on the coupling ξ of primordial
fermion fields, which are the source of GW at cosmological scales. As can be proved, the amplitude of gravitational
waves is

ΔGW ≃ H2

2π2M2
p

, (51)

which, during inflation would be of the order (for H ≃ 10−5Mp)

ΔGW |Infl ≃ 10−11, (52)

but the present-day value should be (for H0 ≃ 10−61Mp)

ΔGW |0 ≃ 10−123, (53)

which is the same decay rate of the cosmological constant [22], here the subscript 0 indicates the today’s value. It
means that the present-day value, ΔGW |0, is 10−112 orders of magnitude smaller than the value during inflation.

Finally, it is interesting make an estimation of ΩGW = ρGW

ρc
, such that ρc = 3H2/(8πG) is the critical energy

density, and

ρGW =

∫

d4x
√−g

∫

d4φ〈B|T 0
0 |B〉 =

5m2

24κ
(ξ2 − 3). (54)

Therefore, from (50), we obtain

1.25 × 10−4
(m

H

)2

< ΩGW < 1.75 × 10−4
(m

H

)2

, (55)

that is consistent with (h0 is the dimensionless Hubble parameter) ΩGW � 1.6 × h2
0 × 10−15 [23], for very lightly

fermions with mass of the order of (m
H )2 � 1.1h2

0 × 10−11.

5 Final comments

Following the USF theory recently introduced, we have studied the production of GW during inflation. This is an
important issue that should be tested in the next years and would give relevant information about the early stages of
the inflationary expansion of the universe. One of the important results here obtained is the bound for values for the
coupling of the fermion source on cosmological scales. The tensor index in the interval 0.0283 < nT < 0.0407, agrees
very well with values obtained using slow-roll parameters ǫ and η [21], and other models as bouncing cosmology [24,
25]. This nT -values are the manifestation of the existence of primordial fermionic fields, which should be the source
of gravitational waves at cosmological scales. Finally, with respect to the spectrum of GW, it is well known that the
extreme of the spectrum corresponding to the very low frequencies (10−16–10−18)Hz, are related to wavelengths with
size of the present-day cosmological sector. They cross the horizon at the beginning of inflation. However, the opposite
extreme of the spectrum corresponds to highest frequencies of the unstable modes that cross the horizon at the end
of inflation with size of about 103 times (or biggest than) the size of the horizon at this moment, when the universe
suffered an expansion close to eN times 1/H. The minimum wavelength of the spectrum is

λInf ≥ 10−28eN 103 ≃ 10−25 × eN cm. (56)

This means that GW emitted at the end of inflation should have wavelengths larger than 11 cm, for N = 60. This is
the more energetic sector of the spectrum and could be detected by LISA (Laser Interferometer Space Antenna) in the
future, with the launching by NASA/ESA of three satellites to form an equilateral triangle with a distance of 5× 106

kilometers between each of them. Finally, using the cut ΩGW � 1.6 × h2
0 × 10−15 for GW emitted during inflation,

we have demonstrated that for spin-1/2 fermionic fields (which are the source of GW in the USF), the mass of these
fields must be very small: (m

H )2 � 1.1h2
0 × 10−11.
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