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Abstract. We obtain the equation that describe the conditions of quantization for neutral massless bosons
on an arbitrary curved space-time, obtained using a particular theoretical formalism developed in a previous
work (M.R.A. Arcod́ıa and M. Bellini, arXiv:1703.01355). In particular, we study the emission of neutral
massless spin-(1, 2)� bosons during pre-inflation using the recently introduced unified spinor field theory.
We conclude that during pre-inflation (which is governed by vacuum equation of state), gravitational
radiation is emitted, which could be detected in the future, as primordial gravitational radiation.

1 Introduction

It is well known that Heisenberg suggested unified quantum field theory of a fundamental spinor field describing all
matter fields in their interactions [1,2]. In his theory the masses and interactions of particles are a consequence of
a self-interaction term of the elementary spinor field. The fact that manifolds with no-Euclidean geometry can help
uncover new features of quantum matter makes it desirable to create manifolds of controllable shape and to develop
the capability to add in synthetic gauge fields [3].

On the other hand, in a previous work we have developed construct a pure geometric spinor field theory on
an arbitrary curved background, which is considered a Riemannian manifold. In the theory the spinor field Ψ̂α is
responsible for the displacement of the extended Weylian manifold [4] with respect to the Riemannian background
and the covariant derivative of the metric tensor in the Riemannian background manifold is null1. However, the Weylian
covariant derivative on the extended Weylian manifold2, is nonzero: gαβ

‖γ �= 0. In this formalism they are considered
the couplings of the spinor fields with the background and their self-interactions in a generic manner. The theory is
worked in 8 dimensions, 4 of them related to the space-time coordinates (xμ), and the other 4 related to the inner
space (φμ), described by compact coordinates. The former have the spin components as canonical momentums: (sμ).

This paper is organized as follows: In sect. 2 we have described the space-time structure from a quantum approach
to recover a line element on a background Riemannian manifold. In sect. 3 we have exposed the spinor field formalism
for bosons and the dynamic equations. In sect. 4 we have studied the particular case of the neutral bosons on arbitrary
curved backgrounds. In sect. 5 we studied the example of neutral massless bosons in the pre-inflationary epoch. In
particular, we consider the emission of massless spinor fields with spins s = � and s = 2�. Finally, in sect. 6 we develop
some final comments.

a e-mail: santiagoridao@hotmail.com
b e-mail: marcodia@mdp.edu.ar
c e-mail: mbellini@mdp.edu.ar
1 We denote with a ∇, the Riemannian-covariant derivative and with Δ the Riemannian variation of some arbitrary tensor:

Δgαβ = ∇γgαβ dxγ = 0.
2 We denote the covariant derivative on the extended Weylian manifold with a ‖.
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2 Einstein-Hilbert action and quantum structure of space-time

If we deal with an orthogonal basis, the curvature tensor will be written in terms of the connections Rα
βγδ = Γα

βδ,γ −
Γα

βγ,δ + Γ ε
βδΓ

α
εγ − Γ ε

βγΓα
εδ. The Einstein-Hilbert (EH) action for an arbitrary matter Lagrangian density L

I =
∫

d4x
√
−g

[
R

2κ
+ L

]
, (1)

after variation, is given by

δI =
∫

d4x
√
−g

[
δgαβ (Gαβ + κTαβ) + gαβδRαβ

]
, (2)

where κ = 8πG, G is the gravitational constant, gαβδRαβ = δΘ(xα), such that δΘ(xα) is an arbitrary scalar field,
and Tαβ is the energy-momentum tensor defined by

Tαβ = 2
δL

δgαβ
− gαβL. (3)

When the flux δΘ(xα) that cross the Gaussian-like hypersurface defined on an arbitrary region of the space-time, is
zero, the resulting equations that minimize the EH action, are the background Einstein equations: Gαβ + κTαβ = 0.
However, when this flux is nonzero, one obtains in the last term of eq. (2). This flux becomes zero when there are
no sources within this hypersurface. Hence, in order to make δI = 0 in eq. (2), we must consider the condition:
Gαβ + κTαβ = Λgαβ , where Λ is the cosmological constant. On the other hand, we can make the transformation

Ḡαβ = Gαβ − Λgαβ , (4)

where the scalar field δΘ complies �δΘ = 0 [5,6], and the transformed Einstein equations with the equation of motion
for the transformed gravitational waves, hold

Ḡαβ = −κTαβ . (5)

Equation (5) give us the Einstein equations with cosmological constant included. Notice that the scalar field δΘ(xα)
appears as a scalar flux of some 4-vector with components δWα:

[δWα]‖α = δΘ(xα), (6)

through the closed hypersurface ∂M, which is situated in any region of space-time. Here, δWα = δΓ ε
βεg

βα − δΓα
βγgβγ

(see footnote3). In this work we shall use a recently introduced extended Weylian manifold [7] to describe quantum
geometric spinor fields Ψ̂α, where the connections are

Γ̂α
βγ =

{
α

β γ

}
+ Ψ̂α gβγ . (8)

Here
δ̂Γ

α

βγ = Ψ̂α gβγ (9)

describes the quantum displacement of the extended Weylian manifold with respect to the classical Riemannian
background, which is described by the Levi-Civita symbols in (8), and the variation of the Ricci tensor is

δ̂Rβγ =
(
δ̂Γ

α

βα

)
‖γ

−
(
δ̂Γ

α

βγ

)
‖α

, (10)

where δ̂Γ
α

βα = Ψ̂α gβγ .

3 We define the covariant derivative of some vector field Υ β : [Υ β ]‖α

h

Υ β
i

‖α
= ∇αΥ β + ξ2 δΓ β

εαΥ ε, (7)

where ξ is the self-interaction constant, ∇αΥ β is the covariant derivative on the Riemann manifold and δΓ β
εα is the displacement

of the manifold with respect to the Riemann one.
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2.1 Quantum structure of space-time

In order to describe the quantum structure of space-time we consider a the variation δX̂μ of the quantum operator
X̂μ:

X̂α(xν) =
1

(2π)3/2

∫
d3k γ̂α

[
bk X̂k(xν) + b†k X̂∗

k(xν)
]
,

where b†k and bk are the creation and destruction operators of space-time, such that 〈B| [bk, b†k′ ] |B〉 = δ(3)(�k − �k′) and
γ̂α are 4 × 4-matrices that comply with the Clifford algebra. Moreover, we shall define in the analogous manner the
variation δΦ̂μ of the quantum operator Φ̂μ that describes the quantum inner space:

Φ̂α(φν) =
1

(2π)3/2

∫
d3s γ̂α

[
cs Φ̂s(φν) + c†s Φ̂∗

s(φ
ν)

]
,

where c†s and cs are the creation and destruction operators of the inner space, such that 〈B| [cs, c
†
s′ ] |B〉 = δ(3)(�s− �s′).

In our case the background quantum state can be represented in a ordinary Fock space in contrast with LQG [8,
9], where operators are qualitatively different from the standard quantization of gauge fields. These operators can be
applied to some background quantum state, and describes a Fock space on an arbitrary Riemannian curved space-time
|B〉, such that they comply with

δX̂μ |B〉 = dxμ |B〉, δΦ̂μ |B〉 = dφμ |B〉. (11)

The states |B〉 do not evolves with time because we shall consider the Heisenberg representation, in which only the oper-
ators evolve with time so that the background expectation value of the manifold displacement is null: 〈B| δ̂Γα

βγ |B〉 = 0.
In order to describe the effective background space-time, we shall consider the line element

dl2δBB′ = dx2δBB′ + dφ2δBB′ = 〈B| ˆδXμ
ˆδX

μ |B′〉 + 〈B| δ̂Φμδ̂Φ
μ |B′〉, (12)

where φα are the four compact dimensions related to their canonical momentum components sα that describe the spin.
The variations and differentials of the operators X̂μ and Φ̂μ on the extended Weylian manifold, are given respectively
by

δX̂μ |B〉 =
(
X̂μ

)
‖α

dxα |B〉, δΦ̂μ |B〉 =
(
Φ̂μ

)
‖α

dφα |B〉, (13)

dX̂μ |B〉 =
(
X̂μ

)
,α

dxα |B〉, dΦ̂μ |B〉 =
(
Φ̂μ

)
,α

dφα |B〉, (14)

with covariant derivatives (
X̂μ

)
‖β

|B〉 =
[
∇βX̂μ + Ψ̂μX̂β − X̂μΨ̂β

]
|B〉, (15)

(
Φ̂μ

)
‖β

|B〉 =
[
∇βΦ̂μ + Ψ̂μΦ̂β − Φ̂μΨ̂β

]
|B〉. (16)

2.2 Bi-vectorial structure of inner space

We shall consider the squared of the δ̂Φ-norm on the bi-vectorial space, and the squared ˆδX-norm on the vectorial
space, are

δΦ←→
←→
δΦ ≡

(
δ̂Φμδ̂Φν

)
(γ̄μγ̄ν) , (17)

δX−→
−→
δX ≡ ˆδXα

ˆδX
α
, (18)

such that Φ̂α = φ γ̄α and X̂α = x γ̄α are, respectively, the components of the inner and coordinate spaces. Furthermore,
γ̄μ are the (4 × 4) Dirac matrices that generate the vectorial and bi-vectorial structure of the space-time:

〈
B

∣∣∣X̂μX̂μ
∣∣∣ B

〉
= x2

I4×4,

〈
B

∣∣∣
(
Φ̂μΦ̂ν

)
(γ̄μγ̄ν)

∣∣∣ B
〉

=
〈

B

∣∣∣∣14
{

Φ̂μ, Φ̂ν

}
{γ̄μ, γ̄ν} − 1

4

[
Φ̂μ, Φ̂ν

]
[γ̄μ, γ̄ν ]

∣∣∣∣ B

〉

= φ2
I4×4. (19)
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The γ̄μ matrices, comply with the Clifford algebra

γ̄μ =
I
3!

(γ̄μ)2 εμ
αβν γ̄αβ γ̄ν , {γ̄μ, γ̄ν} = 2gμν

I4×4,

where I = γ0γ1γ2γ3, I4×4 is the identity matrix, γ̄αβ = 1
2

[
γ̄α, γ̄β

]
. In this paper we shall consider the Weyl basis on

a Minkowsky space-time (in Cartesian coordinates): {γa, γb} = 2ηab
I4×4

γ0 =
(

0 I

I 0

)
, γ1 =

(
0 −σ1

σ1 0

)
,

γ2 =
(

0 −σ2

σ2 0

)
, γ3 =

(
0 −σ3

σ3 0

)
,

such that the Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

3 Spinor field

The expressions (6) and (8), give us
ˆδW

α

δl
= 3Ψ̂α, (20)

l-being the Weylian 4-length. The self-interacting effects do not necessary preserve the Riemannian flux of matter fields
along the Gaussian hypersurface, so that (δWα)‖α = ∇αδWα + ξ2 δWαΨ̂α. Notice that when the coupling constant is
zero: ξ = 0, the Riemannian flux on the extended Weylian manifold is equal to the flux on the Riemannian one. The
flux equation can be rewritten using (20), so that

∇αΨ̂α + ξ2 Ψ̂αΨ̂α =
1
3

ˆδΘ
δl

. (21)

However, when we describe matter fields, the coupling ξ is nonzero. In general, ξ depends on the theory under study
(i.e. on the group representation of the spinor fields), and can be proportional to some physical property of the field
(mass, charge, etc). Spinors with ξ = 0, do not describe matter fields, but geometric fields.

In this framework, we can define respectively the slash and vector quantum fields /Ψ = Ψ̂αγ̄α,
←→
Ψ = Ψαγ̄α. The

4-vector components are Ψ̂α = ˆδΘ
δ̂Φ

α , where the flux of Ψ̂α-field through the Gaussian hypersurface in eq. (21): Θ̂(xβ |φν),
can be represented according to (12), as a Fourier expansion in the momentum-space:

Θ̂
(
xβ |φν

)
=

1
(2π)4

∫
d4k

∫
d4s

[
As,k e

i K←→·←→X
e

i
�

S←→
←→
Φ + B†

k,s e
−i K←→·←→X

e
− i

�
S←→

←→
Φ

]
.

We can define the spinor (complex) components Ψ̂α (xβ |φν)

Ψ̂α

(
xβ |φν

)
=

i

�(2π)4

∫
d4k

∫
d4s

δ
(

S←→
←→
Φ

)

δ̂Φ
α

[
As,k e

i K←→·←→X
e

i
�

S←→
←→
Φ − B†

k,s e
−i K←→·←→X

e
− i

�
S←→

←→
Φ

]
,

where 〈B|AksB
†
k′s′ |B〉 = ( c3M3

p

�
)2δ(4)(k − k′) δ(4)(s − s′), and

δ

δ̂Φ
α

(
S←→
←→
Φ

)
= (2gαβI4×4 − γ̄αγ̄β) Ŝβ = 2Ŝα − γ̄α s = Ŝα, (22)

where s I4×4 = 1
4 Ŝβ γ̄β . Here, c is the speed of light, Mp is the Planckian mass, � = h/(2π), h-being the Planck

constant. Additionally, the squared bi-vectorial Ŝ-norm, is∥∥∥Ŝ
∥∥∥2

=
〈
B

∣∣∣ S←→
←→
S

∣∣∣ B
〉

=
〈
B

∣∣∣
(
ŜμŜν

)
(γ̄μγ̄ν)

∣∣∣ B
〉

= s2
I4×4, (23)

for Ŝμ = s γ̄μ. In order to quantize the spin, we shall consider the universal invariant〈
B

∣∣∣ S←→
←→
Φ

∣∣∣ B
〉

=
〈
B

∣∣∣
(
ŜμΦ̂ν

)
(γ̄μγ̄ν)

∣∣∣ B
〉

= sφ I4×4 = (2πn�) I4×4, (24)

with n-integer. For this reason, gravitons (which have s = 2�), will be invariant under φ = nπ rotations and vectorial
bosons (with s = �), will be invariant under φ = 2nπ rotations.
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4 Dynamics of neutral bosons

Explicitly written, the dynamics of massless neutral vector bosons is given by [7]

�Ψ̂α −∇β

(
∇αΨ̂β

)
+ 2

(
∇βΨ̂α

)
Ψ̂β − 2

(
∇βΨ̂β

)
Ψ̂α

−
(
∇αΨ̂γ

)
Ψ̂γ + 2 Ψ̂α

(
∇γ Ψ̂γ

)
+

(
∇γ Ψ̂α

)
Ψ̂γ

− 2 Ψ̂γ
(
∇γ Ψ̂α

)
= 2

[
Ψ̂μ, Ψ̂α

]
Ψ̂μ, (25)

such that in the case of bosons, we obtain
〈
B

∣∣∣
[
Ψ̂μ(x,φ), Ψ̂ν(x′,φ′)

]∣∣∣ B
〉

=
s2

2�2
[γ̄μ, γ̄ν ]

√
η

g
δ(4) (x − x′) δ(4) (φ − φ′) , (26)

where Lp is the Planckian length and
√

η
g is the squared root of the ratio between the determinant of the Minkowsky

metric: ημν and the metric that describes the background: gμν . This ratio describes the inverse of the relative volume
of the background manifold with respect to the Minkowsky one. The Fourier expansion for the spinor field Ψ̂α is

Ψ̂α =
i

�(2π)4

∫
d4k

∫
d4s

δ
(

S←→
←→
Φ

)

δ̂Φ
α

[
As,k e

i K←→·←→X
e

i
�

S←→
←→
Φ − B†

k,s e
−i K←→·←→X

e
− i

�
S←→

←→
Φ

]
, (27)

where
δ( S←→

←→
Φ )

δ̂Φ
α = Ŝα. If we deal with bosons, creation and destruction operators must comply [7]

4s2 L2
p

�2

(
|Ak,s|2 − |Bk,s|2

)
= 0, ±

(
c3M3

p

�

)2

. (28)

The conditions (28) are required for scalar bosons (the first equality) and vector, or tensor bosons (the second equality).
On the other hand, in order for the expectation value of the energy to be positive: 〈B |H|B〉 ≥ 0, we must choose
the negative signature in the second equality of (28). The expectation value for the local particle-number operator for
bosons with wave-number norm k and spin s, N̂k,s, is given by4

〈
B

∣∣∣N̂k,s

∣∣∣ B
〉

= −nk,s

(
�

c3M3
p

)2 ∫
d4x

√
−g

∫
d4φ

〈
B

∣∣∣∣
[
/̂Ψ(x,φ), /̂Ψ

†
(x,φ)

]∣∣∣∣ B

〉
= nk,s I4×4, (29)

where the slashed spinor fields are: /̂Ψ = γ̄μΨ̂μ, /̂Ψ
†

= (γ̄μΨ̂μ)†. Furthermore, these fields comply with the algebra
〈

B

∣∣∣∣
[
/̂Ψ(x,φ), /̂Ψ

†
(x′,φ′)

]∣∣∣∣ B

〉
=

4s2 L2
p

�2

(
|Ak,s|2 − |Bk,s|2

) √
η

g
δ(4) (x − x′) δ(4) (φ − φ′) , (30)

which must be nonzero in order that particles can be created. Notice that this is the case for bosons with spin
nonzero, but in the case of scalar bosons, which have zero spin, one obtains that (|Ak,s|2 − |Bk,s|2) = 0, and

〈B| [ /̂Ψ(x,φ), /̂Ψ
†
(x′,φ′)] |B〉 = 0. This result is valid in any relativistic scenario.

If we take the expectation value for (25), and we take into account (26) and (27), we obtain the following equation
for the wave-numbers of bosons:

[
γ̄β , γ̄θ

]
,θ
− 1

2
gβθ (γ̄ν),θ γ̄ν − 2i kβ

I4×4 +
1
2
gνθ

(
γ̄β

)
,θ

γ̄ν +
i

2
γ̄β k←→

=
s2

2�2

{
ν

θ ν

}[
γ̄θ, γ̄β

]
+

1
2
gβθ

{
μ

ν θ

}
γ̄ν γ̄μ − 1

2
gμθ

{
β

ν θ

}
γ̄ν γ̄μ, (31)

4 To connect the Fock-space theory and the ordinary quantum mechanics one can introduce the wave function in position
space by using the definition of a kind of nk,s-particle state vector that describes a system of nk,s particles that are localized in
coordinate space at the points x1; φ1 . . .xn; φn:

|x1,x2, . . . ,xn; φ1, φ2, . . . , φn〉 =
1

p

nk,s!
/̂Ψ
†
(x1; φ1) . . . /̂Ψ

†
(xn; φn) |B〉,

where here |B〉 is our reference state. This state is not a vacuum state because it describes a curved background state, but
describes the Riemannian (classical) reference with respect to which we describe the quantum system.
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where k←→ = kαγ̄α and γ̄α = Eμ
αγμ are the components of the basis on the background metric, which are related by the

vielbein Eμ
α with the 4 × 4 matrices γμ on the Minkowsky space-time. In our case we shall use Cartesian coordinates

to describe spacial coordinates. In this paper we shall use the Weyl representation of the γ-matrices to generate the
hyperbolic space-time.

5 Pre-inflation

The idea of a pre-inflationary expansion of the universe in which the universe begins to expand through a (global)
topological phase transition was proposed in [10]. In this model the birth of the universe was studied using a complex
time τ(t) =

∫
eiθ̂(t)dt, such that the phase transition from a pre-inflationary to inflationary epoch was examined using

a dynamical rotation of the complex time, τ(t), on the complex plane. After a particular choice of coordinates, one
can define a dynamical variable θ: π/2 ≥ θ̂(t) > 0, such that it describes the dynamics of the system and it is related
with the expansion of the universe

θ̂(t) =
π

2
e−H0t. (32)

We consider the line element introduced in [10] to describe pre-inflation

dŜ2 =
(πa0

2

)2 1

θ̂2

[
dθ̂

2 − δijdx̂idx̂j
]
. (33)

If we desire to describe an initially Euclidean 4D universe, that thereafter evolves to an asymptotic value θ̂ → 0, we
must require θ̂ to have an initial value θ̂0 = π

2 . Furthermore, the nonzero components of the Einstein tensor, are

G00 = − 3

θ̂2
, Gij =

3

θ̂2
δij, (34)

so that the energy density and the pressure are, respectively, given by

ρ(θ̂) =
1

πG

3
(πa0)2

, P (θ̂) = − 1
πG

3
(πa0)2

. (35)

The equation of state for the metric (33), is
P

ρ
= −1. (36)

We shall describe the case where the asymptotic evolution of the Universe is described by a vacuum expansion. In
this case the asymptotic scale factor, Hubble parameter and the potential are, respectively, given by

a(t) = a0 eH0t,
ȧ

a
= H0 V =

3
8πG

H2
0 , (37)

so that, due to the fact that δV
δφ = 0, the background field background solution of the background dynamics

φ′′ − 2

θ̂
φ′ = 0, (38)

is

φ(t) = φ0. (39)

This solution describes the background solution of the field that drives a phase transition of the global geometry from
a 4D Euclidean space to a 4D hyperbolic space-time. The exact back-reaction effects were considered in [5,6]. In the
present paper we shall consider the emission of gravitons (massless bosons of spin 2 and spin 1), using unified spinor
fields [7].



Eur. Phys. J. Plus (2018) 133: 508 Page 7 of 8

5.1 Graviton’s emission in pre-inflation

To study the graviton’s emission during pre-inflation we shall use eq. (31), for spin s = 2� (see eq. (26)). In this case
eq. (31) can be separated into two new equations

[
γ̄i, γ̄0

]
,0

=
s2

8�2

{
ν

0 ν

}[
γ̄0, γ̄i

]
, (40)

kβ
I4×4 =

1
6
kα

[
γβ , γα

]
+

3is2

8�2

{
ν

θ ν

} [
γ̄θ, γ̄β

]
. (41)

Equations (40) and (41) give us the conditions that must be fulfilled by the modes with wave number k and massless
bosons with spin s = 2�, in eq. (25). In particular, eq. (40) is fulfilled only by s = 2�-spin massless bosons (gravitons).
During pre-inflation γ̄β = 2θ̂

πa0
γβ and (γ̄β),0 = 1

θ̂
γ̄β . From (41) we obtain four vector equations that provide us the

solutions for the kβ-components of the graviton’s propagation during pre-inflation. Using the fact that (for i, j = 1, 2, 3)
{

0
0 0

}
=

{
1

0 1

}
=

{
2

0 2

}
=

{
3

0 3

}
= −1

θ̂
, (42)

we obtain the resulting values for kβ

k0 = −
(

18 i

πa0

)
θ̂, k1 = k2 = 0, k3 = ±

(
74 i

πa0

)
θ̂, (43)

such that the physical wave number norm of gravitons that propagate in the ẑ-direction, is

|k|2

a2(θ̂)
=

(kαkα)

a2(θ̂)
=

[
1288

(πa0)2

]
θ̂2 > 0. (44)

Notice that it tends to zero with the expansion of the universe, due to the fact θ̂ → 0 with the increasing of the scale
factor a(θ̂) = πa0

2θ̂
. However, due to the fact we are dealing with photons, the k-squared norm must be null on physical

coordinates. Therefore, the effective frequency and the z-component of the wave number in physical coordinates should
be altered in the following manner (we use natural units):

ω2 ≡
(
k̃0

)2

=

[
�

(
k0

a(θ̂)

)]2

+
|k|2
a2

=
(

74
πa0

)2

θ̂2,
(
k̃3

)2

=

[
�

(
k3

a(θ̂)

)]2

, (45)

such that k̃αk̃α = 0. Therefore, the redefined physical values k̃α, should be the values experimentally measured. The
physical wavelength results to be λph = (2π

37 ) (a(θ̂)
a0

)H−1
0 , such that H0 = a−1

0 . In other words the physical wavelength
of gravitons is something smaller than the physical Hubble radius during pre-inflation.

5.2 Massless s = �-bosons emission in pre-inflation

In order to study the massless s = � bosons emitted during the pre-inflationary epoch, we shall use eq. (31), with (26),
for s = �. In this case eq. (31) can be splited into two equations:

[
γ̄i, γ̄0

]
,0

=
s2

2�2

{
ν

0 ν

} [
γ̄0, γ̄i

]
, (46)

kβ
I4×4 =

1
2
kα

[
γβ , γα

]
. (47)

Equation (46) is needed to assure its validity for s = �, so that eq. (47) is fulfilled in order to obtain the wave number
components of the wave. Notice that if we sum eqs. (46) and (47), we obtain eq. (31) for the metric (12). The wave
number solutions for the four eqs. (47), are

k0 = −
(

i

π2a2
0

)
θ̂, k1 = k2 = 0, k3 = ∓

(
3 i

πa0

)
θ̂. (48)
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The physical wave number norm of s = �-bosons that propagate in the ẑ-direction, is

|k|2

a2(θ̂)
=

(kαkα)

a2(θ̂)
=

[
8

(πa0)2

]
θ̂2 > 0, (49)

which, as in the case of gravitons, tends to zero with the expansion of the universe. In order for the k-squared norm
to be null, the frequency and z-wave number must be altered in physical coordinates, k̃αk̃α = 0:

ω2 ≡
(
k̃0

)2

=

[
�

(
k0

a(θ̂)

)]2

+
|k|2
a2

=
(

3
πa0

)2

θ̂2,
(
k̃3

)2

=

[
�

(
k3

a(θ̂)

)]2

. (50)

These should be the values measured in an experiment. In this case, the physical wavelength for massless s = �-
bosons, is λph = (4π

3 ) (a(θ̂)
a0

)H−1
0 , which is something bigger than both the physical graviton’s wavelength and the

Hubble horizon.

6 Final comments

Following the unified spinor field theory recently introduced, we have obtained the universal equation of motion for
massless bosons with quantization included: eq. (31). This equation describes the dynamics of massless bosons with
different spin on arbitrary Riemannian background. The dynamics of some particular spinor field is given when we
consider eq. (26) in the background (Riemannian) expectation value of eq. (25). In particular, we have explored the
case of a pre-inflationary scenario described in sect. 5. In this epoch the universe suffered a global topological phase
transition that made possible the transition between a global 4D Euclidean universe and an hyperbolic one through
an expansion governed by a vacuum equation of state: P = −ρ. A remarkable result here obtained is that during this
epoch gravitons and s = �-bosons take a positive relativistic squared norm in physical coordinates: |k|2

a2(θ̂)
|s=(1,2)� > 0,

which tends to zero with the expansion of the universe. However, by redefining the physical coordinates in order to
obtain k̃αk̃α = 0, we obtain that the wavelengths of both gravitons and photons is increased co-moving with the
Hubble radius of the universe: λPh ∼ a/H0. Our calculations show that gravitational radiation is emitted during the
big bang. As was shown in (29), bosons with s = (1, 2)� can be created in any relativistic scenario, and therefore
can be created during pre-inflation. However, this is not the case of scalar bosons, which have zero spin. Because
the wave-length of both, photons and gravitons are of the order of the Hubble horizon, the frequency should be very
low, of the order of the inverse of the edge of the universe, which make it very difficult to be detected because of the
diluting effects of the expansion of the universe. However, they should be responsible for very large-scale gravitational
and electromagnetic primordial fundamental wavelengths, which are coherent, and could be detected in the future in
the extreme (low-frequencies) range of the primordial electromagnetic and gravitational spectrum.
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