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Abstract
We apply a Pyragas-type control in order to synchronize the solutions of a glycolytic
model that exhibits an aperiodic behavior. This delay control is used to stabilize the
orbits of ordinary differential nonlinear equations systems. Inspired by several works
that studied the chaotic behavior of diverse systems for the enzymatic reactions in the
presence of feedbacks, the control to two of these models is analyzed.

Keywords Delayed differential equation · Control theory · Glycolysis · Bifurcation

1 Introduction

In nonlinear dynamic systems, the instability of the trajectories can occur in a variety
of ways, one of which is the presence of chaos. In many cases, the existence of chaos is
evidenced by the appearance of unstable orbits, irregular oscillations that never repeat
(or of infinite period) and that produce strange attractors. According to Montero and
Morán (1992): By chaos is meant the aperiodic dynamic behavior, which occurs under
totally deterministic conditions and presents great sensitivity to the initial conditions.
Other aspects are expressed by Decroly and Goldbeter (1982): Evolution to chaos
appears to be a universal way by which periodic behavior looses its regularity and
becomes unpredictable, although governed by deterministic laws.

Chaos usually appears in the most varied contexts (MacKey and Glass 1977), and
it is not always indicative of dysfunction or bad behavior. For example, chaotic brain
waves are associated with normal behavior as evidenced by electroencephalograms,
whereas periodicity is typical during epilepsy attacks (Montero and Morán 1992;
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Torres 1991). Also, the heart beats have a tenuous aperiodicity, necessary for adapta-
tion to the changes in the environment, and the loss of this aperiodicity in the heartbeat
is a sign of heart attack. There are classical experiments widely quoted in the literature
(Balanov et al. 2005; Chen and Yu 1999; Morse 1976; Strogatz 1994) in which chaos
appears in chemical reactions (Belousov–Zhabotinskii model), electronic circuits (see
Chua and Moiola 1999 the Chua circuit or Bharti and Yuasa 2010 for the Ueda oscil-
lator), the Feigenbaum or Hénon map for the discrete case, and the famous Lorentz
and Rössler models.

Moreover, there are trajectories that are not classified as chaotic, although at first
glance seem to have an aperiodic behavior. This is the case, for example, of the quasi-
periodic orbits, which are often confused with chaos because oscillations of this kind
may never repeat.

1.1 The Glycolytic Model

Oscillations (or rhythmic behaviors) are found at all levels of biological organization.
From a thermodynamic perspective, such cycles represent dissipative structures.

According to the definition of Nelson and Cox (2017), glycolysis (from the Greek
glykys: sweet, lysis: degradation) is an ancientmetabolic pathway in evolutionary terms
consisting of a sequence of reactions that convert one molecule of glucose into two
of pyruvate with the concomitant net production of two molecules of ATP (adenosine
triphosphate). Pyruvate can be converted into a form of lactate (lactic fermentation)
or ethanol (alcoholic fermentation). It is an anaerobic process, and it does not require
oxygen, since it dates from a stage in which the atmosphere had not accumulatedmuch
O2 and evolved with this character .

In various tissues and cells of mammals (erythrocytes, kidney, brain, and sperm),
glucose is the main source of metabolic energy. This is also observed in some plant tis-
sues (potato tubers). Although the original model of glycolysis contains ten enzymes,
a simplified pathway of two enzymes is studied, those involved in generations of
oscillations: phosphofructokinase (PFK) and pyruvate kinase (PK), linked in cycle
by the common metabolites ADP and ATP (Torres 1991; Montero and Morán 1992).
The system is maintained open by the external and periodic injection of fructose-6-
phosphate (F6P) and phosphoenolpyruvate (PEP), the final products of the reaction
being fructose 1,6-diphosphate (FDP) and pyruvate.

In the process of regulation of enzyme level, there exist two instability generat-
ing mechanisms: substrate inhibition (negative feedforward) and product activation
(positive feedback).

Glucolytic oscillations are observed in cases such as those of the pancreas cells (see
Makroglou et al. 2006; Westermack and Lansner 2003), in yeast or in muscles. The
origin of these oscillations lies in the regulatory properties of the enzymes (see Kar and
Ray 1994), particularly phosphofructokinase, which is activated by the ADP product.

The simplified model of 2 enzymatic reactions that shall be analyzed in this work
represents a prototype of a self-regulated metabolic pathway. Clearly, this condition
yields only four possibilities when two instability generators couple in series (Figs. 1,
2).
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Fig. 1 Model M1

Fig. 2 Model M2

In what follows, for both models x, y, z shall denote the rescaled concentrations of
substrate S and the products P1 and P2

x(t) := [S](t)
Km1

, y(t) := [P1](t)
KP1

, z(t) := [P2](t)
KP2

,

where KPj are the Michaelis constants for products Pj , j = 1, 2.

1.1.1 ModelM1

For convenience, a brief description of the model is presented. The substrate S is
synthesized at a constant rate v, and its transformation is catalyzed by an allosteric
enzyme E1, which is activated by the product P1. A second allosteric enzyme E2 uses
P1 as substrate and is activated by its product P2. The removal rate of P2 shall be
denoted by Ks .

The system reads ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= κ − σ1�(x, y),

dy

dt
= q1σ1�(x, y) − σ2η(y, z),

dz

dt
= q2σ2η(y, z) − Ksz

(1)

where

1. The functions �, η : R2 → R are given as in Decroly and Goldbeter (1982);
Letellier (2002) by

�(x, y) := x(1 + x)(1 + y)2

L1 + (1 + x)2(1 + y)2
, η(y, z) := y(1 + dy)(1 + z)2

L2 + (1 + dy)2(1 + z)2
,
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where L1 and L2 are the allosteric constants of E1 and E2, respectively, and d is
defined below.

2. v denotes the constant input of substrate S.

3.
v

Km1
= κ , where Km1 is the Michaelis constant for E1.

4. σ1 and σ2 are the maximum activities of enzymes E1 and E2, respectively.

5. q1 = Km1

KP1
and q2 = KP1

KP2
.

6. d = KP1

Km2

= �

� + 1
where Km2 is the Michaelis constant of E2 for substrate

P1 and � is defined following in Xian et al. (1984) as the asymmetry coefficient
for the breakdown of the enzyme-substrate complex E2P1. It is supposed that the
breakdown ismainly in the direction inwhich P2 is produced (that is KP1 � Km2 );
thus, � is considerably small.

7. The parameter Ks represents the apparent first-order rate for removal of P2.
Decroly and Goldbeter (1982) use it as a bifurcation parameter, because the vari-
ation in Ks could result from a continuous change in enzyme activity.

1.1.2 ModelM2

This model was studied by Xian et al. (1984), who considered a physiologically more
realistic model, because the coupling of enzymes occurs between a positive and a
negative feedback (feedforward). Unlike in the preceding case, a substrate inhibition
is observed, which makes of M2 a more complete system since it exhibits all known
patterns of temporal self-organization.

Some distinctive aspects of model M2 are the following: The substrate S can also
flow to another pathway through a first-order reaction with constant rate ka . Besides,
the intermediate product P1 can in turn activate the production of substrate S through
first-order reactionwith constant rate kb. Thus, themodel is governed by the following
system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= κ − σ1�(x) − kax + kb

y

q1
,

dy

dt
= q1σ1�(x) − kb y − σ2η(y, z),

dz

dt
= q2σ2η(y, z) − Ksz

(2)

where

1. The function � : R → R is defined by:

�(x) := x

KA + x + K ′′
Ax

2 ,

where KA, K ′′
A are the allosteric constants.
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2. ka is the first-order constant that represents the rate at which the S substrate flows
out of the system.

3. The reaction according to which P1 reproduce the substrate S has rate kb.
4. The remaining parameters and functions are defined as in the model M1. We recall

that Ks was used in Xian et al. (1984) as bifurcation parameter.

2 The Pyragas Method

The effect of chaos on dynamic systems is usually undesirable if one wants to predict
the behavior of the variables. Several techniques have been developed to control the
chaos and thus eliminate the instability of a trajectory bymaking slight time-dependent
perturbations in the form of feedbacks, which are understood as the response of a
receiver to the signal sent by an issuer. As many strange attractors store within them
myriads of unstable trajectories, methods such as those developed by Ott et al. (1990)
and Pyragas (1992) allow this attractor to be split into a large number of periodic
trajectories. To fix ideas, let us consider the system

Ẋ(t) = F(X(t))
X(t0) = X0

(3)

where X = (x1, . . . , xn) is the states vector (for instance, each coordinate x j (t)
represents a concentration depending on time) and assume that (3) has an unstable
trajectory.

The Pyragas method, also known as time-delay autosynchronization, is part of a
general class of methods called “closed loop” or “feedback” methods. It introduces a
time-delayed continuous feedback by using an external control force D : Rn → R

n

which consists in the difference between the variable to be controlled and its delayed
counterpart, namely D(S) := S(t) − S(t − τ), whose intensity is practically zero
as the system evolves close to the chosen periodic orbit but increases when it drifts
away from it. This force is further multiplied by a matrix K ∈ R

n×n , in which the
coefficients represent the weight of the perturbation added by the control. By selecting
the matrix K, stabilization can be achieved (see Boccaletti et al. 2000; Fourati et al.
2010; Hövel 2010; Pyragas 1992).

2.1 Applying the Control

Let us consider a system with same conditions of (3), which presents chaotic behavior
near an unstable equilibrium (steady state) P0 ∈ R

n , according to the definition of
Pyragas (1992),

X ′(t) = F(X(t)) + K(X(t) − X(t − τ)) (4)

where F : R
n → R

n corresponds to the system under study, as before X(t) =
(x1(t), x2(t), . . . , xn(t)) is the state vector of the model, τ ≥ 0 is a fixed delay (see
Erneux 2009) and the control matrix K ∈ R

n×n . We denote by A := JF (P0) the
Jacobian matrix of F at the equilibrium.
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Assume that P0 is an unstable equilibriumof (3) due to the fact that some eigenvalue
of A has strictly positive real part. We shall choose the control matrix K in such a
way that all the eigenvalues of the matrix A + K have strictly negative real part. This
choice is based on the fact that the characteristic equation

P(λ, τ ) = det
(
λI − (A + K) + Ke−λτ

) = 0 (5)

satisfies
lim sup
τ→+∞

max
P(λ,τ )=0

�(λ) ≤ 0.

Indeed, it is well known that for each τ ≥ 0 and each μ ∈ R the set Sμ := {λ :
P(λ, τ ) = 0,�(λ) ≥ μ} is finite and, furthermore, if μ > 0, then Sμ is empty for τ

large enough. The latter claim is due to the following facts:

1. |e−λτ | = e−�(λ)τ ≤ e−μτ → 0 as τ → +∞.
2. min�(λ)≥μ |det(λI − (A + K))| > 0.

We shall look for a minimum delay τc > 0 such that all solutions of (5) have
non-positive real part, that is:

τc = min{τ > 0 such that P(λ, τ ) = 0 ∧ �(λ j ) ≤ 0 ∀ j}. (6)

The existence of this critical delay will depend on the choice of the matrixK. Numer-
ical examples in the next sections will be devoted to find, for appropriate K, a range
(τc, τc + δ) of values of τ such that all the solutions of (5) have strictly negative real
part. For simplicity, we shall consider constant matrices only and, as shown in the
examples, sparse matrices when possible.

3 Decroly–Goldbeter CoupledModel (M1)

The biochemical model of glycolysis analyzed in Decroly and Goldbeter (1982) is
proposed in order to observe the effect of twomechanisms generating instabilitywithin
the same system.This instability produces a periodicity based on the positive feedbacks
between the enzymes (whose oscillations may have periods of several minutes) and
the successive substrates and products of the chain.When studying this model coupled
in series, it was observed that the continuous variation of certain parameters of the
system gives rise to a wide range of mechanisms of self-organization ranging from
simple oscillations, birhythmicity to chaos.

3.1 A Chaotic Model

According to Decroly and Goldbeter (1982), a strange attractor can be obtained by
varying the coefficients of the system. For example, taking

κ = 0, 45, σ1 = σ2 = 10, d = 0,
q1 = 50, q2 = 0, 02, L1 = 5 × 108, L2 = 100,

(7)

the attractor of Fig. 3 can be observed for Ks = 2.
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Fig. 3 Strange attractor of system (1) with parameters (7)

Based on Chen and Yu (1999), we will apply a control type of Pyragas (1992) to
study models of this kind. Under the previous choice of the parameters, the system
has the following equilibrium points:

P0 = (x∗, y∗, z∗) = (31.2138; 152.188; 0.225)

P1 = (x∗∗, y∗∗, z∗∗) = (−32.1667; 152.188; 0.225)
(8)

Recalling the fact we are working with concentrations, for the subsequent analysis we
shall focus on the first of these points, which has positive coordinates.

In order to propose a control matrix K, let us observe that, since feedbacks occur
between P1 and P2, it is expected that the equation corresponding to S does not require
any control. For this reason, we shall consider a matrix of the form:

K :=
⎛

⎝
0 0 0
0 k1 k2
0 k3 k4

⎞

⎠

We remark that different types of matrices may be suitable, according to the different
models and the presence of delays. Since each nonzero coefficient of K represents a
new term which is added to the original system (3), it proves convenient to choose K
with a small number of nonzero entries.
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3.1.1 Looking for a Critical Delay

In the first place, consider the linearized system:

X′(t) = AX(t)

where the Jacobian matrix of (1) at P0 is given by

A := J�(P0) =
⎛

⎝
− 0.0270884 − 0.0056023 0
1.35442 0.132271 − 36.1916

0 0.00295688 − 1.27617

⎞

⎠ .

The eigenvalues of A are given by

�A = {0.0125038 ± 0.080875i,−1.19599}

Thus, the controlled linearized system reads:

X′(t) = AX(t) + K(X(t) − X(t − τ)). (9)

For example, we may take the following sparse matrix:

K =
⎛

⎝
0 0 0
0 0 3
0 1 0

⎞

⎠

which yields the following eigenvalues of A + K:

�A+K = {−0.571805 ± 5.72724i,−0.0273747}

Hence, we obtain the following controlled system for (1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′(t) = 0, 45 − 10
(
x(t)(x(t)+1)(y(t)+1)2

)

5·108+(x(t)+1)2(y(t)+1)2
,

y′(t) = − 10
(
y(t)(z(t)+1)2

)

(z(t)+1)2+100
+ 500

(
(x(t)+1)(y(t)+1)2x(t)

)

5·108+(x(t)+1)2(y(t)+1)2
+ 3(z(t) − z(t − τ)),

z′(t) = 0,2
(
y(t)(z(t)+1)2

)

(z(t)+1)2+100
− 2z(t) + (y(t) − y(t − τ)),

x(t) = 31.214, y(t) = 152.2, z(t) = 0.22, t < 0

(10)
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With the idea in mind of keeping near the equilibrium for all t ≥ 0, let us fix
the initial condition close to P0. When τ = 0, a chaotic behavior is observed, so we
propose an analysis similar to that of Murray (2001, pp 246–252), Cao and Yu (2007),
Xu (2011) and Xu and Liao (2010) for a model with three equations, in order to find a
critical time lag by looking at the roots of the characteristic function (see Hale 1977;
Ruan and Wei 2003), namely

P(s) := −s3 − 1.17099s2 + 30.1827se−sτ + 3se−2sτ

+ 0.817601e−sτ + 0.0812651e−2sτ − 33.1595s − 0.906876.

In order to find a critical delay, we shall find conditions for the existence of roots
s = ω0i :

P(ω0i) = − 0.906876 − 33.1595iω0 + 1.17099ω2
0 + iω3

0 + 0.817601 cos(τcω0)

+ 30.1827iω0 cos(τcω0) + 0.0812651 cos(2τcω0)

+ 3iω0 cos(2τcω0) − 0.817601i sin(τcω0) + 30.1827iω0 sin(τcω0)

− 0.0812651i sin(2τcω0) + 3iω0 sin(2τcω0) = 0 (11)

Following the ideas in Ruan and Wei (2003), we split real and imaginary parts in the
previous equation and obtain two families of solutions:

ω01 = ±0.0608661 ∧ τc1 = 0.027402336 + 32.859kπ, k ∈ Z

ω02 = ±7.68649 ∧ τc2 = −0.36112741 + 0.260197kπ, k ∈ Z,

We search for a minimum critical delay according to (6). For each group of solutions,
we get:

τc1 = 0.0274023, τc2 = 0.456302.

We claim that τc1 = 0.0274023 is the critical delay, for which the desired stability
conditions are verified. Using bifurcation diagrams, we shall demonstrate that the real
parts of the characteristic values of the system remain negative in all cases for a range
(τc, τc + δ). Moreover, we shall obtain a picture of the trajectories for the controlled
model under this range of delays.

The corresponding bifurcation diagrams for each solution showhow the equilibrium
of system (10) changes for 0 ≤ τ ≤ 0.05. Unstable behavior is observed for small
values of τ , and stabilization occurs from τc (Figs. 4, 5, 6).

123



P. Amster, C. Alliera

Fig. 4 Bifurcation for x(t) with 0 < τ < 0.05

Fig. 5 Bifurcation for y(t) with 0 < τ < 0.05
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Fig. 6 Bifurcation for z(t) with 0 < τ < 0.05

Next, we shall consider the evolution of each of the characteristic values as the
value of τ increases and passes through τc. In all cases, we took values of τ between
0 and 0.035 (Figs. 7, 8).

Fig. 7 Real part of λ1 and λ2
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Fig. 8 Real part of λ3

It is observed that the real part of the characteristic values is strictly decreasing
in a neighborhood of the critical delay τc; thus, there exists δ > 0 such that all the
characteristic values have (strictly) negative real part when τ ∈ (τc, τc + δ).

A more theoretical approach follows from the fact that, since the roots of P(·, τc)
are simple then, by the implicit function theorem, for τ close to τc the characteristic
values λ j for j = 1, 2, 3 can be obtained as functions of τ . Furthermore,

λ′
j (τ ) = −

∂P
∂τ
∂P
∂λ

(λ j (τ ), τ ) j = 1, 2, 3,

which yields

λ′
1(τc) = −

∂P
∂τ
∂P
∂λ

(λ1, τc) = −0.241571 + 0.502175i

λ′
2(τc) = −

∂P
∂τ
∂P
∂λ

(λ2, τc) = −0.241571 − 0.502175i

λ′
3(τc) = −

∂P
∂τ
∂P
∂λ

(λ3, τc) = −38.9662.

It is observed, in all cases, that the real part decreases and, consequently it is strictly
negative over some interval (τc, τc+δ). The following figure illustrates the trajectories
obtained for different values of τ (Figs. 9, 10, 11, 12).
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Fig. 9 Unstable trajectory for τ = 0.02 < τc , 0 ≤ t ≤ 1000

Fig. 10 Limit cycle if τ = 0.0274023 ≈ τc , 0 ≤ t ≤ 2600
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Fig. 11 Stable trajectory when τ = 0.03 > τc , 0 ≤ t ≤ 1200

Fig. 12 Stable trajectory when τ = 0.05 > τc , 0 ≤ t ≤ 1200. The convergence is faster than in the case
τ ≈ τc (Fig. 3)

4 Second Example: A Coupled Enzyme-Catalyzed System

The parameters of the model proposed in Xian et al. (1984) are the following:

κ = v

Km1
= 200 s−1, σ1 = 40000, σ2 = 8 s−1, d = 0, L2 = 1000

q1 = 1.5, q2 = 0, 065, ka = 0.85, kb = 1.32, K ′
A = 1000, K ′′

A = 0.3
(12)

For Ks = 1.92 is observed the following attractor (Fig. 13).
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Fig. 13 Unstable path model (2) for the parameters given by (12) with 50 < t < 200

The resulting steady states are:

P1 = (x∗, y∗, z∗) = (13.2691; 351.295; 9.5835)

P2 = (x∗∗, y∗∗, z∗∗) = (169.749; 722.885; 2.82917)

P3 = (x∗∗∗, y∗∗∗, z∗∗∗) = (229.243; 607.287; 0.261201)

(13)

Unlike the previous model, all the equilibria have positive coefficients, the first two
of them are unstable and the latter is stable. Without loss of generality, we shall apply
the method to the first equilibrium point.

4.1 Application of Control

As in the previous section, we shall look for a matrix K such that J�(P1) + K has
all its eigenvalues with negative real part. At the equilibrium P1, the Jacobian matrix
reads:

A := J�(P1) =
⎛

⎝
− 34.1853 0.88 0
50.003 − 2.12582 − 48.1065

0 0.0523785 1.20692

⎞

⎠

with eigenvalues :

�A = {0.198408 ± 1.18841i, −35.501}

Hence, we may take

K =
⎛

⎝
0 0 0
0 − 7 − 3

− 2 7 − 1

⎞

⎠
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since the eigenvalues of A + K are:

�A+K = {−3.88891 ± 18.1533i,−35.3264}

Thus, the controlled system reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= 200 − 40000

x

1000 + x + 0.3x2
− 0.85x + 1.32

y

1.5
,

dy

dt
= 60000

x

1000 + x + 0.3x2
− 1.32y − 8

y(1 + z)2

1000 + (1 + z)2
−7(y(t) − y(t − τ)) − 3(z(t) − z(t − τ)),

dz

dt
= 0.52

y(1 + z)2

1000 + (1 + z)2
− 1.92z − 2(x(t) − x(t − τ))

+7(y(t) − y(t − τ)) − (z(t) − z(t − τ)),

x(t) = 13, y(t) = 352, z(t) = 9.58, t < 0

(14)

Hence, we obtain the corresponding characteristic function.

P(λ, τ ) = −λ3 + 8λ2e−λτ − 43.1042λ2 + 660.062λe−λτ − 28λe−2λτ

+ 13076e−λτ − 951.909e−2λτ − 619.427λ − 12175.8

As before, in order to find a critical τc, we establish necessary conditions for the
existence of a purely imaginary root of P:

P(λ, τc) = 8iω2 sin(τcω) + 660.062ω sin(τcω) − 28ω sin(2τcω)

− 13076.1i sin(τcω) + 951.909i sin(2τcω) + 660.062iω cos(τcω)

− 28.iω cos(2τcω) − 619.427iω − 8ω2 cos(τcω) + 13076.1 cos(τcω)

− 951.909 cos(2τcω) + iω3 + 43.1042ω2 − 12175.8 = 0

As before, two sets of solutions are obtained:

ω1 = ± 26.9559 τc1(k) = − 0.08052813 + 0.0741952kπ

ω2 = ± 1.19884, τc2(k) = 0.00126086 + 1.668276kπ, k ∈ Z

The smallest τc > 0 is obtained for ω2 with τc = 0.00126086.
As before, we analyze the evolution of the characteristic values of system (14)

with respect to τ in a range containing the critical delay. The first two eigenvalues are
complex conjugates: λ2 = λ1 (Figs. 14, 15).
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Fig. 14 Real part of λ1, λ2

Fig. 15 Real part of λ3

In all cases, we took values τ ∈ [0; 0.005). It is observed that the real part of each
characteristic value decreases. We shall confirm this fact by computing the following
implicit derivatives:

λ′
1(τc) = −

∂P
∂τ
∂P
∂λ

(λ1, τ ) = −155.793 − 4.64371i

λ′
2(τc) = −

∂P
∂τ
∂P
∂λ

(λ2, τ ) = −155.793 + 4.64371i

λ′
3(τc) = −

∂P
∂τ
∂P
∂λ

(λ3, τ ) = −5.42631

The following figures show the behavior for different values of τ (Figs. 16, 17, 18,
19).
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Fig. 16 Unstable path for τ = 0.001 < τc with 0 < t < 90

Fig. 17 Limit cycle for τ = 0.00126086 ≈ τc with 0 < t < 90
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Fig. 18 Stable trajectory for
τ = 0.00128 > τc . Slow
convergence to equilibrium is
observed for 0 < t < 120

Fig. 19 Stable trajectory for
τ = 0.0014 > τc . Faster
convergence to equilibrium is
observed for 0 < t < 120 (see
Fig. 8)

5 Conclusions

After studying the concentrations in the controlled model starting near the equilibrium
P0, different behaviors for different delay values τ > 0 with respect to a critical delay
τc > 0 are observed.

It is known that for τ < τc instability and even chaos is observed [the case τ = 0
already studied by Decroly and Goldbeter (1982) and Xian et al. (1984)], making
unclear the fact that the concentrations behave in a predictableway or tend to a balance.

For τ ≈ τc, periodic behavior is observed, in which the variables describe orbits
around the equilibrium P0. When τ ∈ (τc, τc + δ) for some δ > 0, the variables
(concentrations) converge to the equilibrium point P0.

In the above-described examples, the control of Pyragas allows to synchronize the
behavior of the solutions, which is in principle, aperiodic. The addition of a term that
links a previous stage of concentrations x, y, z mathematically resolves the chaotic
behavior observed in cited works. It remains to see the biochemical meaning, if any,
of this control term that allows to correct the instability of the original model.
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