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Front propagation dynamics: Qualitative differences revealed by very high intensity fluctuations
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This paper presents a detailed analysis of the effect of a large external noise on the propagation of a
front between two stable steady states. Noise affects one of the steady states or the thresholds. Significant
differences with respect to the case of small noise intensity are carefully studied using a Langevin approach.
The average effect of noise is modeled by means of an additional nonlinear term that enables an analysis of
short-time and long-time behaviors. Nontrivial behaviors are numerically observed and analytically discussed:
(i) Two symmetry breakings of the fluctuation-free stable states are observed and (ii) two fronts propagating in
opposite directions are simultaneously observed and the propagation direction may be exchanged by changing
the diffusion coefficient.
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I. INTRODUCTION

Propagating fronts into metastable states or phases is a
well-known phenomenon [1]. It is the most effective way
for a phase transition to take place between a stable state
and another metastable one. According to Maxwell’s area
law, both phases coexist (and the front remains at rest) when
the areas corresponding to each attraction basin are equal
(Maxwell’s point). Then, when these areas are unbalanced,
the front moves into the (metastable) least-area phase with a
velocity proportional to the gap between such areas, with the
greatest-area phase (the one with least potential) remaining.
A front velocity reversion is only produced by varying some
parameter characterizing the nonlinearity in a way that yields
a reversion of the area relation. A statistical description is
required when the system is affected by additive noise. How-
ever, the deterministic states coincide with the most probable
values and the area relation does not change in comparison to
the noiseless case, with the mean propagation velocity of the
front equal to the deterministic one [2,3].

The situation is different when the noise is multiplicative.
For a given generic nonlinearity F0(u) and multiplicative
factor �1/2(u) the stochastic equation governing the dynamics
is

∂tu = F0(u) + D∂2
xu + �1/2(u) η(x, t ), (1)

where D is the diffusion coefficient and η(x, t ) a zero-mean
Gaussian white noise characterized by

〈η(x, t )η(x, t )〉 = λ
2
δ(x − x ′)δ(t − t ′). (2)

An analysis of the long-time average dynamics shows that
noise tends to destabilize the noisier state in favor of the
noiseless one [4,5]. In such a case, the corresponding average
dynamics can be described by an equation as (see Appendix):

∂tu = F0(u) − σ 2

2
�1/2(u)∂u�

1/2(u) + D∂2
xu, (3)
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where σ 2 := λ
2
δx, where δx is a (dimensionless) cutoff at

short length scales of the x domain. By using results describ-
ing the so-called entropic mechanism [6,7], a similar equation
was obtained to study constructive effects of noise in a system
with aggregating current (attractive lateral interactions) [8].
We note that an effective nonlinearity describing the corre-
sponding average dynamics arises, with the noise average
effect considered in a term like Stratonovich’s which is sub-
tracted to deterministic nonlinearity [5]. Engel obtained this
same equation, in a different way, to study front propagation,
resulting in a multiplicative noise that drives the front into the
noisier phase, with a mean propagation velocity proportional
to the gap between the squared noise multiplicative factor,
evaluated at each phase connected by the front (result vali-
dated for low noise intensity) [2]. This result enables us to
apply a generalization of the Maxwell’s area law by replacing
the F0(u) role by the above-mentioned effective nonlinearity.

A widespread proposal to describe front behavior is to
consider the noise effect as separated into a systematic part
and a fluctuating part. The systematic part, consisting of the
mean value of noise term and equivalent to Stratonovich’s
term, is added to the nonlinearity as a deterministic effect,
and thus the sum of both terms constitute an effective non-
linearity describing the average front behavior. On the other
hand, the fluctuating part is built subtracting the mean values
from the noise term, and therefore this does not contribute
to the mean displacement of the front since its average is
null [3,9,10]. In short, a zero is added to the stochastic
equation by adding and subtracting a term like Stratonovich’s.
Therefore, the equation governing the corresponding average
dynamics—deterministic nonlinearity plus the systematic part
(noise term) equals diffusive propagation—is written as:

∂tu = F0(u) + σ 2

2
�1/2(u)∂u�

1/2(u) + D∂2
xu. (4)

This equation is suitable for describing front propagation pro-
vided that a temporal coarse-graining enables us to decouple
fast fluctuations from slow ones. This in turn provides an
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averaged front shape different from the deterministic one and
therefore having different velocity. By defining an effective
potential from the deterministic nonlinearity added to the
noise term (integrating the effective nonlinearity and changing
its sign), we observe that fluctuations tend to stabilize the
noisier state. Moreover, the front moves in a way that such
a state is the one remaining when the deterministic nonlin-
earity is symmetric (Maxwell’s point). In short, according
to this second approach, the average effect of fluctuations
promotes the selection of the noisier state by means of the
front propagation. We emphasize that this result is opposite of
that obtained using Eq. (3), which at Maxwell’s point predicts
the stabilization of the noiseless state in the long timescale.
By considering that both equations describe the average front
behavior modeling the multiplicative noise effect by means
of an extra term like that of Stratonovich’s but with opposite
sign, the fact that these equations predict front velocities
with opposite directions should not be surprising. We note
that while the effective nonlinearity corresponding to the first
approach is the same one used to describe long-time behavior,
its equivalent (deterministic nonlinearity plus the systematic
part) corresponding to the second approach is the same one
used to calculate the known approximation describing short-
time behavior [4,5]. This suggests that if the front velocity
is low enough, the first approach [Eq. (3)] would be the
appropiate one, since a front that is slow enough should
connect phases corresponding to long-time behavior. Such
a situation can be expected for high noise intensity, but in
that case it can also be expected that the chance for a front
to be stabilized is very low, since noise would far overtake
any threshold. By contrast, for a bit higher front velocity
(although not high enough to overcome fluctuations) it would
correspond to applying the second approach [11]. However,
when comparing the dynamics corresponding to the long and
short timescales we observe that although a front could drive
the system toward the noisier state in the short timescale, it
could also happen that in the long timescale the same system
evolves from the noisier state toward the less-noisy state.

In general, researchers resorted to the second approach,
obtaining results that were consistent with numerical sim-
ulations [3,9,10]. We note that the second approach was
initially validated for low-enough noise intensity (small-noise
expansion approach) [3,9], but Novikov’s theorem used in
the context of front propagation in reaction-diffusion systems
enables this result to be applied for high noise intensity, since
this approach does not necessarily involve a series expansion
in powers of noise intensity nor any other approximation [10].
Despite the qualification of Novikov’s theorem, the studies
about front propagation driven by multiplicative noise were
not focused on situations of high noise intensity [3,9,10].

It is known that natural systems are undeniably subject
to random fluctuations, arising from either environmental
variability or thermal effects. Due to inherent complexity,
an environment parameter is typically subject to a complex
web of diverse processes, varying at different scales, both in
space and time. Therefore, it would be more realistic to model
its complicated behavior by means of a stochastic variable
[12]. Thus, for example, numerous reports emphasizing the
relevancy of environmental fluctuations effects on biological
systems have motivated interesting results about constructive

effects driven by mesoscopic parameter fluctuations describ-
ing a given system [12,13]. The range of noise intensity is
wide and therefore not necessarily limited to low values. Front
propagation in a bistable system does not escape to this reality.

In this paper we consider cases with high noise intensity.
We particularly studied an extended system governed by a
cubic nonlinearity, with one of its roots affected by fluctua-
tions. This proposal gives birth to a multiplicative noise with
a quadratic factor having two roots, and, as a consequence, the
noise is null when the field matches such roots. Propagating
fronts subject to the above conditions have already been
studied through the second approach but for situations of
low noise intensity [3,10]. The results notably change when
noise intensity is high. For the zero-dimensional case, strong-
enough fluctuations of one of the stable states can induce an
exchange of roles between the fluctuating state and the unsta-
ble (threshold) state [14]. We note that this is a phenomenon
appreciable at a long timescale, which is why this may not
impact front behavior. However, when a diffusion term is
incorporated, two spatial symmetry breakings arise as a result
of cooperation between fluctuations and spatial coupling: The
two stable states become unstable and are replaced by four
new ones (two per symmetry-breaking) [15]. In this paper we
show evidence that these symmetry breakings arise from a
short-time instability reinforced by spatial coupling, like in
Refs. [4,5].

The above-mentioned phenomenon remains hidden for low
noise intensity for two reasons: (a) There is a critical noise
intensity beyond which the symmetry breakings are produced
and (b) even if noise intensity exceeds the critical value (or
threshold), the emerging twin states at each destabilized state
are too close to each other for them to be easily detected,
unless the intensity is substantially increased. Therefore, on
average, the propagating fronts subject to the conditions just
mentioned behave as if they were governed by an effective
nonlinearity given by the sum of the deterministic nonlinearity
and the systematic fluctuating part (term indicated like the
Stratonovich’s one). So, for low noise intensity, the effective
nonlinearity is what sets the average front velocity. However,
when the intensity is high, both symmetry breakings become
evident and they strongly impact front propagation, as we
will show here. In fact, as noise intensity increases the two
emerging twin states separate more and more until the two
states (not twins) located in the field central region (between
the two states destabilized) overlap, establishing three stable
states instead of four [15].

In this paper we will show numerical simulation results
that reveal an unusual behavior in front propagation dynamics
under a high-noise-intensity regime. We will propose strong
fluctuations of one of the deterministic stable solutions as
well as the threshold. We will present also the corresponding
probability distribution in order to highlight the variation
of the new mean phases and their relative stability as the
coupling constant changes. Next, we will show propagating
fronts connecting noisy phases, each one confined within
one of three possible regions, highlighting the field value
dispersion within each region. We will also show how the
front velocity is reversed as the coupling constant changes,
which is inconsistent with the behavior observed for low noise
intensity. Finally, after calculating the SPDFs and relating
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them to the front velocity direction, we uphold the thesis that
this phenomenon is linked to the long-time system behavior.
The paper structure is as follows: description of the model and
phenomenon, numerical results, analysis, and conclusions.

II. MODEL AND DESCRIPTION OF PHENOMENON

In order to describe the system, we define a dimensionless
u field varying between zero and 1. For example: If the
model describes population dynamics, by considering each
individual requires a minimum vital space (a space that cannot
be invaded by another individual) and by definining u as the
covering degree of the available space, u can be taken as
dimensionless and normalized to 1. For the case in which the
field describes substance content (for example, phosphorus in
a model of lake eutrophication [16]), its maximum content can
be used to normalize u. Finally, u can also be dimensionless
and normalized to 1 when describing the covering degree of
an adsorbed surface.

We chose to make more visible the role of the parameters
characterizing the system by expressing the aforementioned
cubic nonlinearity in terms of their roots:

F (u) = (u − βd )(u − α)(βu − u). (5)

Hence, our control parameters are the nonlinearity roots.
The two uniform attractors are u = βd and u = βu and the
ejector (threshold) is α (separating both attraction basins).
We introduce fluctuations to each parameter by adding to its
mean value a zero-mean Gaussian white noise η(x, t ), with
a correlation given by Eq. (2). Thus, fluctuations around the
mean value of any of these parameters lead to multiplicative
noises with a factor which is quadratically dependent on the
field as �1/2(u) = (u − α)(u − βu) for βd fluctuations and
�1/2(u) = (u − βd )(u − βu) for α fluctuations.

As a significant fact for our results, we remark that both
multiplicative factors are zero, provided that the field values
match any of the two roots unaffected by fluctuations (in other
words, fluctuation-free roots).

Thus, the corresponding stochastic dynamics is described
by Eq. (1), where now the subindex 0 in F0(u) indicates F (u)
but replacing the fluctuating parameter (β or α) by its mean
value (βd0 or α0). We note that Eq. (1) is to be interpreted in
the Stratonovich’s sense.

The noise multiplicative-factor roots separate the field
variability range into three regions, which we denote as I, II,
and III. Their definitions depend on which parameter is the
one that fluctuates, which we now outline as follows: when
βd fluctuates, region I is between u = 0 and u = α, region
II is between u = α and u = βu, and region III is between
u = βu and u = 1. When α fluctuates, region I is between
u = 0 and u = βd , region II is between u = βd and u = βu,
and region III is between u = βu and u = 1. For high noise
intensity, numerical simulations of Eq. (1) show that when
taking an initial field profile confined to one of these regions,
the system evolves in a way that the field always remains
within such a region [15]. As a consequence, we consider
the frontiers between regions to be “impassable walls” for
the field, provided that such regions are not connected by
field gradients. The same above behavior is observed for low
noise intensity when α fluctuates, but there is a difference
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FIG. 1. SPDF vs. field for α fluctuations around α0 = 0.5, with
βd = 0.333333, βu = 0.6666667, λ = 1.5, and Ka = 3.4. (a) �→
overall view. (b) �→ zoomed image around the u = βd redefining u

as u = 108(u − βd ). Zoomed image around the u = βu is similar to
the former. We note that the SPDF in u = βd and u = βu is zero.

in behavior when it is βd the one that fluctuates: The α

root does not work as an impassable wall. We note that in
such case while u = α is always a root of F eff

0 (u), provided
that the system is zero dimensional, for low noise intensity
u = α is an ejector and for high noise intensity u = α is an
attractor [14]. Therefore, the noise multiplicative factor roots
only work as “impassable walls” when they are attractors of
the zero-dimensional system.

Both numerical simulations calculating the stationary
probability density function [SPDF obtained from Eq. (1)],
as well as the SPDF obtained from Eq. (3)—the one that
governs the long-time dynamics—by means of a mean-field
approximation, show symmetry breaking in each fluctuation-
free stable root [15]. Although it is hard to detect, such a
phenomenon occurs even when noise intensity is low. Figure 1
shows the SPDF vs. field curve for a low noise intensity (cor-
responding to α fluctuating, coupling constant Ka = 2D

δx2 , and
λ = 1.5, with λ = σ

βu
; the parameter we choose to set the noise

intensity value). In order to focus on the effects of the noise
and coupling, we minimize the deterministic force driving the
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front by selecting parameter values that set a quasisymmetric
deterministic nonlinearity. Here the curves were numerically
calculated for each region separately (see Ref. [15] for the
calculation method) and then they were combined into the
same curve and normalized (using a fictitious criterium to
enhance the curve visibility). Since the field values do not
cross limits between regions, curve heights calculated this
way are not comparable between regions. These were thus
calculated only to highlight all the possible phases that might
be connected by fronts (including the metastable ones). We
note that the averages were calculated using 30 different
realizations (each one initiated from a different seed). The top
curve in Fig. 1 appears to show only two phases that match the
fluctuation-free roots, but such as it is shown in bottom curve
in Fig. 1, by expanding the image around of the each peak,
both symmetry breakings (twin states) are revealed.

As previously mentioned, there is a critical noise intensity
from which the symmetry breakings occur. We note that the
aforementioned mean-field approximation, which was imple-
mented from an equation describing a long-time dynamics
and supports the numerically observed symmetry breakings
[15], does not enable us to detect such a critical point. We
consider that the reason for this is that the instability causing
such a phenomenon appears in the short timescale. In order
to prove this we calculate the short-time evolution of the first
moment of the probability density as in Ref. [5] after applying
a mean-field approximation that causes the elimination of the
diffusion term. Under these conditions, the equation govern-
ing the evolution of the first moment can be written as:

∂t 〈u〉 = F0(〈u〉) + λ
2
∂〈u〉�(〈u〉), (6)

where 〈u〉 is the first moment of u. A simple calculation using
Eq. (6) enables us to show that there is a short-time insta-
bility per each fluctuation-free stable root. This short-time
instability, which is induced by the multiplicative noise and
reinforced by spatial coupling, both acting in cooperation, is
the one producing each one of symmetry breakings observed.
Given that, when close to the critical point, the most likely
field values are near the fluctuation free roots, a linearization
of both terms is applicable. For α fluctuations and around
u = βu we obtain:

∂t 〈u〉 =
[

(βu − βd )2 λ
2

2
− (βu − βd )(βu − α0)

]
〈u〉,

and, therefore, the critical noise intensity is λc = 2
√

βu−α0

βu−βd
.

Following the same procedure, for α fluctuations and around
u = βd we obtain λc = 2

√
α0−βd

βu−βd
, and, finally, for βd fluctua-

tions and around u = βu we obtain λc = 2
√

βu−βd0

βu−α
.

The issue is more complex for βd fluctuations and around
u = α. The multiplicative noise produces an effective non-
linearity that shifts the root βd toward values that go beyond
α. This is a long-time phenomenon that can be described by
an equation such as Eq. (3) but without the diffusion term
[14]. Therefore an exchange of roles happens and now α

is homogenously stable while the threshold is an effective
βe

d > α which is obtained by adding a noise term to the
original one. When noise intensity is enough to produce such
an exchange of roles, α becomes unstable in the short-time

FIG. 2. Field average value (〈u〉 − βd ) relative to βd vs. time
considering two cases: one below and the other over λc for fluctu-
ations of α around α0 = 0.5, with βd = 0.333333, βu = 0.6666667,
and Ka = 10. (a) The case for λ = 1.4 when initiating the system
from the top curve �→ u = βd + 10−7 and the bottom curve �→ u =
βd − 10−7. Both evolutions end up in βd . (b) The case for λ = 1.5
when initiating the system as before. Clearly 〈u〉 fluctuates around
a value different of βd for both evolutions, one at each side of βd ,
showing the corresponding symmetry breaking. For these parameter
values the critical noise intensity is between λ = 1.4 and λ = 1.5,
which is of the order of our theoretical calculation. In order to
improve the graphic, the relative field average value is set multiplying
by 107 and t is set in millions of time steps.

and the symmetry-breaking occurs because of the coupling.
We could believe that for solving this situation the same term
is added and subtracted [see Eqs. (3) and (6)] but we must
take into account that both terms act on different timescales.
This is a rare situation in which α turns into an attractor in the
long timescale by effect of the multiplicative noise, having
previously been an ejector in the short timescale because of
the same noise. To summarize, for this case, the critical noise
intensity is the same that determines such exchange of roles.

In order to illustrate this phenomenon we show an example
highlighting the transition around one of the fluctuation-free
roots. Figure 2 shows a case for two noise-intensity values,
one slightly lower and other slightly higher than the critical
noise intensity. The evolution curves of the 〈u〉 were obtained
by numerically resolving the dynamics described by Eq. (1)
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FIG. 3. SPDF vs. field for α fluctuations around α0 = 0.5, with
βd = 0.333333, βu = 0.6666667, λ = 1.7, and Ka = 3.4.

(see details below) and by spatially averaging the field (u)
values along the profile. The upper graphic shows curves
with λ � λc as the system initiated from field values in the
neighborhood of the root but from different regions. The lower
graphic shows curves with λ � λc as the system initiated
from the same conditions as before. It can be observed that
the field asymptotically decays to the fluctuation-free root in
the first case but it does not in the second one. When the
critical noise intensity is overcome, the field asymptotically
approaches values that differ from such root, depending on
the region from which the system was initiated. We note that
on no occasion does the field reach the root value or cross it.

When the noise intensity is higher, the central region peaks
are merged into a unique broader peak localized in the center
of such a region. Figure 3 illustrates this phenomenon by
exhibiting the SPDF vs. the field for the same case as in
Fig. 1 but with λ = 1.7 instead of λ = 1.5. The transition
occurs within a small noise intensity range. In this paper
we worked preferably with parameter values setting this last
situation: one probability peak per region. We note that this
same transition, which drives from four probability peaks to
three, is also observed when the coupling (Ka) increases. Even
for quite high noise intensity, our numerical calculations show
that for small-enough Ka values there are two twin states
surrounding each fluctuation-free roots.

In order to numerically resolve the stochastic dynamics,
we proceed to do a spatial discretization in a regular one-
dimensional lattice composed of 14 400 sites with spacing
δx = 2.5 10−2 and time step δt = 10−4, i.e., u(xi ) −→ ui ,
with i the cell index. Considering that ∂2

xu −→ 1
δx2

∑
j (uj −

ui ) (one dimension), where the sum is over the nearest neigh-
bors, the discretized version of Eq. (3) is written as

∂tui = Fo(ui ) + Ka

2

∑
j

(uj − ui ) + �1/2(ui ) ηi (t ), (7)

where Ka = 2D

δx2 and now the correlation is 〈ηj (t )ηj (t ′)〉 =
σ 2δ(t − t ′)δij , with λ = σ

βu
our reference parameter to set

the noise intensity. We resolved the stochastic equation us-
ing Heun’s method; although in order to obtain propagating
fronts, the initial condition is a step type profile that takes

uniform field values in two different regions connected by the
front (in order to check result independence regarding initial
conditions we also used a uniform random distribution to
assign field values within each region connected by the front).
As usual for stabilizing fronts, we use as boundary conditions
∂xu = 0. All averages were calculated using 30 different re-
alizations (each one initiated from a different seed). Although
the front plots correspond to a single realization, no qualitative
changes arise using a different seed.

Since the unusual behavior of propagating front is revealed
under the high-noise-intensity regime by varying Ka , we
focus on the influence of such a constant in the front behavior.
First, we explored a range of λ values that includes the
transition point between a situation in which the twin states
do not exist (below λc) or their effects are hard to detect
(slightly above λc). Then we considered another intensity
range in which the effects of the symmetry breakings are
appreciable. Whenever λ < λc we observed the typical behav-
ior: Around Maxwell’s point, the fronts promote the noisier
state because of noise effects, and both the front velocity
and width increasing in proportion to K

1/2
a . Details related to

the fact that the field does not cross the fluctuation-free root
unless a field gradient between regions exists are presented
in the Supplemental Material [17]. For λ � λc we recorded
that while the front propagates toward the usual direction,
effects of the twin states emerged within the same front (see
Supplemental Material at [17]). We consider it a transition
stage between the already-known behavior and the behavior
we will show below.

The situation we focus on is the one characterized by
one probability peak per region, such as the one shown in
Fig. 3. We initiate the system from hyperbolic-tangent-like
profiles connecting field values belonging to different regions.
So we define initial profiles with “phases” in regions: (a) I
and III, (b) I and IIu (II, choosing a field value next to βu)
and (c) IId (II, choosing a field value next to βd ), and III.
Figure 4 displays the results for λ = 1.7 and Ka = 1 and
Fig. 5 for λ = 1.7 and Ka = 5 (in all figures showing fronts,
x is set in terms of the lattice sites and t in millions of time
steps). A meaningful change in the nature of the front can
be observed. When initiating the system from regions I–III
[case (a)] with Ka = 1, two fronts are stabilized and prop-
agate with opposite velocities in a way that the dominating
phase is the one from region II. These are fronts connecting
phases I–II and II–III. In the same situation but with Ka =
5, such a phenomenon does not take place; instead, a front
connecting the phases I–III stabilizes, as its velocity is much
lower than the one for previous fronts. When initiating the
system from regions I–II [case (b)] for Ka = 1 a front I–II is
stabilized and propagates with negative velocity (dominating
phase: II), while for Ka = 5 the front I–II propagates with
positive velocity (dominating phase: I). Conversely, when
initiating the system from regions II–III [case (c)] for Ka =
1, a front II–III is stabilized and propagates with positive
velocity (dominating phase: II), while for Ka = 5 the front
II–III propagates with negative velocity (dominating phase:
III). This is consistent with the fact that for smaller Ka values,
phase II is the most stable one (dominating), but for the
largest Ka values, phases I and III are both more stable than
phase II.
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FIG. 4. Fronts for α fluctuations around α0 = 0.5, with βd =
0.333333, βu = 0.6666667, λ = 1.7, and Ka = 1, when initiating
the system from hyperbolic-tangent-like profiles connecting field
values of different regions. (a) �→ case (a): I–III. (b) �→ case (b):
I–IIu. (c) �→ case (c): IId–III.

FIG. 5. Fronts for α fluctuations around α0 = 0.5, with βd =
0.333333, βu = 0.6666667, λ = 1.7, and Ka = 5., when initiating
the system from hyperbolic-tangent-like profiles connecting field
values of different regions. (a) �→ case (a): I–III. (b) �→ case (b):
I-IIu. (c) �→ case (c): IId–III.
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FIG. 6. Fronts for α fluctuations around α0 = 0.5, with βd =
0.333333, βu = 0.6666667, λ = 1.7, and Ka = 5, when initiating
the system from a profile with double fronts as the ones shown in the
top panel of Fig. 4. Each phase belongs to a different region. We note
that these fronts move with opposite velocity to those corresponding
to the case with Ka = 1.

According to the logic of this behavior, if we initiate
the system from a profile like those double fronts shown
in top of the Fig. 4 (corresponding to Ka = 1), but we set
Ka = 5, then both fronts (I–II and II–III) will reverse their
velocity and they will move toward each other until they
merge, becoming a unique front (I–III) in the process. We
tested this prediction and we effectively obtained the ex-
pected result. Figure 6 shows the system evolution for this
case.

III. STRONG FLUCTUATIONS

In this section we consider strong fluctuations of α and
βd . In particular, we study in detail situations with λ = 15
when α fluctuates and λ = 10 when βd fluctuates, and we
focus on changes in front behavior when varying Ka . We
would expect that for such high noise intensity the chance
for front generation is null. However, we recorded fronts
propagating under these conditions. The key to the issue lies in
the fluctuation-free roots and both symmetry breakings, which
result from a coupling-noise cooperation. These roots become
thresholds which cannot be crossed by the field unless a field
gradient connects both sides of them.

We note that situations in which the twin states next to
the fluctuation-free roots are stabilized arise even if noise
intensity is high. These take place when the coupling is weak
enough, a fact that does not mean that the usual behavior
can be recovered under such circumstance. Given the great
noise intensity, the phases are so noisy that any threshold is
largely overtaken by the field. But the field cannot overcome
the fluctuation-free roots, and therefore, a phase transition
between regions only occurs if it is driven by a field gradi-
ent between them (in other words, a front connecting such
phases). Figure 7 shows fronts when α fluctuates for Ka = 0.1
and λ = 10. We remark that the field values are accumulated
around the fluctuation-free roots though they never match
them.

FIG. 7. Fronts for α fluctuations around α0 = 0.5, with βd =
0.333333, βu = 0.6666667, λ = 10, and Ka = 0.1, when initiating
the system from a profile I–III. We note that the field is accumulated
around βd and βu.

The results of the former section suggest that for large λ

values a change in coupling induces a change in the relation
between phase stability corresponding to different regions.
This would be the reason why the front velocity reverses itself
when changing Ka . In other words, front behavior subject
to high noise intensity could be governed by the “long-time
dynamics,” by which the criteria based on attraction basins
unbalance (areas under the SPDF peaks) might be best suited
to describe front behavior in such cases. We note that in
this scenario the characterization of the dynamics as being
of “long time” can be unclear. We consider the “long-time
dynamics” to be the one that is set by the average stationary
states of the system. Of course, such dynamics is one of long
time compared to the evolution of the first moment of the
field, but when noise intensity is strongly increased we expect
the relaxation time to greatly decrease, to the point that the
average stationary states are reached so quickly that the front
dynamics ends up being dominated by such stationary states
of the system. Our vision is that (a) for strong fluctuations,
the field first accumulates around such states and a front
connecting these states subsequently stabilizes and (b) for
weak fluctuations, the field first accumulates around the states
settled by the effective nonlinearity, given by the sum of the
deterministic nonlinearity and the previously mentioned sys-
tematic part [Eq. (4)] and then a front that connects such states
stabilizes before the average stationary states can be reached.
Since for the strong fluctuations case the average stationary
states are not only set by the nonlinearity parameters and
noise effects but also by coupling (because of the symmetry
breakings), we can understand why the Ka value also impact
on the direction of the front velocity.

Strong fluctuations of both α and βd produce the same
results as those shown for λ = 1.7 except phases are much
noisier. In order to illustrate this situation, Fig. 8 displays
cases with λ = 10 for βd fluctuations with Ka = 0.56, when
initiating the system from profile I–III. We registered that
the field belonging to each phase connecting the front is
effectively confined within the corresponding region, and also,
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FIG. 8. Sample of different front types for βd fluctuations around
βd0 = 10−3 with α = 0.33, βu = 0.66, λ = 10, and Ka = 0.56. Ini-
tial condition: Profile I–III. The behavior is similar to the λ = 1.7
case, with the exception that the field now takes values along its
entire region of origin.

because of the great noise intensity, the field expands along
all of its region. The observation of these fronts suggests their
feasibility is supported by the existence of the “impassable
walls” mentioned before. In this regard, fronts are rather con-
nections between regions than connections between phases.
For the sake of simplicity, hereinafter we will call the noisy
phases connected by the fronts: φI to the region I phase, φII to
the region II phase, and φIII to the region III phase.

In order to further characterize this phenomenon, we calcu-
lated the noisy front velocity (Vf measured in lattice sites per
time step and calculated averaging on the basis of 30 different
realizations) as a function of spatial coupling constant Ka

(since the unusual behavior arises by varying Ka we choose
this parameter instead of λ). When α fluctuates, we only
consider a situation similar to the former quasisymmetric one
(region sizes are almost equal): βu = 0.66 (slightly less than
2
3 ), βd = 0.33 (slightly less than 1

3 ), and α0 = 0.5. In order to
avoid mix-ups regarding the sign of front velocity we made it
clear that Vf > 0 provided that front I–II propagates toward
region II (remaining φI), front II–III propagates toward region
III (remaining φII), and front I–III propagates toward region
III (remaining φI). Figure 9 shows the corresponding curves.
The left graphic shows the cases when the system is initiated
from profiles I–II and II-III, and the right graphic shows the
case when the system is initiated from profile I–III. We note
that noisy fronts I–III are only stabilized when Ka exceeds
a critical value we named Kc

a . When observing the curves
in the left graphic we see that the fronts I–II and II–III can
be stabilized for Ka values beyond Kc

a , but we know those
fronts will propagate toward each other until they merge in a
front I–III. Concerning fronts I–II and II–III, we note that the
Ka values for which the front velocity reversion occurs are
slightly different. A choice of perfectly symmetric parameters
eliminates such a difference and produces fronts I–III at
rest.

When βd fluctuates, we examine quasisymmetric and
asymmetric situations. We do not show here the correspond-
ing curves for the quasisymmetric case, since these are very

FIG. 9. Noisy front average velocity (Vf ) vs. spatial coupling
constant Ka for α fluctuations around α0 = 0.5 with βd = 0.33,
βu = 0.66, and λ = 15. (a) �→ fronts I–II when initiating the system
from profiles I–II (�) and fronts II–III when initiating the system
from profiles II–III (�). The velocity reversion points of fronts I–II
and II–III by varying Ka are clearly identified with the “zeros” of
such curves. Since this situation is not completely symmetrical, Vf is
slightly different from zero where the curves intersect (Kc

a � 2.87).
(b) �→ fronts I–II (�), fronts II-III (�), and fronts I–III (•), where the
system in the three cases is initiated from profiles I–III. We note that
the noisy fronts I–II and II–III can be obtained from initial profiles
I–II and II–III but also whenever Ka < Kc

a from initial profiles I–III.
Regardless of the initial condition, the Vf values calculated for each
Ka value are the same. When the initial condition is a profile I–III,
noisy fronts I–III are only obtained for Ka > Kc

a . It is evident that
the noisy fronts I–II and II–III are more stable than noisy fronts I–III
for Ka < Kc

a .

similar to the above case. The asymmetry is introduced in the
region sizes by changing the parameter values characterizing
the nonlinearity. Figure 10 shows the velocity curves for βu =
0.9, α = 0.45, and βd0 = 10−3 (see Supplemental Material
at [17] for an intermediate case). We observe that Kc

a values
increases as the system asymmetry increases. We note as well
that, for larger α and βu values, the overall view of the slopes
of such curves becomes pronouncedly positive, which means
that, in this case, all noisy fronts tend to move in the same
direction, even though their velocities remain different.

Since we think that the long-time dynamics strongly in-
fluences the behavior of these fronts, we calculated the cor-
responding SPDF (Pst) in order to look for any hint about
its relation with the propagation direction. We do not expect
such simple thing as Vf ∝ − ln[Pst]|φ

s

φms (Maxwell’s area law
applied to the effective potential, φs indicates stable phase
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FIG. 10. Noisy front average velocity (Vf ) vs. spatial coupling
constant Ka for βd fluctuations around βd0 = 10−3, with α = 0.45,
βu = 0.9, and λ = 10. (a) �→ fronts I–II when initiating the system
from profiles I–II (�) and fronts II–III when initiating the system
from profiles II–III (�). The overall slope has increased so much
that only front II–III reverse its velocity (Kc

a � 56 corresponding to
Vf � 493). (b) �→ fronts I–II (�), fronts II–III (�), and fronts I–III
(•), where the system in the three cases is initiated from profiles I–
III. We note that the overall slope increasing with the asymmetry in
region sizes.

and φms indicates metastable phase), but we do expect that
at least such intense noise drives the fronts to promote phase
transitions toward the most probable average state.

We consider appropiate to discuss about “the most proba-
ble average state.” Such a state could be taken to be the higher
SPDF peak. This definition, which is suitable for additive
noise and even for multiplicative noise when its factor is never
zero, could be suggested based on Maxwell’s area law. The
SPDF peaks are narrow for low noise intensity, and therefore,
it can be expected that the higher peak is also the one of larger
area or at least that the difference between these situations
is insignificant. However, such a relation could change for
high noise intensity. In fact, wide and low peaks of SPDF that
compete with narrow and high peaks of SPDF could arise.
What is “the most probable average state” in such a case? We
are describing noisy states, and therefore we consider the area
under each peak as the relevant variable defining the issue.
The larger area peak expresses “the most probable average
state” for us. So, we associate the attraction basins with the
area under each peak.

This time, in order to calculate the SPDF, the system was
initiated from a uniform random distribution between u = 0
and u = 1 in order to enable the field to flow between regions

 0  2  4  6  8

 0

 1
 0

 0.007

Pst

Ka

u

Pst

FIG. 11. Numerically computed SPDF when initiating the sys-
tem from a uniform random distribution between u = 0 and u = 1:
Pst vs. u for βd fluctuations around βd0 = 10−3, with α = 0.33,
βu = 0.66, λ = 10, and Ka values between 0 and 8. Reversions of
attraction-basin sizes are observed between regions I–II and II–III.

and, therefore, the competition between its corresponding
states. We ensured a good statistical average by initiating the
system from 30 different seeds. Figure 11 shows the results
for a Ka value range including the reversion points of the
front velocity (fluctuations of βd around βd0 = 10−3, with
α = 0.33, βu = 0.66, and λ = 10). When comparing it with
Fig. 9, we observe that the reversions of the attraction-basin
relation is linked to velocity reversions of fronts I–II and
II–III, which is consistent with the fact that fronts propagate
in a way that promotes the most stable average phase. In
other words, this result suggests that the long-time dynamics
governs the behavior of these fronts. This link between the
attraction-basin relation and the front propagation direction
is fulfilled by all curves shown in Fig. 11. However, close
enough to the reversion point such a link is lost. We ob-
served a small difference between the Kt

a corresponding to
the velocity reversion and the Ke

a corresponding to reversion
of the attraction-basin relation, which points out the presence
of another minor effect influencing the front building process
(see an extended version at Supplemantal Material [17]).
However, numerical results point out that the dominating
effect setting the front propagation direction is the unbalance
between attraction basins established in the long timescale,
promoting the state of minimum effective potential. The front
moves in such way that always the most probable state is set,
except for Ka values within the aforementioned range. Of
course, we also obtained the same results for α fluctuations
and other parameter values provided that noise intensity is
high enough.

IV. ANALYSIS AND CONCLUSIONS

We have worked here with a nonlinearity habitually used
to illustrate the general behavior of fronts when one of the
characterizing parameters fluctuates. As long as the noise
intensity is below a certain threshold, the average front be-
havior is suitably described by changing the deterministic
nonlinearity to another one that adds an identical term to that
of Stratonovich’s. Given that this nonlinearity (deterministic
nonlinearity plus the systematic part) is the same as that used
to support the so-called short-time instability, we understand
that the front is built before the average stationary state (state
describing the system in the long timescale) is reached and
then it propagates toward a direction dictated by such nonlin-
earity. Therefore, the noise first promotes the noisier state by
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means of front propagation (we numerically observed such a
phenomenon), but a long time after this state is conformed,
the same noise starts to push the system toward the less-
noisy state, because this is its most favored one in the long
timescale [such as what is set by Eq. (3)]. So, below threshold,
whenever the attraction basins of the deterministic part are
balanced, the average state favored by the front propagation
is also the one less probable in the long-time regime (the
noisier one). We remark that under these conditions, the
front propagation direction is independent of the coupling
constant.

In this work, we have shown that the front behavior is very
different when noise intensity is much above said threshold.
The ingredients supporting this behavioral change are several.
First, the nonlinearity roots split the field variability range into
three regions, working as impassable walls that prevent the
field from crossing them, unless a field gradient connecting
those regions exists. Second, when noise intensity overcomes
the above-mentioned threshold, a coupling-noise cooperation
causes two symmetry breakings of the fluctuation-free stable
states, which are enabled by a short-time instability. As a
consequence, as long as the noise intensity is high enough,
three new stable average states emerge, which we identified
with the SPDF peaks, each of them confined within its own
region. We note that under such conditions the field expands
in all the confinement region. Third, although the symmetry
breakings are originated because of an instability in the short
timescale (which sets the threshold), these three new average
states (which we identify with SPDF peaks) are generated in
the long timescale and their localization and general char-
acteristics depend heavily on coupling; so much so that a
reversion of the area relation (as well as of the height relation)
of the SPDF peaks occurs by changing the Ka value. Fourth,
the noise promotes the less-noisy state in the long timescale.
Fifth, the front propagation direction depends on the coupling
constant, in fact, a velocity reversion is produced for a given
Ka value. Sixth, fronts propagate in the direction favoring
the most probable average state (largest area peak which also
matches the heighest peak of SPDF), except for a small range
of Ka values around the reversion point. We note that this is an
opposite behavior to when noise intensity is below threshold.
More precisely, the propagation direction is correlated with
the area-height relation between probability peaks (gap be-
tween the attraction basins) and the corresponding reversion
points are produced for close Ka values.

The sum of these ingredients leads us to conclude that
when noise intensity is quite superior to the threshold value,
the average fronts happen between very noisy phases, each
one fully expanding inside its corresponding region. These
phases, the result of long-time dynamics modified by a short-
time instability, set out preferably the average-front propaga-
tion direction. Since the area-height relation between prob-
ability peaks that correspond to these noisy phases depends
heavily on the coupling constant and it is correlated with
the average-front propagation direction, we infer that the
long-time dynamics is what impacts the most on the average
behavior of such fronts. We highlight that, a reversion of
both the front propagation direction and area-height relation
between probability peaks happens by changing the Ka value.
These reversion points are not entirely matching; however, the

difference between them is small compared to the Ka values
range involving the phenomenon.

In conclusion, we showed that there is a threshold for noise
intensity far beyond which front behavior is very different
to the cases with low noise intensity. Resorting to numerical
calculation, we identified three highly noisy phases and ob-
served three different types of fronts. Moreover, we observed
that situations involving the three phases simultaneously, in
which two fronts move away from each other, can be reverted
by changing the coupling constant. Finally, we found an
explanation supporting such a phenomenon.
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APPENDIX

The equation describing the long-time behavior can be ob-
tained by using the so-called entropic mechanism. Following
the original proposal of Ibañes et al. [6], we mapped the
system into a nongradient relaxational one by rewriting Eq. (1)
as:

∂tu = −�(u)
F0(u) + D∂2

xu

−�(u)
+ �1/2(u)η(x, t ). (A1)

Subsequently, we define a free energy functional F[u(x)]
so that:

δF[u(x)]

δu(x)
= F0(u) + D∂2

xu

−�(u)
, (A2)

and therefore Eq. (3) can be written as:

∂tu = −�(u)
δF[u]

δu(x)
+ �1/2(u)η(x, t ). (A3)

Under these conditions, the corresponding SPDF Pst (u) is
of Boltzmann’s type [6,7]:

Pst (u) ∝ exp

{
−2Feff [u]

λ
2

}
,

in terms of an effective free-energy functional:

Feff [u] = F[u] + σ 2

4

∫ L

−L

dx ln[�(u)],

Fortunately, the long-time average dynamics driven by this
noise can be studied without explicit knowledge of the
functional F[u(x)] [18–21]. It suffices to replace Feff [u(x)]
by F[u(x)] in Eq. (A3) and remove the noise term in order
to retrieve Eq. (3), which describes the long-time average
dynamics.
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