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Abstract
This paper proposes a robust front-end for speech classification which can be employed with acoustic, visual or audio–
visual information, indistinctly. Wavelet multiresolution analysis is employed to represent temporal input data associated 
with speech information. These wavelet-based features are then used as inputs to a Random Forest classifier to perform 
the speech classification. The performance of the proposed speech classification scheme is evaluated in different scenarios, 
namely, considering only acoustic information, only visual information (lip-reading), and fused audio–visual information. 
These evaluations are carried out over three different audio–visual databases, two of them public ones and the remaining 
one compiled by the authors of this paper. Experimental results show that a good performance is achieved with the proposed 
system over the three databases and for the different kinds of input information being considered. In addition, the proposed 
method performs better than other reported methods in the literature over the same two public databases. All the experiments 
were implemented using the same configuration parameters. These results also indicate that the proposed method performs 
satisfactorily, neither requiring the tuning of the wavelet decomposition parameters nor of the Random Forests classifier 
parameters, for each particular database and input modalities.

Keywords  Audio–visual speech recognition · Wavelet decomposition · Random forests

1  Introduction

The development of Multimodal Human Computer Inter-
faces (HCIs), which imitate the way humans communicate 
with each other, has attracted the attention of numerous 
research groups worldwide in the last decades. Audio Visual 
Speech Recognition is a fundamental task in HCIs, where 
the acoustic and visual information (mouth movements, 
facial gestures, etc.) during speech are taken into account, 
mimicking communication among humans, which is multi-
modal in nature. The correlation between the acoustic and 
visual information during speech is essential, for instance, 

for the hearing impaired people, and is also important for 
normal listeners to improve the intelligibility of the speech 
signal in noisy environments. Several strategies have been 
proposed in the literature for audio–visual speech recogni-
tion (Shivappa et al. 2010; Papandreou et al. 2009; Potami-
anos et al. 2003), where improvements of the recognition 
rates are achieved by fusing audio and visual features related 
to speech. As expected, these improvements are more promi-
nent when the audio channel is corrupted by noise, which is 
a usual situation in speech recognition applications.

To perform this task, different methods have been pro-
posed in the literature in order to extract, represent, com-
bine and model audio and visual information. Most of these 
approaches represent the acoustic information related to 
speech based on classical Mel-cepstrum analysis (Rabi-
ner 1989), or some modification of them (Maganti and 
Matassoni 2014; Trottier et  al. 2015; Panda and Nayak 
2016; Uluskan et al. 2017). However, there exist a large 
variety of methods to represent visual information during 
speech. These methods can be roughly categorized into 
model-based   (Borgström and Alwan 2008) and image-
based (Zhao et al. 2009). In model-based approaches, the 
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visual information is represented in terms of geometrical 
data, such as contours of lips (Saitoh et al. 2008; Iwano 
et al. 2007; Wang et al. 2004), Active Appearance Models 
(AAM) (Biswas et al. 2016), shape of jaw and cheek (Alek-
sic et al. 2002), facial animation parameters  (Yau et al. 
2007) and mouth width, mouth opening, oral cavity area 
and oral cavity perimeter (Matthews et al. 2002). These 
methods commonly require accurate and reliable facial 
and lip feature detection and tracking. On the other hand, 
image-based approaches extract visual information directly 
from the pixel level data, mainly resorting to Principal 
Component Analysis (PCA) (Gowdy et al. 2004), Discrete 
Cosine Transform (DCT) (Potamianos et al. 1998), Linear 
Discriminant Analysis (LDA) (Potamianos et al. 2001), 
Zernike moments (Borde et al. 2015) and spatiotemporal 
coding schemes (Zhao et al. 2009), among other techniques. 
Regarding the combination of audio and visual informa-
tion, the proposed methods can be classified according to 
the way that audio and visual information is combined (or 
fused), viz., feature level fusion, classifier level fusion and 
decision level fusion (Dupont and Luettin 2000). Finally, 
for recognizing a given sequence of audio or audio–visual 
features, several kinds of pattern recognition methods have 
been adopted in the literature. Probably, the most widely 
used are those based on traditional HMMs Dupont and 
Luettin (2000); Foo et al. (2004); Miki et al. (2014); Dong 
et al. (2005); Papandreou et al. (2009); Puviarasan and 
Palanivel (2011); Estellers et al. (2012), which statistically 
model transitions between the speech classes, and assume 
a class-dependent generative model for the observed fea-
tures. In addition, several approaches based on Artificial 
Neural Networks (ANN) (Potamianos et al. 2003), Linear 
Discriminant Analysis, Support Vector Machine classifi-
ers (SVM) (Zhao et al. 2009), matching methods utilizing 
dynamic programming, K-Nearest Neighbors (K-NN) algo-
rithms (Shin et al. 2011), Deep Learning (Ngiam et al. 2011; 
Yin et al. 2015; Katsaggelos et al. 2015; Petridis and Pantic 
2016), Restricted Boltzmann Machines (Amer et al. 2014; 
Hu et al. 2016), sparse coding (Wright et al. 2010; Ahmadi 
et al. 2014; Monaci et al. 2009; Shen et al. 2014), just to 
mention some, have been also proposed.

In general, a calibration stage to tune the parameters of 
the classifier is required by these audio–visual recognition 
systems, in order to obtain adequate performances in the rec-
ognition task. This calibration is often performed by testing 
different combinations of the classifier’s tuning parameters, 
which is usually a time consuming procedure. In addition, 
the optimal values for the parameters could depend on the 
particular audio–visual dataset being employed.

In this paper, a novel front-end for speech classification, 
which can be employed with audio, visual or audio–visual 
information, indistinctly, is proposed. This approach is based 
on wavelets and Random Forests (RF) Breiman (2001). The 

sequences of audio and visual parameters are represented in 
a compact form in terms of Wavelet multiresolution analy-
sis. These wavelet-based features are then used as inputs 
to a Random Forest classifier to perform the speech recog-
nition. The good characteristics of RF, such as very good 
discriminative capabilities, computational efficiency over 
large databases and the capability of handling thousands of 
input variables avoiding the need for variable selection, are 
inherited by the proposed speech recognition scheme.

Discrete Wavelet Transform (DWT) has already been 
used by others authors for speech recognition tasks. For 
instance, DWT was employed for denoising, applied as a 
preprocessing stage before feature extraction to compensate 
noise effects (Gowdy and Tufekci 2000; Farooq and Datta 
2003b). Also, several parameterizations methods based on 
the DWT for robust automatic speech recognition have been 
proposed in the literature (Farooq and Datta 2003a; Gupta 
and Gilbert 2001; Kotnik et al. 2003; Pavez and Silva 2012; 
Tufekci et al. 2006), where the DWT coefficients are used to 
represent the speech signal, instead of the traditional Mel-
Frequency Cepstrum Coefficients (MFCC). For example, in 
Ali et al. (2014) DWT is applied on the acoustic speech sig-
nal and its associated coefficients are used for word classifi-
cation based on Linear Discriminant Analysis. In Rajeswari 
et al. (2014) a frontend is introduced which uses wavelets for 
both enhancement and feature extraction stages. On the other 
hand, in the current work DWT is proposed with the purpose 
of representing in a compact form the input sequences of 
acoustic and/or visual parameters associated with speech. 
Here, DWT is neither used for denoising nor for feature 
extraction, it is employed as a generic feature representa-
tion tool. On the other hand, very few works in the literature 
make use of Random Forests for speech classification, for 
instance, in Ali et al. (2015) and Attar et al. (2010), RF have 
been proposed for isolated word classification tasks. In these 
works, acoustic signal is represented in terms of its associ-
ated MFCC coefficients. To the best of the present authors’ 
knowledge the proposed combination of DWT and RF for 
audio, visual, and fused audio–visual speech classification 
has not bee used in the literature before.

The proposed speech classification scheme can handle 
different kinds of input data. For that reason, its performance 
is evaluated in different scenarios, viz., considering only 
audio information, only video information (lip-reading), 
and fused audio–visual information, respectively. These 
evaluations are carried out over three different databases, 
viz., AVLetters database  (Matthews et  al. 2002), Carn-
egie Mellon University (CMU) database (Huang and Chen 
1998), and a database compiled by the authors, hereafter 
referred to as AV-1 database (no further information about 
this database is provided at these stage to compliant the 
double-blind reviewing process). In particular, in AV-CMU 
and AV-1 databases the visual information is represented 
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by model-based features, while image-based features are 
employed in AVLetters database. In addition, the proposed 
classification scheme is extended for the case of consider-
ing multiple and simultaneous streams of speech data. In 
particular, it is evaluated by considering three synchro-
nized streams composed by audio, visual and audio–visual 
information, respectively. Experimental results show that 
a good performance is achieved with the proposed system 
over the three databases and different types of input data. 
Additionally, the proposed method performs better than 
other reported methods in the literature over the two public 
databases. All the experiments were performed using the 
same configuration parameters. It is important to note that, 
in addition to the good performance achieved, the proposed 
method has the advantage of using the same configuration, 
avoiding the need for adapting the parameters in the wavelet-
based representation stage or the ones in the RF classifier 
stage for each particular database.

The rest of this paper is organized as follows. The pro-
posed speech classification scheme is described in Sect. 2. 
The databases employed to evaluated the proposed method 
are presented in Sect. 3. In Sect. 4, the evaluation proto-
col and experimental results are presented. Finally, some 
concluding remarks and perspectives for future study are 
included in Sect. 5.

2 � Proposed classification front‑end

As schematically depicted in Fig. 1, the proposed classi-
fication scheme consists of two main stages, namely, the 
wavelet-based representation and Random Forests classifi-
cation blocks, respectively. Speech is a time varying signal, 
where utterances, even of the same word, have different tem-
poral durations. On the other hand, Random Forests clas-
sifiers require fixed-length input data. Thus, audio–visual 
speech information must be represented with a fixed-length 
structure.

In the first stage, the time varying input parameters are 
resampled and then a multilevel decomposition is computed. 
This decomposition is performed based on Discrete Wavelet 
Transform. The idea is to obtain a compact representation of 
the input parameters. This is done by representing each time 

varying input parameter with their associated approximation 
coefficients resulting from the DWT. In this way, indepen-
dently of the number of frames associated with each word, a 
resulting fixed length feature vector is obtained. This method 
is also independent of the kind and length of the input data. 
In this paper, it is evaluated considering acoustic, visual and 
fused audio–visual input information separately. The length 
of the resulting feature vector is related to the chosen reso-
lution level, which obviously determines the approximation 
accuracy. Since the length of the feature vector has to be kept 
reasonably small, there will be a trade-off between accuracy 
and feature vector length. For the DWT, the widely used db4 
wavelet (Daubechies 1992) is employed. In Fig. 2, a signal 
and the corresponding approximations using db4 wavelet 
with decomposition levels l = 2 and l = 4 are shown. In 
Fig. 3, the wavelet-based feature vector computation method 
is illustrated, for the case of considering speech informa-
tion represented by 4 time varying input parameters (or sig-
nals), denoted as c1(t) , c2(t) , c3(t) , and c4(t) , respectively. 
The wavelet-based feature vector is generated in two steps. 
First, each input parameter is resampled and its associated 
wavelet-based approximation coefficients, here denoted as 
�1w , �2w , �3w and �4w , are computed. Then, these vectors are 
combined to form the resulting feature vector that is used as 
input to the Random Forests classifier.

Random Forests Breiman (2001) is an ensemble of deci-
sion trees. Since decision trees are very unstable, generally 
a small change in the dataset results in large changes in the 
developed model (Breiman 1996). The ensemble construc-
tion strategy is focused on increasing the diversity among 
the trees. The diversity is increased by fitting each tree on 
a bootstrap replicate (random subset of the available data, 
of the same length, taken with replacement) of the whole 
data. In addition, more diversity is introduced during the 
growing of each tree. The method selects a small random 
subset of P attributes for each node, and uses only this subset 
to search for the best split. The combination of these two 
sources of diversity produces an ensemble with good pre-
diction performance. The performance will depend on the 
correlation between any two trees in the forest and on the 
strength of each individual tree. The stronger the individual 
trees are and the less correlated they are, the better error rate 
the classifier will achieve. The main parameters to adjust for 

Fig. 1   Schematic representation 
of the proposed audio–visual 
speech classification system
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a Random Forests classifier are the number of trees to grow 
and the number of randomly selected splitting variables to 
be considered at each node. The number of trees to grow 
does not strongly influence the results as long as it is kept 
large (generally, 2000 trees are enough). Then, in practice, 
the only tuning parameter of the RF classifier is the number 
of randomly selected splitting variables to be considered at 
each node, hereafter denoted as �.

In Sect. 4, this classification scheme is evaluated over 
different databases and considering different kinds of input 
speech data. As described bellow, for all the experiments, 
this evaluation is performed using fixed tuning parameters 
for the wavelet-based representation block, and the influence 
of parameter � is also analyzed.

3 � Audio–visual databases

The evaluation of the proposed classification scheme is 
performed over three different audio–visual databases. One 
database was compiled by the authors of this paper and the 
remaining two are well known public databases. In particu-
lar, visual information during speech is extracted using an 

image-based method for one of the databases, while model-
based visual features are considered for the remaining two. 
In the following, these databases are described.

3.1 � AV‑CMU database

The AV-CMU database (Huang and Chen 1998) consists 
in the recording of a series of words, uttered by ten speak-
ers. In this paper, a subset of ten words (numbers from 1 to 
10) is considered for the experiments. Each person spoke 
each word ten times, resulting in a total of 1000 utterances. 
The raw audio data is in the form of pulse-code-modula-
tion-coded signals sampled at 44.1 kHz. The visual data is 
composed of the horizontal and vertical positions of the left 
(x1, y1) and right (x2, y2) corners of the mouth, as well as 
of the heights of the openings of the upper (h1) and lower 
(h2) lips, as depicted in Fig. 4a. The visual information was 
captured with a sample rate of 30 frames per seconds. To 
represent the visual information, the weighted least-squares 
parabolic fitting method proposed in Borgström and Alwan 
(2008) is employed in this paper. Visual features are then 
represented by five parameters, viz., the focal parameters 

Fig. 2   Example of signal 
approximation using db4 wave-
let with levels l = 2 and l = 4 . 
(Color figure online)
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of the upper and lower parabolas, mouths width and height, 
and the main angle of the bounding rectangle of the mouth.

3.2 � AV‑1 database

The AV-1 database consists of videos of 16 speakers, pro-
nouncing a set of ten words in random order. These words 
correspond to the utterances of the following actions: up, 
down, right, left, forward, back, stop, save, open and close. 
Each word was pronounced 20 times by each speaker, result-
ing in a total of 3200 utterances. This database was compiled 
by the authors of this paper. The videos were recorded at 
a rate of 60 frames per second with a resolution of 640 × 
480 pixels, and the audio was recorded at 8 kHz synchro-
nized with the video. Visual features are extracted using the 
method proposed in (Terissi and Gómez 2010), which is 
based on a simple 3D face model, namely Candide-3 (Ahl-
berg 2001), widely used in computer graphics, computer 
vision and model-based image-coding applications. For each 
frame of the videos, 3 parameters are computed and used to 
represent the visual information, viz., mouth height ( vH ), 
mouth width ( vW ) and area between lips ( vA ), as depicted 
in Fig. 5.

3.3 � AVLetters database

The AVLetters database Matthews et al. (2002) consists of 
three repetitions by each of ten speakers, five males (two 
with moustaches) and five females, of the isolated letters 
A–Z, resulting in a total of 780 utterances. This database 
provides pre-extracted mouth region of 80 × 60 pixels. 
It does not provide the original acoustic voice signals, 
but it includes the Mel-Frequency Cepstrum Coefficients 
(MFCC) associated to each uttered word. Figure 6 shows 
example images from the ten speakers. Visual information 
associated with speech is extracted and represented using 
the method based on local spatiotemporal descriptors pro-
posed in Zhao et al. (2009). As described in Zhao et al. 
(2009), spatiotemporal local binary patterns are extracted 
from mouth regions and then used for describing words 
being uttered, taking into account the motion of mouth 
region and time order in pronunciation. This image-based 
method is applied directly over the image sequences of 
the AVLetters database. As a result of this method (Zhao 
et al. 2009), each image of the database is represented by 
a feature vector of 1770 coefficients.

Fig. 4   CMU database. a Visual 
data included in the database. 
b Parabolic lip contour model 
proposed in Borgström and 
Alwan (2008)
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4 � Experimental results

As mentioned before, the proposed speech recognition 
scheme can handle different types of input data. Hence, the 
performance of the proposed scheme is evaluated separately 
in different scenarios, viz., considering only audio infor-
mation, only video information (lip-reading), and fused 
audio–visual information, respectively. These evaluations 
are carried out over the three databases described in the pre-
vious section, by computing the word recognition rates. The 
results shown in this section correspond to small vocabular-
ies (between 10 and 24 words), but the proposed approach 
can be employed for medium and large vocabularies as well. 
In addition, the proposed recognition scheme is extended for 
the case of considering multiple and simultaneous streams 
of speech data. In particular, it is evaluated considering 
three synchronized streams composed by audio, visual and 
audio–visual information, respectively.

4.1 � Evaluation protocol

Independently of the scenario and database being consid-
ered, the tuning parameters of the system are the ones asso-
ciated with the wavelet-based feature representation block 
and the ones corresponding to the RF classifier. Regarding 
the wavelet-based representation, the tuning parameters are 
the normalized length of the resampled time functions, the 
mother wavelet and the resolution level for the approxima-
tion. In all the experiments presented in this paper, these 
parameters remained fixed. In particular, the normalized 
length was set to 256, the wavelet resolution level was set 
to 3, and the widely used db4 was chosen as the mother 
wavelet. Considering these values, each input parameter is 
represented by its associated 38 wavelet-based approxima-
tion coefficients. Regarding the RF classifier, the parameters 
to adjust are the number of trees to grow and the number 
of randomly selected splitting variables to be considered at 
each node. However, the number of trees to grow does not 
strongly influence the performance of the classifier as long 

as it is kept large. In particular, in the experiments presented 
in this paper this value is set to 2000 trees. Thus, the only 
tuning parameter of the proposed recognition scheme is the 
number of randomly selected splitting variables to be con-
sidered at each node, denoted as � . In all the experiments, 
the proposed scheme is evaluated with values of � in the 
range from 2 to 10.

In order to obtain statistically significant results, at each 
experiment a D-fold cross-validation (CV) is performed over 
the whole data to compute the recognition rates. For the 
cases of AV-CMU and AV-1 databases, at each fold, one 
speaker is used for testing and the remaining ones for train-
ing, resulting in a speaker independent evaluation. Thus, a 
10-fold CV is used for the AV-CMU database (10 speakers) 
and a 16-fold CV for the AV-1 database (16 speakers).

For the case of the AVLetter database, the evaluation 
is performed with the same protocol employed in other 
approaches reported in the literature (Matthews et al. 2002; 
Zhao et al. 2009; Amer et al. 2014; Hu et al. 2016) over this 
database. In this case, the training set is composed by the 
first two utterances of each letter spoken by each speaker, 
and the remaining ones are used for the testing set. Hence, 
the training set and testing set both contain the same set of 
speakers, resulting in a speaker dependent evaluation.

For comparison purposes, these experiments are also 
performed with other three classification approaches, viz., 
traditional Hidden Markov Models (Rabiner 1989) (HMMs), 
Support Vector Machines (Cortes and Vapnik 1995) (SVM) 
and Boosting-based classification. These approaches are 
briefly described in the following subsections.

4.1.1 � HMM

Since Rabiner proposed the HMMs for speech recogni-
tion  (Rabiner 1989), these statistical generative models 
have become the traditional framework in automatic speech 
recognition applications. HMMs were specifically designed 
to capture the evolution of the temporal dynamics in the 
observed data. For that reason, the acoustic and visual 

Fig. 6   AVLetters database. Example images of the ten speakers
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features extracted from speech can be used directly as inputs 
to the HMMs. For comparison purposes, in this work the 
HMMs are implemented using N-state left-to-right models 
and considering continuous symbol observation, represented 
by the linear combination of M Gaussian distributions. At 
each experiment, the parameters associated with the HMMs 
are optimized via exhaustive search, considering N in the 
range from 1 to 20, and M from 1 to 30, looking for the com-
bination of number of states (N) and number of Gaussian 
combinations (M) leading to the best performance.

4.1.2 � SVM

Support Vector Machines (Cortes and Vapnik 1995) are 
supervised discriminative learning models that have been 
used in many classification applications. SVMs define 
the best separating hyperplane by maximizing the margin 
between boundary points of the classes and the separating 
hyperplane. These boundary points are referred as support 
vectors. SVMs use linear and nonlinear separating hyper-
planes for data classification. In this work, SVMs are imple-
mented by considering Gaussian kernels. Thus, the tuning 
parameters are the cost C and the � value of the Gaussian 
kernel. Similarly to the case of Random Forests classifi-
ers, SVMs require fixed length input data. For that reason, 
the same procedure based on Discrete Wavelet Transform 
described in Sect. 2, is used to obtain audio–visual speech 
features with a fixed-length structure. Hereafter, these clas-
sification models will referred as W+SVM. At each experi-
ment, the tuning parameters associated with W+SVMs are 
optimized via exhaustive search. The search of optimum 
values for C and � was carried out in two stages. First, a 
search is carried out varying C and � parameters values with 
decade steps ([… , 102, 101, 1, 102,…]) . Then, in the region 
where the best results are found, a second finest search with 
smaller step is carried out to find the final optimized values 
for C and �.

4.1.3 � AdaBoost

Adaptive Boosting is a machine learning algorithm proposed 
in (Schapire and Singer 1999) based on the idea of creat-
ing a highly accurate prediction rule by combining many 
relatively weak and inaccurate rules. Usually, decision 
trees are used as weak classifiers. AdaBoost also requires 
fixed length input data, thus in this paper, the same pro-
cedure based on DWT employed for the cases of RF and 
SVM, is used to obtain audio–visual speech features with a 
fixed-length structure. Hereafter, these classification mod-
els will referred as W+ADA. The parameters to adjust in 
AdaBoost classification are the number of iterations N of 
the boosting algorithm and the depth of each tree in the 
ensemble d. At each experiment presented in this paper, the 

parameters are optimized via exhaustive search, consider-
ing N = [100, 500, 1000, 2000, 5000] and d in the range 
from 2 to 10, looking for the combination leading to the 
best performance.

4.2 � Acoustic noisy conditions

The presence of noise in the acoustic signal is the main 
source of variability affecting the performance of speech rec-
ognition systems. It is important then to analyze the recogni-
tion systems in the presence of noise in the acoustic channel. 
For that reason, in all the experiments where acoustic infor-
mation is considered, that only excludes the experiments 
corresponding to lip-reading, the proposed classification 
scheme is evaluated by considering noisy acoustic condi-
tions. To do so, experiments with additive Gaussian and 
additive Babble noise, with signal-to-noise ratios (SNRs) 
ranging from − 10 to 40 dB, are performed. Multispeaker 
or Babble noise environment is one of the most challeng-
ing noise conditions, since the interference is speech from 
other speakers. This noise is uniquely challenging because 
of its highly time evolving structure and its similarity to the 
desired target speech (Krishnamurthy and Hansen 2009). In 
this paper, Babble noise samples were extracted from NOI-
SEX-92 database, compiled by the Digital Signal Processing 
(DSP) group at Rice University (Varga and Steeneken 1993). 
In these experiments, the system is trained using clean audio 
information and then it is evaluated with acoustic signals 
with different SNRs.

4.3 � Visual information

In this subsection, the performance of the proposed recogni-
tion scheme for the case of considering only visual speech 
information is analyzed. This evaluation is performed sepa-
rately over the three databases described in Sect. 3.

4.3.1 � AV‑CMU database

In Table 1, the recognition rates obtained over a subset of 
ten words (numbers from 1 to 10), with proposed recogni-
tion scheme are presented. The two values correspond to 
the minimum and maximum performances of the proposed 
system for the cases of setting the only tuning parameter � , 
in the range from 2 to 10. This table also includes the recog-
nition rates obtained with traditional HMMs, and the ones 
obtained by considering SVM and Boosting as classification 
method. Additionally, the performance reported in Borg-
ström and Alwan (2008) over the same database is included. 
In all cases, visual features are represented based on the 
parabolic contour lip model briefly described in Sect. 3.1. 
As can be observed, the proposed method performs better 

Author's personal copy



	 International Journal of Speech Technology

1 3

than the other approaches independently of the value used 
for variable �.

4.3.2 � AVLetters database

In Table 2, a comparison of the recognition results obtained 
with the method proposed in this paper (last row) with the 
corresponding ones obtained with other methods proposed 
in the literature, is shown. It can be observed that using the 
local spatiotemporal descriptors as visual features (rows 2, 
3, 6, 7 and 8), the proposed W+RF approach yields bet-
ter accuracy than the methods based on HMM and SVM 
reported in Zhao et al. (2009), and also performs better than 
the approaches based on W+SVM and W+ADA. In addi-
tion, the proposed approach also achieves better results in 
comparison to the method in Matthews et al. (2002) based on 

HMM classifier and multiscale spatial analysis, and the ones 
presented in Ngiam et al. (2011) and Hu et al. (2016) based 
on deep networks and Recurrent Temporal Multimodal 
Restricted Boltzmann Machine (RTMRBM), respectively.

4.3.3 � AV‑1 database

This database, where the visual information is represented 
by mouth shape parameters, was also employed to evalu-
ate the performance of the proposed classification scheme 
for lip-reading. These results are presented in Table 3. This 
table also includes the performance obtained with tradi-
tional HMM, W+SVM and W+ADA classification schemes. 
These results also show that, for any value of � , the proposed 
W+RF scheme performs better than the other methods.

Table 1   Lip-reading on 
AV-CMU database

Experiments performed over a subset of words, corresponding to the numbers from 1 to 10. For the pro-
posed classification scheme, the values correspond to the minimum and maximum performances obtained 
with � in the range from 2 to 10

Classifier Visual features Accuracy (%)

HMM (Borgström and 
Alwan 2008)

Lip Contour Model (Borgström and Alwan 2008) 61.17

HMM Lip Contour Model (Borgström and Alwan 2008) 57.79
W+ADA Lip Contour Model (Borgström and Alwan 2008) 67.53
W+SVM Lip Contour Model (Borgström and Alwan 2008) 67.53
Proposed W+RF Lip Contour Model (Borgström and Alwan 2008) 69.59–71.65

Table 2   Lip-reading on AVLetters database

For the proposed classification scheme, the values correspond to the minimum and maximum performances obtained with � in the range from 2 
to 10

Classifier Visual features Accuracy (%)

HMM (Matthews et al. 2002) Multiscale spatial analysis (Matthews et al. 2002) 44.60
HMM (Zhao et al. 2009) Local spatiotemporal descriptors (Zhao et al. 2009) 57.30
SVM (Zhao et al. 2009) Local spatiotemporal descriptors (Zhao et al. 2009) 58.85
Deep Autoencoder (Ngiam et al. 2011) Video-only deep autoencoder (Ngiam et al. 2011) 64.40
RTMRBM (Hu et al. 2016) Mouth region PCA (Hu et al. 2016) 64.63
W+SVM Local spatiotemporal descriptors (Zhao et al. 2009) 63.08
W+ADA Local spatiotemporal descriptors (Zhao et al. 2009) 54.23
Proposed W+RF Local spatiotemporal descriptors (Zhao et al. 2009) 61.12–65.38

Table 3   Lip-reading on AV-1 
database

For the proposed classification scheme, the values correspond to the minimum and maximum perfor-
mances obtained with � in the range from 2 to 10

Classifier Visual features Accuracy (%)

HMM Mouth shape parameters (Terissi and Gómez 2010) 70.16
W+ADA Mouth shape parameters (Terissi and Gómez 2010) 85.63
W+SVM Mouth shape parameters (Terissi and Gómez 2010) 83.75
Proposed W+RF Mouth shape parameters (Terissi and Gómez 2010) 85.21–88.67
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The above presented results show that, over the three 
databases, the proposed recognition scheme performs sat-
isfactorily and better than other approaches reported in the 
literature. It is also important to note that the efficiency of 
the proposed scheme is slightly affected by using different 
values for the only tuning parameter of the system. This 
indicates that, in contrast to other methods described in the 
literature, there is no need to perform an optimization of the 
system for each particular dataset. The results for the HMM 
approach are the worst for the three databases compared 
with the other methods. This suggests that HMM are not 
appropriated to represent visual information during speech, 
in word recognition applications.

4.4 � Acoustic information

The evaluation of the proposed classification scheme for the 
case of considering only acoustic information is presented 
in this section. As described in Sect. 4.2, this evaluation is 
carried out in noisy acoustic conditions, in particular, con-
sidering additive Gaussian and additive Babble noises. The 
AVLetters database does not include the original acoustic 
voice signals, but it includes the Mel-Cepstral coefficients 
associated to each uttered word without acoustic noise. 
Thus, it is not possible to perform the evaluation by consid-
ering acoustic noisy conditions. For this reason, the evalu-
ation over AVLetters database is performed considering 
only clean acoustic information. For AV-CMU and AV-1 
databases the audio signal is partitioned in frames. For each 
frame, the audio features are represented by the first eleven 
non-DC Mel-Cepstral coefficients, and their associated first 
and second time derivatives. Similarly to the case of con-
sidering only visual information, the experiments are per-
formed considering different values for parameter � in the 
range from to 2 to 10. Additionally, these experiments are 
carried out with traditional HMMs, W+SVM and W+ADA 
classification schemes, in order to compare their perfor-
mances with the proposed one.

In Table 4, the performances obtained over the AVLetters 
database are shown. These results show that the proposed 
method outperforms the classification efficiency obtained 
with other approaches proposed in the literature. The rec-
ognition rates obtained at different SNRs over the AV-CMU 
and AV-1 databases are depicted in Fig. 7. In this figure, 
the performance of the proposed classification scheme is 
represented by the red area, which corresponds to the rec-
ognition rates obtained by selecting � in the range from 2 
to 10. As expected, for all the cases, the performance in the 
recognition task deteriorates as the SNR decreases. This is 
due to the mismatch between training (noiseless) and testing 
(noisy) acoustic data.

It is clear that, for both databases and both noise types, 
the proposed recognition scheme performs better than the 

ones based on HMMs, W+SVM and W+ADA, mainly at 
low SNRs. These results also show that the value of param-
eter � does not modify significantly the performance of the 
proposed W+RF scheme. It can be observed also that for the 
case of clean audio signal, all the methods work properly, 
but the HMM-based ones perform slightly better.

4.5 � Fused audio–visual information

In this subsection, the evaluation of the proposed scheme 
for the case of considering speech represented by fused 
audio–visual information is presented. Similarly to the case 
of considering only audio information, the experiments 
are performed in noisy acoustic conditions over AV-CMU 
and AV-1 databases, and at clean acoustic conditions for 
the AVLetters database. The audio signal is partitioned in 
frames with the same rate as the video frame rate. Then, the 
fused audio–visual feature vector at frame t is composed by 
the concatenation of the corresponding acoustic and visual 
parameters at frame t. Once again, the evaluation of the 
proposed classification scheme is performed considering 
different values for parameter � in the range from 2 to 10, 
and these experiments are also carried out with traditional 
HMMs, W+SVM and W+ADA classification schemes, in 
order to compare their performance with the proposed one.

The classification performances obtained over the AVLet-
ters database are shown in Table 5. These results show that 
the proposed W+RF approach performs better in compari-
son with other methods proposed in the literature, indepen-
dently of the value used for parameter � . On the other hand, 
the recognition rates obtained at different SNRs over the 
AV-CMU and AV-1 databases are depicted in Fig. 8. The 
results show that, for both databases and both noise types, 
the performance of the proposed classification scheme is 
better than the ones corresponding to methods based on 
HMMs, W+SVM and W+ADA. Performance improvements 
are more notorious at low and middle range of SNRs. It is 
also clear from these results that using any value of param-
eter � leads to good performances of the proposed system. 

Table 4   Classification over AVLetters database considering only 
acoustic information

For the proposed classification scheme, the values correspond to the 
minimum and maximum performances obtained with � in the range 
from 2 to 10

Approach Accuracy (%)

MDAE (Ngiam et al. 2011) 58.40
CRBM (Amer et al. 2014) 61.20
RTMRBM (Hu et al. 2016) 64.41
W+ADA 55.77
W+AVM 62.31
Proposed W+RF 65.77–71.54

Author's personal copy



	 International Journal of Speech Technology

1 3

Comparing the results in Figs. 7 and 8, it can be noted that 
the use of audio–visual information improves the recognition 
rates for all the classification approaches.

4.6 � Multi‑stream information

The proposed classification scheme can be also employed 
in scenarios where multiple streams or modalities of speech 
information are available. For these cases, a simple parallel 
configuration is presented in this paper, where independent 

classifiers are used for each modality and the final decision is 
computed by the combination of the likelihood scores associ-
ated with each modality. In the literature, this is known as late 
integration or decision level fusion (Lee and Park 2008; Estel-
lers et al. 2012). This strategy does not require strictly synchro-
nized streams. Different techniques to perform decision level 
fusion have been proposed. The most commonly used is to 
combine the matching scores of the individual classifiers with 
simple rules, such as, max, min, product, or weighted sum.

In Fig. 9, a schematic representation of the proposed con-
figuration for handling N input streams is depicted. Consider-
ing N input observations associated to different modalities, 
denoted as O1 , O2 , ..., ON , respectively, N independent W+RF 
classifiers are employed, denoted as �1 , �2 , ..., �N , respectively. 
Given a set of observations associated to a word to be recog-
nized, the probability (or score) vectors �

(
O1|�1

)
 , �

(
O2|�2

)
 , 

..., �
(
ON|�N

)
 are computed for each modality. These vectors 

are composed by the concatenation of the probabilities associ-
ated with each class in the dictionary. Then, the fused prob-
ability vector �F

(
O1,O2,… ,ON

)
 is computed as

�F

(
O1,O2,… ,ON

)
=

=
1

N

[
�
(
O1|�1

)
+ �

(
O2|�2

)
+⋯ + �

(
ON|�N

)]
.

Fig. 7   Classification based on 
acoustic information. Recogni-
tion rates obtained over the 
AV-CMU (first row) and AV-1 
(second row) databases for 
different SNRs for the cases 
of considering Gaussian and 
Babble noises. The performance 
of the proposed classification 
scheme (W+RF) is repre-
sented by the red area, which 
corresponds to the recognition 
rates obtained by selecting � in 
the range from 2 to 10. (Color 
figure online)
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(b) AV-CMU - Gaussian noise
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(c) AV-1 - Babble noise
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(d) AV-1 - Gaussian noise

Table 5   Classification over AVLetters database considering fused 
audio–visual information

For the proposed classification scheme, the values correspond to the 
minimum and maximum performances obtained with � in the range 
from 2 to 10

Approach Accuracy (%)

MDAE (Ngiam et al. 2011) 62.90
CRBM (Amer et al. 2014) 64.80
RTMRBM (Hu et al. 2016) 66.04
W+ADA 60.34
W+SVM 68.22
Proposed W+RF 68.85–72.69
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Finally, as illustrated in Fig. 9, the input data is recognized 
as the class with the maximum fused probability.

This multi-stream configuration is evaluated by consider-
ing acoustic, visual and fused audio–visual streams simul-
taneously. The evaluation is carried out over the AV-CMU 
and AV-1 databases. Again, the experiments are performed 
in noisy acoustic conditions, considering additive Gaussian 
and additive Babble noises. The results of this evaluation 
are shown in Fig. 10. As shown in the previous subsections, 
the value of parameter � does not affect significantly the 
performance of the proposed W+RF classifier scheme in 
the cases of considering audio, visual or audio–visual infor-
mation. For clarity reasons, the results depicted in Fig. 10 

correspond to the cases of considering parameter � = 4 , 
since the performances obtained for different values of � 
have a similar behaviour. As can be observed in Fig. 10a 
and b for the case of AV-CMU database, the multi-stream 
approach leads to a slightly enhancement of the recogni-
tion rates in comparison to the ones obtained by consider-
ing fused audio–visual information. However, for the case 
of AV-1 database, see Fig. 10c and d, the combination of 
the three streams enforces a significant improvement of the 
recognition rates in comparison with the ones obtained with 
individual classifiers.

The AV-CMU database was also employed in Borgström 
and Alwan (2008) to evaluate a multi-stream classification 
approach based on the combination of HMMs. Figure 11 
compares the performances obtained with the method 
reported in  Borgström and Alwan (2008) and the ones 
obtained with the proposed multi-stream configuration. It is 
clear that the proposed method outperforms the one in Borg-
ström and Alwan (2008) across all the considered SNRs.

It must be noted that the performance of the proposed 
multi-stream classifier could be improved, for instance, by 
combining the individual probabilities taking into account 
the level of noise of the acoustic stream, and thus more 
importance could be given to the visual information in cases 

Fig. 8   Classification based on 
fused audio–visual information. 
Recognition rates obtained over 
the AV-CMU (first row) and 
AV-1 (second row) databases 
for different SNRs for the cases 
of considering Gaussian and 
Babble noises. The performance 
of the proposed classification 
scheme (W+RF) is repre-
sented by the red area, which 
corresponds to the recognition 
rates obtained by selecting � in 
the range from 2 to 10. (Color 
figure online)
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(a) AV-CMU - Babble noise
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(b) AV-CMU - Gaussian noise
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(c) AV-1 - Babble noise
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(d) AV-1 - Gaussian noise
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Fig. 9   Schematic representation of the proposed configuration for 
handling multiple streams of audio and visual speech information
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of low SNR. However, this kind optimization is out of the 
scope of this paper. These experiments are included in order 
to show that the proposed W+RF classification method can 
be also employed in a multi-stream scenario satisfactorily.

4.7 � Overall analysis

The above presented results show that the proposed clas-
sification scheme performs satisfactorily for classifying 
speech regarding to different speech features and databases. 
In addition, it yields better recognition rates than other meth-
ods proposed in the literature. However, the most promi-
nent characteristic of the proposed method is that it can be 
employed in different scenarios, without requiring an opti-
mization of its meta-parameters. As stated before, all the 
experiments presented in this paper have been carried out 
using fixed configuration parameters, except for the case of 
parameter � , which value does not affect significantly the 
recognition performance. It must be noted that this is not 
the usual situation of other approaches reported in the litera-
ture. On the contrary, the performance of other approaches 
usually depends on specific configurations for a particular 
database, either based on the number and size of the input 
features, the number of words being considered, the amount 

Fig. 10   Classification based on 
multi-stream information. Rec-
ognition rates obtained over the 
AV-CMU (first row) and AV-1 
(second row) databases for 
different SNRs for the cases of 
considering Gaussian and Bab-
ble noises. The performance of 
the proposed recognition multi-
stream configuration is depicted 
in green line. Performances 
for the cases of considering 
individual W+RF classifiers 
based on audio, video and fused 
audio–visual information are 
depicted in red, grey and blue 
lines, respectively. (Color figure 
online)
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Fig. 11   Efficiency comparison over the AV-CMU database between 
the proposed multi-stream approach and the one presented in Borg-
ström and Alwan (2008)

Author's personal copy



International Journal of Speech Technology	

1 3

of examples to train the system, the inter and intra class vari-
ability of the data, etc. In this sense, the proposed classifica-
tion scheme was evaluated considering different conditions. 
For instance, for the case of considering only visual infor-
mation (lip reading) over the AV-1 database, each word is 
characterized by three visual temporal parameters, resulting 
(after the wavelet-based stage) in a fixed-length feature vec-
tor composed by 114 coefficients, while for the case of con-
sidering fused audio–visual information over the AV-CMU 
dabatase, where each word is characterized by 38 parameters 
(5 visual + 33 acoustic), the feature vectors are composed 
by 1444 coefficients. On the other hand, experiments on AV-
CMU and AV-1 databases were carried out considering 10 
classes, while 26 were used for the AVLetters database.

5 � Conclusions

In this paper, a speech classification front-end based on 
wavelets and Random Forests has been proposed. This sys-
tem can be employed for recognizing speech using acoustic, 
visual or audio–visual information. Wavelet multiresolution 
analysis is used to represent in a compact form the sequence 
of acoustic and visual input data. The wavelet-based fea-
tures are employed as inputs of a Random Forest classi-
fier to perform the speech recognition. The performance of 
the proposed speech classification scheme was evaluated at 
different conditions, considering only audio information, 
only video information (lip-reading), and fused audio–vis-
ual information. These evaluations were carried out over 
three different audio–visual databases, two of them public 
ones and the remaining one compiled by the authors of this 
paper. Experimental results show that a good performance is 
achieved with the proposed system over the three databases. 
In addition, the proposed method performs better than other 
reported methods in the literature over the same two public 
databases. All the experiments presented in this paper have 
been carried out using fixed configuration parameters, except 
for the case of parameter � , for which values in the range 
from 2 to 10 has been considered. Experimental results show 
that selecting � in this range does not affect significantly 
the recognition performance. Thus, there was no need to 
adapt the wavelet decomposition parameters or the Random 
Forests classifier parameters to each particular database or 
experiment. This is an important advantage of the proposed 
approach in comparison to other methods that require an 
optimization stage of the classifiers meta-parameters.
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