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Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems
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The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-
dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical
expansion for the OTOC yields a leading-order contribution in h̄2 that is exponentially increasing with time
within an intermediate, temperature-dependent, time window. The growth-rate in such a regime is governed by
the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.
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I. INTRODUCTION

The present interest in manipulating quantum many-body
systems and understanding the flow of quantum information
naturally leads us to consider the behavior of the four-point
out-of-time-order correlator (OTOC) [1]. In contrast with the
time-ordered products of quantum operators, widely used
in the perturbative treatments of quantum field theories, the
OTOC allows to address the subtleties related with thermaliza-
tion and time-evolution of complex systems. First introduced
in the context of semiclassical approaches to superconductiv-
ity theory [2], the relevance of the OTOC in the physics of
black holes and the conjectured bound on its growth rate [3]
has spurred a sustained activity in the last few years [4–19].

The complexity of a quantum system, arising from its
many-body and/or from the chaotic nature of the underlying
classical dynamics, has been claimed to be essential in render-
ing a generic behavior of the OTOC which is universal with
respect to the choice made for the quantum operators [3]. The
OTOC has then been considered as a probe of quantum chaos,
unveiling the signatures of classical chaos on a quantum
system, like the level statistics [20–23], the Loschmidt echo
[24–26], or the eigenstate thermalization hypothesis [27–29].
A two-point correlation function of Heisenberg operators at
different times, formally related to the OTOC, has been used
to characterize the stochasticity in complex quantum systems
since the beginning of quantum chaos studies [30,31].

While some of the key predictions about the OTOC ad-
dress quantum systems with many degrees of freedom [3],
and a considerable body of work has taken many-body spin
systems as a paradigm [7,11], it is important to understand
the behavior of the OTOC in quantum systems with few
degrees of freedom, where a good description of the classi-
cal and quantum dynamics is achievable. Among the latter,
quantum maps [8,11,15,17,18] and two-dimensional billiards
[9,14] have recently allowed to connect the time evolution
of the OTOC with the features of the underlying classical
dynamics. In particular, establishing the relevance of classical
chaos.

Quantum maps are defined by an evolution operator, rather
than a Hamiltonian, and thus, the thermal aspects of the
OTOC cannot be put in evidence. The important outcomes
of the OTOC studies in quantum maps concern their short
time behavior, exhibiting an exponential growth determined
by twice the Lyapunov exponent of the classical map [8,15],
as well as their long-time behavior, where the approach to sat-
uration is governed by the largest non-trivial Ruelle-Pollicot
resonance [17]. Chaos is thus embedded in the short and long-
time behavior of the OTOC of a quantum map, much alike
as in the dynamics of the classical one. Numerical work in
low-dimensional billiards [9] did not allow to identify a clear
exponential growth of the OTOC governed by the Lyapunov
exponent, nor to put in evidence a remarkable difference
between the classically chaotic and integrable systems within
the regime of initial growth.

In this work we develop a semiclassical approach to the
OTOC applicable to low-dimensional classically chaotic sys-
tems. We perform a systematic expansion in powers of h̄,
determining the leading classical behavior of the different
components of the OTOC, and then their next-order contri-
bution scaling with h̄2. We determine the growth-rate of the
OTOC in the low-temperature limit, as well as the satura-
tion behavior for long times. We confront our semiclassical
results with numerical quantum calculations performed in a
two-dimensional billiard, and make the connection with the
predicted bounds on the OTOC growth rate.

The paper is organized as follows. In Sec. II we present
the basic definitions of the OTOC for a one-particle systems
in the canonical ensemble, while in Sec. III we introduce the
semiclassical formalism for obtaining the OTOC as a sum of
three components. In Sec. IV we identify the ensemble of
classical trajectories relevant for the semiclassical calculation
of these components, providing their leading-order (classical
limit) in Sec. V, and confronting them to numerical calcu-
lations in Sec. VI. Section VII presents the semiclassical
limit of the OTOC, while Sec. VIII discusses the resulting
low-temperature and long-time limits. The comparison with
quantum numerical calculations of the OTOC is presented
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in Sec. IX, and Sec. X sums up the main conclusions of this
work. Appendices A and B describe alternative semiclassical
schemes not included in the main text.

II. OTOC IN THE ONE-PARTICLE CANONICAL
ENSEMBLE

We consider the out-of-time-order correlator defined by

C(t ) = 〈〈[Ât , B̂]†[Ât , B̂]〉〉, (1)

where Â and B̂ are two operators to be specified, while
Ât = Û

†
t ÂÛt follows from the time evolution of the former.

We use the standard notation Ût = e−iĤ t/h̄ for the evolution
operator under the Hamiltonian Ĥ of the system. In this
context, the double angular bracket stands for the thermal
averaging which, in the one-body physics that we deal with,
yields for an arbitrary operator Ô

〈〈Ô〉〉 = 1

Z
Tr{e−βĤ Ô}, (2)

where Z is the canonical partition function and β = (kBT )−1,
with T the temperature and kB the Boltzmann constant.

When Â and B̂ are chosen to be unitary operators, we have

C(t ) = 2(1 − Re{〈〈Â†
t B̂

†Ât B̂〉〉}). (3)

If, however, Â and B̂ are Hermitian operators, the OTOC is
given by

C(t ) = −〈〈[Ât , B̂]2〉〉 = −2 Re{O(1)(t )} + O(2)(t ) + O(3)(t ).

(4)

We note O(j )(t ) = 〈〈Ô (j )
t 〉〉 the three components of the

OTOC, obtained from

Ô
(1)
t = Ât B̂Ât B̂, (5a)

Ô
(2)
t = Ât B̂

2Ât , (5b)

Ô
(3)
t = B̂Â2

t B̂. (5c)

When B̂ = Â and/or at infinite temperature we have
Ô

(2)
t = Ô

(3)
t .

We will focus on the case in which Â and B̂ are Hermitian
operators, which is the one where the measurement interpre-
tation of the OTOC is straightforward [1]. To make explicit
some of our calculations, we will choose Â = X̂ and B̂ = P̂X.
That is, the X component of the position and momentum oper-
ators of a two-dimensional one-particle system, respectively.
However, we will indicate the extent up to which our results
are generic in terms of the chosen operators.

Using the spectral decomposition of the Green function
G(r, r′; ε) between r′ and r at energy ε, we can write

O(j )(t ) = − 1

πZ

∫
dε dr′ dr e−βεIm{G(r, r′; ε)}

× O (j)(r′, r; t ). (6)

We have defined (for j = 1, 2, 3) the matrix element

O (j )(r′, r; t ) = 〈r′|Ô (j )
t |r〉, (7)

and we employed the Green function associated to the
Schrödinger equation, that is, the Fourier transform of the
propagator,

K (r′, r; t ) = 〈r′|Ût |r〉. (8)

The energy integral in Eq. (6) runs over the whole spectrum,
while the space integrals are taken over the area A of the
system. The partition function for a spinless particle in a
billiard of area A is Z = Am/(2πh̄2β ).

III. SEMICLASSICAL APPROACH TO THE OTOC

For the evaluation of O (j )(r′, r; t ), the insertion of a com-
plete basis of the position operator within the products that
define Ô

(j )
t gives rise to the propagator Eq. (8). Throughout

this work, we will make extensive use of the semiclassical
approximation for the later, that in the two-dimensional case
is given by the expansion [22,23]

Ksc(r′, r; t ) =
(

1

2πih̄

) ∑
s(r,r′;t )

C1/2
s

× exp

[
i

h̄
Rs (r′, r; t ) − i

π

2
μs

]
, (9)

as the sum over all the classical trajectories s(r, r′; t ) joining
the points r and r′ in a time t . We note Rs (r′, r; t ) = ∫ t

0 dτL
the Hamilton principal function, obtained from the integral of
the Lagrangian L along the classical path, and μ the Maslov
index that counts the number of conjugate points. The prefac-
tor Cs = | det Bs | accounting for the conservation of the clas-
sical probability, is expressed in terms of the initial and final
position components b and a as (Bs )ab = −∂2Rs/∂r ′

a∂rb. The
semiclassical approximation is applicable when the typical
Hamilton principal function (or the action) of the relevant
classical trajectories is much larger than h̄. In the case of
billiards on which we will focus in this work, the previous
conditions translate into kL � 1, where k is the magnitude of
the wavevector and L the minimal trajectory length.

The terms O (1)(r′, r; t ) and O (2)(r′, r; t ) are given as sums
over products of four trajectories, while O (3)(r′, r; t ) has a
simpler expression, as it is obtained by a sum over pairs
of trajectories. The semiclassical approximation for the later
term is given by

O (3)
sc (r′, r; t ) = − 1

(2πh̄)2

∫
dr1

∑
s2(r1,r′;t )

∑
s1(r,r1;t )

C1/2
s2

C1/2
s1

× {
P

f

X,s2
(X1)2P i

X,s1

}
exp

[
i

h̄

(
Rs1 (r1, r; t )

−Rs2 (r′, r1; t )
) − i

π

2

(
μs1 − μs2

)]
, (10)

when as Â and B̂ are taken, respectively, as the X component
of the position and momentum operators. We note X1 = r1.êX

and PX = p.êX, with êX the unit vector in the X direction,
while the indices i and f refer, respectively, to the initial and
final condition of the corresponding trajectory. The choice of
A and B is not crucial at this stage, provided that they are
local operators allowing to express, within a semiclassical
formalism, their action at the beginning or the end of each
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trajectory, as indicated by the term inside the curly bracket in
Eq. (10).

The semiclassical approximation for the term O (2)(r′, r; t )
is given by

O (2)
sc (r′, r; t ) = 1

(2πh̄)4

∫
dr3 dr2 dr1

∑
s4(r3,r′;t )

∑
s3(r2,r3;t )

∑
s2(r1,r2;t )

∑
s1(r,r1;t )

C1/2
s4

C1/2
s3

C1/2
s2

C1/2
s1

{
X3

(
P i

X,s3

)2
X1

}

× exp

[
i

h̄

(
Rs3 (r3, r2; t ) − Rs4 (r′, r3; t )

) − i
π

2

(
μs3 − μs4

)]

× exp

[
i

h̄

(
Rs1 (r1, r; t ) − Rs2 (r2, r1; t )

) − i
π

2

(
μs1 − μs2

)]
. (11)

A similar semiclassical expression is obtained for
O (1)(r′, r; t ), with the only modification respect to Eq. (11)
of using X3P

i
X,s3

X1P
i
X,s1

within the curly bracket.

IV. DIAGONAL SCHEME FOR THE OTOC COMPONENTS

Independent trajectories where the corresponding phases
are unrelated average out their contribution upon the spatial
integrations. Therefore, we will only keep in the sums terms
in which these phases are related. Noting s̃j the time-reversal
symmetric of the trajectory sj , the most obvious connection
is when s̃2 remains near to s1 [in the cases of O (1)(r′, r; t ),
O (2)(r′, r; t ), and O (3)(r′, r; t )] and in addition s̃4 is close to s3

[only relevant in the cases of O (1)(r′, r; t ) and O (2)(r′, r; t )].
Such a pairing scheme, which we call diagonal, and note with
the subscript “d,” is the simplest one, and it will then be first
considered. We stress at this point that this diagonal scheme
does not simply imply a strict diagonal approximation match-
ing each trajectory with its time-reversal, as usually meant by
this level of approximation [24,25], but it rather incorporates
the contributions of the trajectories in the neighborhood of a
given one.

The graphical representation of Eqs. (10) and (11) in the
diagonal scheme is given in Figs. 1 and 2, respectively. The
trajectories whose Hamilton principal function appears with
a plus (minus) sign in the corresponding phase term are indi-

FIG. 1. Graphical representation of O (3)(r′, r; t ) according to
Eq. (10) for the case in which the trajectories s1 and s2 remain
close to each other. We note s̃2 = T (s2) the time reversed trajectory
of s2. The color blue (red) is used for trajectories whose Hamilton
principal function appears with a plus (minus) sign in the phase
term of Eq. (10). The dashed (black) line represents the trajectory
s, leaving from r̄ = (r + r′)/2 and reaching r1 in a time t , used in
Eq. (15) to linearize the dynamics of nearby trajectories, while pi

s

stands for its initial momentum, and the unitary vectors ê‖
s , ê⊥

s define
a local coordinate system.

cated in blue (red). For the second case, the time-reversed tra-
jectories s̃j = T (sj ) are considered, in view of their use in the
forthcoming semiclassical calculation. Auxiliary trajectories,
indicated in black, are taken as support of the linearization
procedure. In Appendix A, we consider an alternative pairing
(Fig. 6) with respect to the previous one, relevant for the cases
of O (1)(r′, r; t ) and O (2)(r′, r; t ), showing that it does not
result in an additional contribution within the leading order
of the semiclassical calculation.

The semiclassical approach used for the propagator, to-
gether with the diagonal scheme, imply that the points r and
r′ of Eqs. (10) and (11) remain close to each other. Thus,
for the case of a billiard that we develop in this work, the
Green function appearing in Eq. (6) can be expressed as the
sum of the two-dimensional free-space Green function plus
the contribution from nondirect classical trajectories joining
r′ and r. The first term is

G2D(r, r′; ε) = − i

4
H0(k|r′ − r|) 2m

h̄2 , (12)

where H0 is the zeroth-order Hankel function of the first kind,
m the particle mass, and ε = h̄2k2/2m, while the second one
has the form presented in Eq. (B1). We first consider the
contribution from Eq. (12), and in Appendix B we provide
the corrections arising from the nondirect trajectories. Since
Im{G2D(r, r′; ε)} = −(1/4)J0(k|r′ − r|)2m/h̄2, with J0 the
zeroth-order Bessel function of the first kind, the k-integral
stemming from Eq. (6) can be readily performed [32] and we

FIG. 2. Graphical representation of O (2)(r′, r; t ) according to
Eq. (11) for the case in which the trajectories s1 and s2, as well as s3

and s4, remain close to each other, using the same color convention
as in Fig. 1. The dashed (black) lines represent the trajectories s (s ′),
leaving from r̄ = (r + r2)/2 (r̄′ = (r2 + r′)/2) and reaching r1 (r3)
in a time t , used in Eq. (17) to linearize the dynamics of nearby
trajectories.
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obtain for the OTOC components in the diagonal scheme

O(j )
d (t ) = 1

A

∫
dr′ dr exp

[
− m

2βh̄2 |r′ − r|2
]

×O
(j )
d (r′, r; t ). (13)

For the spatial integrations of Eq. (13), applied to O(3)
d (t ),

we perform a center-of-mass plus relative coordinate change
from the original variables (r, r′) to the new ones (r̄,�r) by
posing r̄ = (r + r′)/2 (see Fig. 1) and �r = r′ − r. In the
diagonal scheme, the trajectories s1 and s2 remain close to
each other, therefore,

Rs1 (r1, r; t ) − Rs2 (r′, r1; t ) = Rs1 (r1, r; t ) − Rs̃2 (r1, r′; t )

� pi
s .�r, (14)

up to quadratic order in �r. The trajectory s goes from r̄ to
r1 in time t , and we note pi

s its initial momentum (see Fig. 1).

Within this approximation, O(3)(t ) reads

O(3)
d (t ) = − 1

(2πh̄)2A

∫
d r̄ d�r dr1 exp

[
− m

2βh̄2 �r2

]

×
∑

s(r̄,r1;t )

Cs

{
P

f

X,s2
(X1)2P i

X,s1

}
exp

[
i

h̄
pi

s .�r
]
.

(15)

With the new integration variables, the trajectory s1(s̃2) is
the one that leaves r̄ ∓ �r/2 and reaches r1 in time t while
remaining in the environment of s.

Making the change of variables from r1 to pi
s (that we

note p̄) makes the prefactor Cs (which is the Jacobian of the
transformation) and the sum over s to disappear from Eq. (15),
leading to

O(3)
d (t ) = − 1

(2πh̄)2A

∫
d r̄ d�r dp̄ exp

[
− m

2βh̄2 �r2 + i

h̄
p̄.�r

]{
P

f

X,s2
(X1)2P i

X,s1

}
, (16)

where the trajectory s1(s2) joins the points r̄ ∓ �r/2 and r(r̄, p̄; t ) in time t .
Similar lines as before can be applied for the calculation of O(2)(t ) from Eq. (13) within the diagonal scheme. However, in

addition to the center-of-mass plus relative coordinate change from the variables (r, r2) to (r̄,�r), we need to perform another
one from the variables (r2, r′) to (r̄′,�r′), yielding

O(2)
d (t ) = 1

(2πh̄)4A

∫
d r̄′ d�r′ d r̄ d�r dr3 dr1 δ

(
r̄′ − r̄ − �r′ + �r

2

)
exp

[
− m

2βh̄2

(
r̄′ − r̄ + �r′ + �r

2

)2]

×
∑

s ′(r̄′,r3;t )

∑
s(r̄,r1;t )

Cs ′ Cs

{
X3

(
P i

X,s3

)2
X1

}
exp

[
i

h̄

(
pi

s ′ .�r′ + pi
s .�r

)]
. (17)

With the new integration variables, the trajectory s1(s̃2) is the one that leaves r̄ ∓ �r/2 and reaches r1 in time t while remaining
in the environment of s, and similarly s3(s̃4) leaves r̄′ ∓ �r′/2 and reaches r3 in time t while remaining in the environment of s ′
(see Fig. 2).

We now perform the changes of variable from r1 to pi
s (that we note p̄) and from r3 to pi

s ′ (that we note p̄′), as well the
center-of-mass plus relative coordinate change from the variables (r̄, r̄′) to (r̂,�r̂). The integration over �r̂ leads to

O(2)
d (t ) = 1

(2πh̄)4A

∫
d r̂ d�r′ d�r dp̄′ dp̄ exp

[
− m

2βh̄2 (�r′ + �r)2 + i

h̄
(p̄′ · �r′ + p̄ · �r)

]

×
{
X

(
r̂ + �r′ + �r

4
, p̄′; t

) (
P i

X,s3

)2
X

(
r̂ − �r′ + �r

4
, p̄; t

)}
, (18)

where the trajectory s3 joins the points r̂ − (�r′ − �r)/4 and r(r̂ + (�r′ + �r)/4, p̄′; t ) in time t .
Performing center-of-mass plus relative coordinate changes from the variables (�r,�r′) to (u, v) and from the variables

(p̄, p̄′) to (p̂,�p̂) we have

O(2)
d (t ) = 1

(2πh̄)4A

∫
d r̂ du dv dp̂ d�p̂ exp

[
− 2m

βh̄2 u2 + i

h̄

(
2p̂ · u + �p̂ · v

2

)]

×
{
X

(
r̂ + u

2
, p̂ + �p̂

2
; t

)(
P i

X,s3

)2
X

(
r̂ − u

2
, p̂ − �p̂

2
; t

)}
. (19)

With the new integration variables, the trajectory s3 joins the points r̂ − v/4 and r(r̂ + u/2, p̂ + �p̂/2; t ) in time t .
Equations (16) and (19) are the basis of the systematic expansion of the OTOC components in powers of h̄.

V. LEADING-ORDER CONTRIBUTION OF THE OTOC
COMPONENTS

In the leading order of h̄ for Eq. (16), we use a strict
diagonal condition s̃2 = s1 for the terms within the curly

bracket, and take P
f

X,s2
= −P i

X,s̃2
= −P i

X,s1
. We will call this

approximation classical, and note the corresponding results
by the index “cl.” Writing �r = �r̂‖ê‖

s + �r̂⊥ê⊥
s , where

(ê‖
s , ê⊥

s ) is the local coordinate system sketched in Fig. 1,
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we perform the �r̂‖ and �r̂⊥ integrals, which results in the
purely classical expression

Ocl(t ) = β

2πAm

∫
d r̄ dp̄ exp

[
−β

p̄2

2m

] {
P̄ 2

X X2(r̄, p̄; t )
}
.

(20)

We have dropped the upper-index (3) from the last expression,
since we will show in the sequel that the other components of
the OTOC are also given by Eq. (20).

Turning to the calculation of O(2)(t ), to leading order in h̄,
we use the strict diagonal condition within the curly bracket of
Eq. (19). The v and �p̂-integrals can be trivially done, leading
to

O(2)
cl (t ) = 1

(πh̄)2A

∫
d r̂ du dp̂ exp

[
− 2m

βh̄2 u2 + 2i

h̄
p̂ · u

]

× {
P̂ 2

X X2(r̂, p̂; t )
}
. (21)

The u-integration then yields the result Eq. (20). At this
level of approximation, the calculation for O(1)

cl (t ) is equiva-
lent to that of O(2)

cl (t ), and thus, also given by Eq. (20).
We notice that the prefactor multiplying the integrals of

Eq. (20) can be simply cast as [(2πh̄)2Z]−1 and that the
classical expression of the OTOC components directly follows
from the thermal average of the operators explicit in Eq. (5),
without the need of going through the previous semiclassical
derivation. The usefulness of following the above-described
procedure is to set the basis of a systematic semiclassical
expansion for the OTOC.

Since all components of the OTOC coincide in the classical
limit, we necessarily have Ccl(t ) = 0. Such a result is not
surprising, since the finite value of C(t ) arises from noncom-
mutation, which is a purely quantum concept. The classical
limit of the OTOC components, even if canceling among
themselves when evaluating C(t ), are interesting to analyze,
in particular in relation with their scaling with respect to
the characteristic quantities of the problem. For instance, its
zero-time value is simply given by

Ocl(t =0) = m G2
Y kBT , (22)

where the gyration ratio GY of the stadium with respect to the
Y axis is defined by

G2
Y = 1

A

∫
dr X2. (23)

For times smaller than the one corresponding to the first
bounce off the billiard walls r(r̄, p̄; t ) = r̄ + (p̄/m)t , and then

Ocl(t ) − Ocl(t =0) = 3(kBT )2t2 = 3m kBT �2 , (24)

where the length � = ṽt provides the appropriate scaling. We
use ṽ = 〈V 2

X〉1/2 = (kBT/m)1/2 the root-mean square for the
X-component of the velocity in the free two-dimensional case.

In a billiard, the energy of the trajectories is simply scal-
able, and therefore the momentum integral in Eq. (20) can be
tackled by using polar coordinates. In following such a path,
we see that Ocl(t ) scales linearly with the temperature T . The
form of Eq. (20) applies even if we trade the operators X̂ and
P̂X by arbitrary local ones Â and B̂. However, the resulting

FIG. 3. Numerically obtained OTOC components O(1)(t ) (a),
O(2)(t ) (b), and O(3)(t ) (c) (divided by kBT and in units of ma2)
for the unsymmetrized stadium sketched in the inset of panel (c), as
a function of the scaled time (length) � = ṽt (in units of a), with ṽ =
(βm)−1/2 the mean-squared X-velocity component. The color code
indicates the temperature scale, expressing kBT/E0 in a log2 basis,
with E0 = h̄2/(ma2). The inset of panel (b) presents O(2)(t ), scaled
with T ξ and ξ = 0.99, in arbitrary units on the same �/a interval of
the main figure. The inset of panel (a) presents O(1)(t )/(kBT ) in a
logarithmic scale for the intermediate range of �/a indicated in the
horizontal axis. Within the leading order in h̄, the quantum numerical
results for O(j )(t ) should be compared with the classical expression
Eq. (20).

temperature scaling is characteristic of the particular choice
of operators.

VI. QUANTUM NUMERICAL CALCULATION OF THE
OTOC COMPONENTS

Since Ocl(t ) is the leading contribution to all the O(j )(t ), it
is meaningful to compare the quantum calculations of the lat-
ter with our theoretical prediction for the former, i.e., Eq. (20).
In Fig. 3, we show the quantum numerical calculations of
O(j )(t ), at various temperatures T (indicated by the color
scale), for the unsymmetrical stadium sketched in the inset
of Fig. 3(c).

For the numerical calculations of the OTOC and its com-
ponents, we first compute the eigenstates of the stadium using
the scaling method introduced in Ref. [33]. We then build
the matrix associated with the X̂ operator in the eigenenergy
basis, and subsequently the P̂X matrix, using that for the
stadium [Ĥ , X̂] = −2iP̂X. Therefore, the matrix elements of
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P̂X can be obtained as

(PX )mn = i

2
Emn Xmn, (25)

where Emn = Em − En, Xmn = 〈m|X̂|n〉, and (PX )mn =
〈m|P̂X|n〉, with |m〉 (|n〉) the energy eigenstate corresponding
to the energy Em(En). We truncate the basis to 5600 states,
and we use the first 5000. We have checked that for the
temperatures that we show here, the results are converged as a
function of the basis size. At the highest temperatures that we
consider, the restriction of working with a finite basis starts to
limit the accuracy of the numerical calculations.

The scaling of the time (through the length � = ṽt) and
of the values of the OTOC components (with the temperature
T ) are chosen in view of the theoretical predictions for Ocl(t ).
While the linear-in-T scaling of the OTOC components works
quite well, we notice that a slightly better data collapsing of
the numerical data is obtained when using a scaling of the
form T ξ [with ξ = 1.03 for O(1)(t ), and ξ = 0.99 for O(2)(t )
and O(3)(t )]. Such a scaling, applied to O(2)(t ) is presented as
an inset in Fig. 3(b). The smallness of the difference between
the theoretical estimation for the leading-order contribution
and the quantum mechanical calculation of the OTOC com-
ponents makes it difficult to advance a possible explanation
for such a discrepancy.

We can see that, for a given temperature and time, all three
O(j )(t ) are of the same order, and thus C(t ), that results from
their difference, will in general be much smaller than each of
them. The numerically obtained values of O(j )(t =0), and the
initial quadratic increase with �, are in qualitative agreement

with the classical results predicted by Eqs. (22) and (24),
respectively. The oscillations as a function of �, visible at
low temperatures, reflect the dynamics of the billiard and the
signature of the periodic-orbit corrections (see Appendix B).
We remark that the mean-trajectory-length at temperature T

is
√

π/2 �.
According to Eq. (20), the long-time saturation value for

the OTOC components should be equal to Ocl(t = 0), due
to the uniform distribution of X(r̄, p̄; t ) for t → ∞. How-
ever, the numerical results yield a smaller saturation value
for O(1)(t ), and slightly higher one for O(2)(t ) and O(3)(t ),
pointing to the importance of periodic-orbit (discussed in
Appendix B) and other quantum corrections in the long-time
limit. The exponential decrease of O(1)(t ) for 2 � �/a � 10,
before approaching a saturation value smaller than that of
O(2)(t ) and O(3)(t ) [see inset of Fig. 3(a)], is in line with the
behavior obtained for unitary quantum maps [17].

VII. OTOC IN THE SEMICLASSICAL LIMIT

As discussed in the previous chapters, the OTOC is deter-
mined by the quantum corrections to its vanishing classical
limit. Leaving aside the cases treated in the appendices, the
quantum corrections stem from the difference between the
diagonal scheme (presented in Sec. IV) and its classical limit
(or strict diagonal approximation used in Sec. V). In order
address such corrections, we undertake the case of O(1)

d (t ),
for which the curly bracket of Eq. (17) should be replaced
by X3P

i
X,s3

X1P
i
X,s1

. Following the same procedure as with

O(2)
d (t ), instead of Eq. (19) we have

O(1)
d (t ) = − 1

(2πh̄)4A

∫
d r̂ d�r̂ du dv dp̂ d�p̂ δ(�r̂ − u) exp

[
− m

2βh̄2 (�r̂ + u)2

]

×
{
X

(
r̂ + u

2
, p̂ + �p̂

2
; t

)
P i

X,s3
X

(
r̂ − u

2
, p̂ − �p̂

2
; t

)
P i

X,s1

}
exp

[
i

h̄

(
2p̂.u + �p̂.v

2

)]
. (26)

The trajectory s1 joins the points r̂ − u + v/4 and
r(r̂ − u/2, p̂ − �p̂/2; t ) in time t . The trajectory s3, as a
function of the new variables, has been defined after Eq. (19).

Within the diagonal scheme, but going beyond the classical
approximation of Sec. V, we must incorporate the effect of
having s1 = s̃2 and s3 = s̃4. Toward such a goal, we start
by linearizing the dynamics of s̃1 around that of s̃. Working
with the time-reversal trajectories is not crucial, but has an
easier visualization since these paths are diverging from a
common initial point (see Figs. 1 and 2). Using local coor-
dinates parallel and perpendicular to s̃, we can link the initial
and final displacements with respect to this path through the
corresponding stability matrix Ss̃ :⎛

⎜⎜⎜⎝
δq

‖
t

δq⊥
t

δp
‖
t

δp⊥
t

⎞
⎟⎟⎟⎠ = Ss̃

⎛
⎜⎜⎜⎝

δq
‖
0

δq⊥
0

δp
‖
0

δp⊥
0

⎞
⎟⎟⎟⎠. (27)

Using the monodromy matrix of the dynamics on Riemann
surfaces of constant negative curvature characterized by a

Lyapunov exponent λ, and the fact that δq
‖
0 = δq⊥

0 = 0 for
the displacement of s̃1 with respect to s̃, we have

r − r̄ = − t

m
δp

‖
0 ê‖

s − sinh (λt )

mλ
δp⊥

0 ê⊥
s , (28a)

pi
s1

− p̄ = δp
‖
0 ê‖

s + cosh (λt ) δp⊥
0 ê⊥

s . (28b)

In the left-hand side we have used the initial displacement
of s1, which is the final one of s̃1 (with the inversion of
the momentum). In the right-hand side we kept the initial
displacement of the time reversed trajectory and used, as in
Fig. 1, the local unit vectors ê‖

s and ê⊥
s parallel and perpendic-

ular, respectively, to s at its initial point. The projection of the
transverse momentum and position displacements of Eq. (28)
on the ê⊥

s direction are related through [34]

(
pi

s1
− p̄

)⊥ � mλ(r − r̄)⊥, (29)

for long enough trajectories such that λt � 1. And a similar
relationship holds for s3, which remains close to s ′. We then

062218-6



SEMICLASSICAL THEORY OF OUT-OF-TIME-ORDER … PHYSICAL REVIEW E 98, 062218 (2018)

have

P i
X,s3

P i
X,s1

� P̂ 2
X −

(
�p̂X

2

)2

+
(

mλ

2

)2[
(u⊥

X )2 −
(

v⊥
X

2

)2]

+mλ

(
P̂X · u⊥

X − �p̂X.v⊥
X

8

)
. (30)

Along the same lines, we can linearize s and s ′ around the
trajectory ŝ that leaves from r̂ with momentum p̂ taking a time
t . We then have

r3,1 = r(r̂, p̂; t ) ± 1

2

⎡
⎢⎢⎢⎣Sŝ

⎛
⎜⎜⎜⎝

�r̂‖

�r̂⊥

�p̂‖

�p̂⊥

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

rs

, (31)

where the notation [. . .]rs indicates that only the real-space
coordinates of the four-dimensional phase-space vector are
considered.

For long enough trajectories, only the exponentially in-
creasing terms of the stability matrix are kept, and we can

furthermore assume that the direction of the final momentum
is isotropically distributed. Therefore,

X(r̄′, p̄′; t )X(r̄, p̄; t ) − X2(r̂, p̂; t )

� −e2λt

8

(
�r̂⊥ + 1

mλ
�p̂⊥

)2

. (32)

Within the previous approximation, the time-independent cor-
rection arising from Eq. (30) is irrelevant. Clearly, there
appears a limitation to the validity of the exponential increase
in the trajectory separation used in Eq. (32), that cannot hold
beyond the typical size of the system (of the order of a for
the billiard that we study). Such a restriction defines critical
values of �r̂⊥ and �p̂⊥ beyond which the integrand is no
longer exponentially increasing with time. In the next section,
we discuss this issue, which is crucial to describe the long-
time limit of the OTOC. Staying away from such a limit, we
adopt Eq. (32), and thus we write

δO(1)(t ) = O(1)
d (t ) − Ocl(t ) = − 1

8(2πh̄)4A

∫
d r̂ d�r̂ du dv dp̂ d�p̂ δ(�r̂ − u)

× exp

[
− m

2βh̄2 (�r̂ + u)2

]{
e2λt

(
�r̂⊥ + 1

mλ
�p̂⊥

)2

P̂ 2
X

}
exp

[
i

h̄

(
2p̂ · u + �p̂.v

2

)]
. (33)

Performing the �r̂, v, and �p̂ integrals, we have

δO(1)(t ) = − 1

2(2πh̄)2A

∫
d r̂ du dp̂ exp

[
− 2m

βh̄2 u2 + 2i

h̄
p̂ · u

] {
e2λt (u⊥)2P̂ 2

X

}
. (34)

Using the decomposition u = U ‖ ê‖
s̃ + U⊥ ê⊥

s̃ , the U ‖ and
U⊥ integrals can be readily done. At the level of approx-
imation that we are working with δO(2)(t ) = δO(1)(t ) and
δO(3)(t ) = 0, thus

C(t ) = −δO(1)(t ) = 1

64π

β2h̄2

Am2

∫
d r̂ dp̂ exp

[
−β

p̂2

2m

]

× {
e2λ(|p̂|)t P̂ 2

X

}
. (35)

We have stressed the |p̂| dependence of λ in the last equation.
The r̂-integral is now trivial and it simply leads to the can-
cellation of the factor A. As expected, the OTOC scales with
h̄2. The corresponding prefactor is a purely classical (time and
temperature-dependent) one.

VIII. LONG-TIME AND LOW-TEMPERATURE BEHAVIOR
OF THE OTOC

In a billiard we have λ(|p̂|)t = λgL, with L = (|p̂|/m)t
the trajectory length and λg = (m/|p̂|)λ a purely geometrical
Lyapunov exponent. Using polar coordinates, the angular part
of the p̂-integration can be readily done, leading to

C(t ) = β2h̄2

64m2

∫
dp p3 exp

[
− β

p2

2m
+ 2λgt

m
p

]
, (36)

The p integration admits a closed expression in terms of the
error function. However, its capability to predict the short and
long-time behavior of the OTOC is limited by the various
approximations leading to Eq. (36). In particular, the above-
discussed limitations of Eq. (32) for describing large times
or momenta. Such a finite-size effect can be accounted for
by separating the u-integral of Eq. (34) in two pieces. The
first one, up to |u⊥| ∼ a e−2λt , has the same integrand than
Eq. (34), while for larger values of |u⊥| the curly bracket can
be traded by a2P̂ 2

X. The second contribution dominates in the
long-time limit, leading to a saturation value

Cs ∝ ma2kBT , (37)

which scales with the temperature and the area of the billiard,
but is independent of h̄, in agreement with the findings of
Ref. [9].

For sufficiently low temperatures and not too long times,
the term e2λgpt/m in Eq. (36) behaves a smooth function of
p that can be taken outside of the integral, leading to a
growth of C(t ) with a rate � given by the Lyapunov exponent
corresponding to the average velocity. Such a procedure can
be formalized by tackling the p-integral Eq. (35) by the
steepest-descent method, which for small λgṽt leads to

CLT(t )

h̄2 ∝ exp [
√

3 λgṽt], (38)
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FIG. 4. Numerically obtained OTOC (in a logarithmic scale) as a
function of the scaled time (length) � = ṽt for different temperatures
according to the color scale (following the same conventions than in
Fig. 3). The black straight lines describe the corresponding exponen-
tial growth e

√
3λg� applicable in an intermediate time-window. Inset:

OTOC scaled with the temperature (in a linear scale) in a larger �/a

interval showing its saturation in the long-time limit.

We then have � = √
3 λgṽ for an intermediate time-window

and sufficiently low temperatures. For increasing tempera-
tures, the previous reasoning stops being valid and there is
no time-window where the exponential growth of the OTOC
can be observed.

IX. QUANTUM NUMERICAL CALCULATION
OF THE OTOC

In Fig. 4 we present the quantum numerical calculations of
the OTOC, according to the procedure described in Sec. VI,
for the billiard sketched in Fig. 3(c). For a given temperature
and time, the typical values of C(t ) are much smaller than
those of its components O(j )(t ) (except for the long-time
saturation values), confirming that the OTOC results from the
small quantum correction of its components.

For increasing values of �, we first notice a narrow regime
with a quadratic takeoff, followed by a regime of rapid growth.
Further on, we identify a �-window with an exponential
increase of the OTOC, well fitted when using the rate �

estimated in Eq. (38) and the value λg = 0.425a−1 applicable
to the chosen billiard (black solid lines). The saturation of
the OTOC for large times (see inset) completes the listing of
observed regimes.

The initial quadratic dependence (on � or t) is characteristic
of quantum perturbation theory, and it is thus expected in any
kind of system. The ensuing rapid growth is also observed
in a rectangle billiard (data not shown), as well as in other
integrable systems (i.e., circle and particle-in-a-box) [9]. The
semiclassical approach of Secs. VII and VIII does not allow
to access such a regime, corresponding to times much smaller
than that of the first collision (which for a trajectory with
the mean velocity occurs for �/a � 0.4). The differences
between chaotic and integrable systems appear in the regimes
occurring for �/a � 0.4. For the latter case, it is not possible
to identify a window of exponential growth as in Fig. 4, and
also, no clear saturation of C(t ) is observed.
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FIG. 5. Same data as in Fig. 4, showing the OTOC, scaled with
e

√
3λg� (a), and with α(T )e

√
3λg� (b), as a function of the time t

(scaled with t0 = ma2/h̄) for different temperatures according to
the color scale (following the same conventions than in Fig. 3).
The time-window where the exponential growth provides a good
description of the OTOC increases upon decreasing the temperature.
Inset: scaling parameter α(T ) exhibiting an approximate logarithmic
temperature dependence.

While the exponential fit performed in the interval 0.4 �
�/a � 1.5 is hindered by the limited range of growth, the
rate predicted by Eq. (38) provides a good description at all
working temperatures. Moreover, for these values of �/a, it is
meaningful to confront the quantum numerical results with the
semiclassical calculations. We remark that trajectories longer
than those with the mean-trajectory-length are included in
the semiclassical expressions like Eq. (35) and may result in
an important contribution. The exponential regime is further
put in evidence in Fig. 5(a), where we scaled C(t ) with
exp (

√
3λg�). The time-window of the exponential growth

increases when lowering the temperatures, in agreement
with the theoretical prediction. A numerical prefactor α(T ),
with a weak (logarithmic) temperature dependence, charac-
terizes this regime [Fig. 5(b)]. The fitting to the exponential
form becomes poorer upon increasing the temperature, since,
as discussed before Eq. (38), the thermal average does not
simply select a mean velocity.

The saturation of the OTOC for long times is expected
for a finite-size system [7,11,16] and has been observed in
the numerical simulations performed in several physical cases
[8–10,17]. From the inset of Fig. 4, we see that the value
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of the long-time saturation of the OTOC is proportional to
the temperature. In addition to the term given by Eq. (37)
(proportional to temperature), we should consider the con-
tribution arising from the different long-time value of the
OTOC components, discussed in Sec. VI (also proportional to
temperature). Moreover, it is important to remark that quan-
tifying the saturation values of quantities like the OTOC or
the Loschmidt echo, whose semiclassical expression depend
on four trajectories is difficult, due to the different possible
pairings [35] and the effect of trajectory loops [36,37].

As in the case of Eq. (20), the choice of the operator
pair does not alter the structure of Eq. (35), but it merely
modifies the phase-space variables within the curly bracket.
These changes have important consequences for the final
results, since in the thermal average the Boltzmann factor
weights the states according to their energy. For instance,
taking A = B = X simply requires trading the term P̂ 2

X inside
the curly bracket by X2. The stationary-phase procedure that
leads to Eq. (38), now requires much lower temperatures to
be applicable. The quantum numerical results for the OTOC
in this case (not shown) exhibit a monotonous increase with
time, up to a temperature-independent saturation value, but
a window of exponential growth cannot be identified when
the range of temperatures of Fig. 4 is investigated. Consistent
with the previous analysis, the temperature dependence of the
OTOC in the case A = B = X is inverted with respect to
that of the case A = X, B = PX of Fig. 4. Taking A = B =
PX results in very different OTOC components, with respect
to the other two previously discussed cases, while for the
associated OTOC a time window of exponential growth can
be identified (not shown).

X. CONCLUSIONS

The OTOC of quantum operators in low-dimensional sys-
tems has been addressed by semiclassical and numerical tech-
niques. The four-point OTOC C(t ) can be expressed in terms
of three components O(j )(t ), for j = 1, 2, 3. Introducing the
semiclassical expression of the propagator, O(3)(t ), results as
a sum of terms depending on pairs of trajectories, while the
other two components, O(1)(t ) and O(2)(t ), require the simul-
taneous treatment of four classical trajectories. The leading-
order h̄0 approximation for each of the three components of
the OTOC is the same, such that at the classical level the
OTOC vanishes for all times. The OTOC, stemming from the
difference of these components is of order h̄2, and is much
smaller than each of them.

The case of the position and momentum operators in a
two-dimensional classically chaotic system has been chosen
to illustrate the capability of semiclassical expansions to
obtain the first leading order terms in the h̄ expansion of the
OTOC. Numerical quantum calculations of the OTOC and its
components, using a unsymmetrical billiard, were carried out
to test the semiclassical results and set their limit of validity.

The leading-order (classical) approximation to the OTOC
components was shown to provide a good description of the
numerical results, and the differences detected for long-times
were attributed to quantum corrections. The semiclassical
approach to the OTOC yielded an exponential increase within
a limited time-window between the initial fast increase and
the saturation for large times. The corresponding growth rate

was in good agreement with that of the numerical calculations.
The semiclassical approach, as well as the numerical one,
predict that the time-window exhibiting exponential growth
of the OTOC becomes larger as the temperature of the system
diminishes.

The bound on the OTOC growth-rate proposed in Ref. [3]
is � � 4πkBT/h̄, while we obtained � = √

3 λgṽ. Thus, for
the system and the operators considered, the proposed bound
would hold if kBT � 3h̄2λ2

g/(16π2m). We then conclude that
the fulfillment of the bound is guaranteed, unless kBT is
of the order of the ground state of the billiard. Notwith-
standing, the prediction of a global growth for the OTOC
encounters two limitations. Firstly, the thermal average neces-
sarily mixes different growths given by an energy-dependent
Lyapunov exponent. Secondly, the finite-size of the systems
under consideration necessarily leads to a saturation of the
OTOC for large times.

A different choice of operators results in similar semiclas-
sical expressions to the ones obtained in this work, but the
thermal average gives to the OTOC and its components a
temperature dependence that is very sensitive to the nature
of these operators. The choice of an initial thermal state results
in the mixing of various growth rates, and therefore in a
different behavior of the OTOC, with respect to the case of
an initially localized wave-packet [14,18,19], where such a
mixing is not present.

The connection between the OTOC and the Loschmidt
echo has been signaled in various contexts [1,13,18,38] as
both link irreversibility with the operator noncommutativity.
At the technical level, both observables are four-point
functions that in a semiclassical formulation depend on four
classical trajectories. Unlike the Loschmidt echo, there is
only one Hamiltonian to be considered in the case of the
OTOC, and this feature implies to take into account subtle

FIG. 6. Graphical representation of the O (2)
ap (r′, r; t ) term as-

sumed for writing Eq. (A1). The color blue (red) is used for tra-
jectories whose Hamilton principal function appears with a plus
(minus) sign in the phase term of Eq. (A1). The dashed (black) lines
represent the trajectories s and s ′ (with initial momenta pi

s and pi
s′ ,

respectively) used to linearize the dynamics of nearby trajectories.
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action differences between nearby trajectories. Like in the
calculation of the Loschmidt echo, the simplest semiclassical
approach to the OTOC can be done for uniformly hyperbolic
systems, and this has been the path followed in this work.
When the Loschmidt echo is averaged over different
intial wave packets, the local variations of the Lyapunov
exponent encountered in a typical chaotic system lead to the
hypersensibility with respect to the perturbation, where the
average decay is governed by a modified exponent and is
representative of typical conditions only after the Ehrenfest
time [39]. The effects that emerge from the failure of reaching
complete self-averaging of the Lyapunov exponent within a
limited time interval are more prominent in the case of the
OTOC [14], due to its initial exponential increase with time.
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APPENDIX A: ALTERNATIVE PAIRINGS

As indicated in Sec. IV, the terms in the semiclassical
expansion Eq. (11) vanish unless their associated trajectory
actions are somehow related. While the diagonal scheme
provides the most obvious relationship, other possibilities
might result in terms that survive the spatial integrations over
the internal variables r1, r2, and r3. Among them, that of
Fig. 6, where the trajectory s1 (s2) remains close to s̃4 (s̃3).
Within such alternative pairing (noted as “ap”), performing
the changes of variables r̄ = (r + r′)/2, �r = r′ − r, r̄′ =
(r1 + r3)/2 and �r′ = r3 − r1, and proceeding in the same
way that lead to Eq. (17), we write

O(2)
ap (t ) = 1

(2πh̄)4A

∫
d r̄′ d�r′ d r̄ d�r dr2 exp

[
− m

2βh̄2 �r2

] ∑
s(r̄,r̄′;t )

∑
s ′(r̄′,r2;t )

Cs Cs ′

{(
(X̄′)2 − 1

4
(�r′

X )2

)(
P i

X,s3

)2
}

× exp

[
i

h̄

(
pi

s .�r − pf
s · �r′)] exp

[
− i

h̄
pi

s ′ · �r′
]
. (A1)

Where we have used that

Rs1 (r1, r; t ) − Rs̃4 (r3, r′; t ) � pi
s · �r − pf

s · �r′, (A2a)

Rs̃3 (r2, r3; t ) − Rs2 (r2, r1; t ) � −pi
s ′ · �r′, (A2b)

which are valid up to quadratic order in �r and �r′. With
the new integration variables, the trajectory s3 is the one that
leaves r2 and reaches r̄′ + �r′/2 in time t , while remaining in
the environment of s̃ ′.

In leading order we use a strict diagonal condition s̃4 = s1,
s̃3 = s2 for the terms within the curly bracket. Making the
change of variables from r2 to pi

s ′ (that we note p′) and from
r̄′ to pi

s (that we note p), we perform the integral over �r′,
that results in a term δ(p′ + pf

s ). The delta function settles
p′ to −pf

s , implying that s ′ is indeed oriented opposite than
in the sketch of Fig. 6. The resulting configuration is then
that of Fig. 2, showing that the alternative pairing does not
produce in leading order a new contribution beyond the one
of the diagonal scheme already considered.

APPENDIX B: PERIODIC-ORBIT CORRECTIONS

Within the diagonal scheme, in Sec. IV we used the ap-
proximation Eq. (12), of only keeping the free-space form of
the Green function. To go beyond such an approximation, we
can use the semiclassical form of the Green function [22,23]

Gsc(r′, r; ε) = 1√
2πh̄3/2

∑
s(r,r′;ε)

D1/2
s

× exp

[
i

h̄
Ss (r′, r; ε) − i

π

2
νs − i

3π

4

]
, (B1)

obtained as the Fourier transform of the semiclassical prop-
agator Eq. (9). The sum is over all the classical trajectories
s(r, r′; ε) joining the points r and r′, with an energy ε, an
action Ss (r′, r; ε), and a number of conjugate points ν. The
factor Ds is given in terms of second derivatives of the action
with respect to the energy ε and the initial and final space
coordinates r, r′.

The component O(3)(t ) can then be written as

O(3)(t ) = 1

2i
{O(3)

+ (t ) − O(3)
− (t )}, (B2)

with

O(3)
+ (t ) = 2

Z

1

(2πh̄)7/2

∫
dε dr′ dr1 dr e−βε

×
∑

s2(r1,r′;t )

∑
s1(r,r1;t )

C1/2
s2

C1/2
s1

{
P

f

X,s2
(X1)2P i

X,s1

}

× exp

[
i

h̄

(
Rs1 (r1, r; t ) − Rs2 (r′, r1; t )

)

− i
π

2

(
μs1 − μs2

)] ∑
s3(r′,r;ε)

D1/2
s3

exp

[
i

h̄
Ss3 (r, r′; ε)

− i
π

2
νs3 − i

3π

4

]
. (B3)
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FIG. 7. Graphical representation of O(3)
+ (t ) according to Eq. (B3)

in the case where the trajectories s1, s2, s3 remain close to a periodic
orbit (thick dashed). The color blue (red) is used for fixed-time
trajectories whose Hamilton principal function appears with a plus
(minus) sign in the phase term of Eq. (B3), while green is reserved
for fixed-energy trajectories.

The previous expression is particularly involved, as it
mixes time and energy-dependent semiclassical expansions.
Temperature-dependent semiclassical approaches have been
developed for the stationary case [40,41], but the time-
dependence of Eq. (B3) forces us to take another route.

Within the semiclassical approach for completely chaotic
systems, it is natural to evaluate the spatial integrals in
Eq. (B3) over the rapidly oscillating integrand by the
stationary-phase method. The stationary-phase conditions for
the r, r1, and r′ integrations give, respectively,

pf
s1

(r1, r; t ) + pi
s2

(r′, r1; t ) = 0, (B4a)

−pi
s1

(r1, r; t ) + pf
s3

(r, r′; ε) = 0, (B4b)

−pf
s2

(r′, r1; t ) − pi
s3

(r, r′; ε) = 0. (B4c)

In principle, trajectories s1 and s2 are not traveled with the
same energy, but the condition Eq. (B4a) imposes such a
restriction. Similarly, the energy with which s1 and s2 are
traveled is, in principle, independent of ε, but the conditions
Eqs. (B4b) and (B4c) impose the previous condition.

The most obvious solution of Eqs. (B4) results in the
scheme worked out for O(3)(t ) in Secs. IV and V. However,
there is an additional possibility of satisfying the conditions
Eq. (B4) when the three stationary-phase points in considera-
tion are part of a classical periodic orbit (see Fig. 7). A similar
configuration has been shown to provide the periodic-orbit
corrections to the Drude conductivity in the phase coher-
ent case [42–44]. The stationary-phase condition for O(3)

− (t )
results in the same configuration of Fig. 7, with the only
modification of inverting the sens in which the trajectory s3

is traveled.
The calculation of O(3)

+ (t ) proceeds in following the foot-
prints of Ref. [44]. The additional difficulty with respect to
the previous case it that we need to handle now three spatial
integrations instead of two. We thus highlight the steps of the
calculation arising from this feature. Introducing a new set
of orthogonal coordinates along the periodic trajectory in the
parallel (‖) and in the perpendicular (⊥) directions, i.e., r =
(r‖, r⊥), r′ = (r ′‖, r ′⊥), r1 = (r‖

1 , r⊥
1 ), the integration over the

transverse coordinates is given in terms of the determinant of
the quadratic form associated with

Q =

⎛
⎜⎜⎜⎜⎝

∂2Rs1
∂r⊥2 + ∂2Ss3

∂r⊥2

∂2Ss3
∂r⊥∂r ′⊥

∂2Rs1

∂r⊥∂r⊥
1

∂2Ss3
∂r⊥∂r ′⊥ − ∂2Rs2

∂r ′⊥2 + ∂2Ss3
∂r ′⊥2 − ∂2Rs2

∂r ′⊥∂r⊥
1

∂2Rs1

∂r⊥∂r⊥
1

− ∂2Rs2

∂r ′⊥∂r⊥
1

∂2Rs1

∂r⊥2
1

− ∂2Rs2

∂r⊥2
1

⎞
⎟⎟⎟⎟⎠.

(B5)

The matrix elements of Q can be expressed in terms of those
of the monodromy matrix M of the selected periodic orbit
[44].

The integration over the longitudinal coordinates can be
easily done in the case of a billiard and leads to

O(3)
PO(t ) = 2

(2πh̄)2

∫
dε e−βε

∑
γ

∞∑
p=1

cγ (t )
1∣∣TrMp

γ − 2
∣∣1/2

× cos

[
p

h̄
Sγ (ε) − pπ

2
νγ

]
, (B6)

as a sum over the primitive periodic orbits γ and their
repetitions p. We have defined the PX−X time-dependent
correlation function along the length Lγ of the primitive
periodic orbit as

cγ (t ) =
∫ Lγ

0
dl

{
P 2

X(l) X2(l; t )
}
. (B7)

Equation (B6) has the same structure of the trace formula
for the density of states [22,23], as well as of the phase-
coherent conductivity [42–44] and the response function of
a many-body fermionic system [45], differing from them
only in the particular correlation function and the thermal
averaging. Like in the well-studied previous cases, the actual
evaluation of Eq. (B6) is in general quite difficult, since it
requires the determination of a large number of periodic orbits
with their associated parameters. Therefore, its use is more
formal than practical. Similarly as in Sec. V, we remark that
the result Eq. (B6) directly follows from the periodic-orbit
correction to the thermal average of the operators explicit in
Eq. (5). The curly bracket appearing in the definition of the
correlation function is the same as in Eq. (20). The difference
between them being that in the previous case the integration is
over the area A of the system, while in Eq. (B7) the integration
carries over the initial point on the primitive periodic orbit γ

(parametrized by l), while X(l; t ) is given by the evolution on
the periodic orbit and PX is the X component of the initial
momentum.

In the leading-order in h̄, the periodic-orbit correction
O(3)

PO(t ) is the same that for the other two OTOC components.
Therefore, such corrections do not affect C(t ). However, as
discussed in Sec. VI, they can be important in determining
the long-time saturation value and the oscillations of OTOC
components.
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