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Two properties are needed for a classical system to be chaotic: exponential stretching and mixing.
Recently, out-of-time order correlators were proposed as a measure of chaos in a wide range of physical
systems. While most of the attention has previously been devoted to the short time stretching aspect of
chaos, characterized by the Lyapunov exponent, we show for quantum maps that the out-of-time correlator
approaches its stationary value exponentially with a rate determined by the Ruelle-Pollicot resonances.
This property constitutes clear evidence of the dual role of the underlying classical chaos dictating the
behavior of the correlator at different timescales.
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Introduction.—Classical chaos is commonly associated
with the exponential separation of trajectories. The impos-
sibility of translating this concept literally into the quantum
realm is one of the reasons why the development of
quantum chaos [1] has remained a challenge throughout
the years. Nevertheless, important achievements have been
accomplished in the field, one of the most prominent being
the description of universal properties in the spectrum
described by ensembles of random matrices. Thus, spectral
properties can in many cases signal quantum chaos. More
recently, tools like the Loschmidt echo [2] have made it
possible to gauge and analyze quantum chaos in the time
domain. Chaotic (ergodic) properties of eigenfunctions
have become a central subject in relation to thermalization
(via the eigenstate thermalization hypothesis [3]), particu-
larly in many-body localization [4].
Another probe of quantum chaos is provided by the out-

of-time ordered correlator (OTOC). It was first used in
Ref. [5], where its exponential growth with time was
associated to chaotic behavior. Recently, the OTOC has
been put forward as a measure of chaos in many-body
systems [6–15]. The physical concepts behind the OTOC
are particularly interesting in that they can be related to
scrambling of quantum information [16–18] and entangle-
ment. Moreover, the subject has attracted considerable
attention following the conjecture that puts a bound on
its growth rate for many-body thermal quantum systems
[19]. The ever growing advances in coherent manipulation
of quantum systems have also made it possible to envisage
and carry out experiments to measure them [13,16,20–23].

These time domain features of the OTOC concern
relatively short times (i.e., up to the Ehrenfest time).
General chaotic behavior is characterized by two properties.
The first one is stretching, causing exponential separation of
trajectories and is quantified by the Lyapunov exponent. But
small time separation of initial conditions is not enough for
chaos. The second property associated with chaos is mixing,
which in a compact phase space is realized when the
stretching trajectories fold back unto themselves (simple
graphical examples are given by the baker’s map or Smale’s
horseshoe). Mixing takes place for longer times and is
quantified by the decay of correlation functions. For
strongly chaotic systems this decay is exponential with a
rate given by Ruelle-Pollicott resonances (RPRs) [24].
Since the OTOC is by definition a correlation function,
an observable effect of this second regime due to mixing in
chaotic systems is to be expected [25]. Such a regime has
not, to our knowledge, been observed in any system for
which the OTOC has been studied.
In this Letter we show that the RPRs play an important

role in the time behavior of the OTOC. For strongly chaotic
systems, the approach to saturation is exponential and
dominated by the largest RPR. Moreover, we provide an
analytical proof, for a simple model, that the short time
exponential growth is governed by the Lyapunov exponent.
Up to now, such behavior has only been shown numerically
or deduced under certain approximations [13,26–29].
Out-of-time ordered correlator.—The OTOC is defined

as the thermal average involving the commutator between
two operators at different times,
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CðtÞ ¼ h½ÂðtÞ; B̂�½ÂðtÞ; B̂�†i; ð1Þ

with ÂðtÞ the Heisenberg evolution of the operator Â. For
simplicity, we consider operators acting on a Hilbert space
of dimension N. As the evolution will be governed by a
N × N unitary map, the average is given by h·i ¼ Trð·Þ=N.
For Â and B̂Hermitian we can expand the commutators and
obtain CðtÞ ¼ −2½O1ðtÞ −O2ðtÞ�=N, with

O1ðtÞ ¼ Tr½ÂðtÞB̂ ÂðtÞB̂�; O2ðtÞ ¼ Tr½Â2ðtÞB̂2�: ð2Þ

For the time evolution we use the quantum version of
classical maps on the torus. They embody, in the simplest
possible way, the essential features of chaotic motion: a
compact phase space and an exponential divergence of
trajectories, together with computable Lyapunov expo-
nents, Ruelle-Pollicott resonances, and eventually other
quantities that characterize their chaotic nature.
For concreteness, we use the quantum version of a

paradigmatic example of chaos, the perturbed Arnold’s cat
map [30] on the unit torus:

p0 ¼ pþ q − 2πk sin½2πq�
q0 ¼ qþ p0 þ 2πk sin½2πp0� mod1: ð3Þ

The Lyapunov exponent for k ¼ 0 is the logarithm of the
largest eigenvalue of M ¼ ð2

1
1
1
Þ, i.e., λL ¼ ln½ð3þ ffiffiffi

5
p Þ=2�,

and does not change significantly for small values of k. We
introduce a nonlinear perturbation to avoid nongeneric
behavior that can appear in the quantized version at long
times.
A quantum map is a unitary operator that represents the

canonical transformation corresponding to the classical
map. The torus structure implies a double periodicity,
which upon quantization imposes the discreteness of
Hilbert space with an effective Planck constant related to
the dimension N of Hilbert space by heff ¼ 1=ð2πNÞ. The
map is quantized as a N × N unitary operator ÛM [31], and
the time evolution is given in discrete steps by Ût

M. For
convenience, we express it as a composition of “kicks” in
position and momentum,

ÛM¼e−i2π½p2=2N−kNcosð2πp=NÞ�e−i2π½q2=2NþkNcosð2πq=NÞ�; ð4Þ

with q; p ¼ 0;…; N − 1. Position and momentum are
related by the discrete Fourier transform. Thus, ÛM can
be efficiently implemented using fast Fourier transform
routines.
An intuitive interpretation of the relation between CðtÞ

and chaos can be given directly for position and momentum
operators X̂ and P̂ [19]. On the quantized torus, these
operators are not well defined, but an approximation in the
classical limit can be constructed in terms of Schwinger
shift operators [32]. These are defined as

V̂ ¼
X
q∈ZN

jqþ 1ihqj; Û ¼
X
q∈ZN

jqþ 1ihqjτ2q; ð5Þ

with τ ¼ eiπ=N . Then, position and momentum can be
defined as

X̂ ¼ Û − Û†

2i
; P̂ ¼ V̂ − V̂†

2i
; ð6Þ

which are Hermitian and in the semiclassical limit fulfill the
correct commutation relation. We proceed to compute CðtÞ
numerically, replacing Â ↔ X̂ and B̂ ↔ P̂. In Fig. 1 (top)
we compute CðtÞ for the map of Eq. (4), for k ¼ 0 and
k ¼ 0.02. The case k ¼ 0 corresponds to the analytical
derivation, which we show below. There, the exponential
growth CðtÞ ∼ exp½2λLt� for short times—up to the

FIG. 1. OTOC, Eq. (1), (top panel) and jO1ðtÞj, Eq. (2), (bottom
panel) in the unitary map of Eq. (4), for k ¼ 0 (filled circle) and
k ¼ 0.02 (empty square), as well as in the dissipative (coarse-
grained) map, defined in Eq. (15), for k ¼ 0.02 and ϵ ¼ 0.01
(filled square). The dashed horizontal line of the lower panel
corresponds to the value O2 ¼ 1=4 obtained for the unitary map.
The nonperturbed unitary results (k ¼ 0, ϵ ¼ 0) are obtained
analytically; the rest of the data come from numerical calcu-
lations. For the latter, N ¼ 1024 has been chosen. In the upper
panel the vertical gray line marks the Ehrenfest time tE and the
blue line indicates expð2λLtÞ, with λL ¼ ln½ð3þ 5Þ=2�. The red
line on both panels shows a decay jα1j2t, with jα1j ≈ 0.526. The
integer values of t stand for the number of iterations of the map.
The lines joining the symbols are guides to the eyes. Inset:
Additional data in the perturbed unitary map (k ≠ 0, ϵ ¼ 0) for
k ¼ 0.325, 0.275, 0.25 (solid lines from top to bottom), together
with the decay jα1j2t corresponding to jα1j ¼ 0.864, 0.822, 0.698
(dashed lines).
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Ehrenfest time tE ¼ lnðNÞ=λL—can be seen explicitly. For
k > 0, the same Lyapunov behavior is observed. However,
at the Ehrenfest time the behavior is different. While for
k ¼ 0 it oscillates (see below), for k > 0 it saturates to 1=2.
The saturation of CðtÞ follows from the unitary evolution in
a finite-size system [27–29,33,34] and is set by the constant
value of O2ðtÞ.
In the bottom panel of Fig. 1 we show the behavior of

jO1ðtÞj. For the cases discussed above, O2ðtÞ is trivially
constant (dashed horizontal line). Interestingly, we notice
that O1ðtÞ ≈O2ðtÞ ¼ 1=4 up to the Ehrenfest time, so that
the exponential growth of CðtÞ results from the difference
between two quantities that are initially very close. Another
remarkable observation is that for t ≈ tE, jO1ðtÞj starts to
decay, while CðtÞ approaches a stationary value. The decay
of O1ðtÞ is exponential, and its rate depends on k. In the
inset of Fig. 1 we present data for different values of k. The
variation of the decay rate follows closely that of the RPR.
O1ðtÞ is a correlation function and its long time decay rate
for different values of k appears generic in the numerical
calculations. We show below that indeed the decay is
governed by the RPR. This fact will be further investigated
below using a coarse-grained evolution. Thus, Fig. 1 shows
a summary of the main results of this Letter. In what
follows, we provide an analytical derivation of the
Lyapunov regime for the systems we have considered.
We then introduce a coarse-graining propagator in order to
gain access to the Ruelle-Pollicott regime.
Lyapunov regime.—We proceed to derive an ana-

lytical expression for CðtÞ in the case k ¼ 0. The Weyl
translation operators can be defined in terms of shift
operators [Eq. (5)] as

T̂ξ ¼ V̂ξqÛξpτξqξp ; ð7Þ

with ξ ¼ ðξq; ξpÞ ∈ Z2. They have the following
properties:

T̂ξT̂χ ¼ τhξ;χiT̂ξþχ ; ½T̂ξ; T̂χ � ¼ 2i sin

�
π

N
hξ; χi

�
T̂ξþχ ; ð8Þ

where hi represents the symplectic product. The important
property of the translation operators is that, for quantum
linear maps like ÛM that quantize a symplectic linear
transformation M ¼ ðac b

dÞ with det½M� ¼ 1, they transform
“classically” as

T̂Mtξ ¼ Û†t
MT̂ξÛ

t
M: ð9Þ

This is the reason why the quantization of linear maps does
not scramble operators, as it was pointed out in Ref. [27].
Now we define the following Hermitian operators,

F̂ξ ¼
T̂ξ − T̂†

ξ

2i
; ð10Þ

which will allow us to define a family of OTOCs by
replacing Â and B̂ in Eq. (1). After a simple calculation it is
easy to see that these OTOCs are given by

CðtÞ ¼ −
1

N
Trf½F̂ξðtÞ; F̂χ �2g ¼ sin2

�
π

N
hMtξ; χi

�
; ð11Þ

where we have defined

Mt ≡
�
at bt
ct dt

�
; ð12Þ

where at, bt, ct, dt are integers modulo N that grow
exponentially with λL, the logarithm of the largest eigen-
value of M. This will happen until they become of order N
and mod(N) kicks in. From Eq. (6) we see that hMtξ; χi ¼
−at for X̂ ¼ F̂ð1;0Þ and P̂ ¼ F̂ð0;1Þ, and so we finally arrive
at the following exact expression for the OTOC for k ¼ 0:

CðtÞ ¼ sin2
�
πat
N

�
: ð13Þ

Replacing at ¼ eλLt for early times such that at < N,

CðtÞ ≈
�
πat
N

�
2

¼ π2

N2
e2λLt; ð14Þ

with λL the classical Lyapunov exponent of M.
This is the first important result of this Letter. We have

analytically shown that for short times the OTOC for a
chaotic map, a paradigmatic example of quantum chaos,
grows exponentially with a rate given by twice the classical
Lyapunov exponent. Expanding the squared commutator and
using cyclic properties of the trace and simple trigonometry,
we have O2ðtÞ ¼ 1=4 and O1ðtÞ¼ð1=4Þcosð2πat=NÞ.
Ruelle-Pollicott regime.—In what follows we explain

the long time behavior observed in the case k > 0. It is
characterized by saturation of CðtÞ, which is in turn
explained by the decay of jO1ðtÞj. As stated before, this
decay is given by jα1j2t, where α1 is the largest RPR,
smaller than α0 ¼ 1. The RPR are the isolated eigenvalues
fαig of the Koopman operator acting on a functional
(Banach) space, less restrictive than L2, i.e., allowing some
distributions [35,36]. They are located inside the unit circle
and beyond some characteristic radius r. Therefore, when
projected to a space orthogonal to the invariant density,
which corresponds to α0 ¼ 1, correlations decay asymp-
totically as αt1 (if jα1j > jα2j > � � �). We expand this
discussion in the Supplemental Material [37].
The deep connection between the quantum propagator

and the RPRs was established as a type of spectral
quantum-classical correspondence, by introducing a
coarse-grained propagator [36,43–45]. Such a propagator
can be defined as a two-step superoperator:

Âtþ1 ¼ DϵðÛ†ÂtÛÞ
¼def

X
ξ

cϵðξÞT̂†
ξÛ

†ÂtÛT̂ξ: ð15Þ
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At each (discrete) time t the unitary map Û is followed by
an incoherent sum of all the possible translations in phase
space with a (quasi-)Gaussian weight cϵðξÞ centered at
ξ ¼ 0. For convenience (see Ref. [44]), cϵðξÞ is defined as
the two-dimensional discrete Fourier transform of
c̃ðμ; νÞ ¼ e−ðϵN=πÞ½sin2ðπμ=NÞþsin2ðπν=NÞ�=2. It is approximately
Gaussian with width proportional to 1=ϵ, and ϵ therefore
characterizing the size of the coarse graining. The coarse
graining Dϵ introduces decoherence by dephasing noise. It
can also be interpreted as an average over many different
initial conditions, with Gaussian weight. The resulting
propagator is nonunitary, and it is unital—it is a convex
sum of unitary operators. One direct consequence of the
nonunitarity is that OðϵÞ

2 ðtÞ will now decay, and as a
consequence, so will CðϵÞðtÞ.
It is proven in Ref. [36] that taking the limitsN → ∞ and

ϵ → 0 in the appropriate order, the spectrum converges to
that of an equivalent classical coarse-grained propagator
whose spectrum in turn converges to the RPR. For
completely chaotic systems there is a clear gap jα1j < 1,
and so for large times Oi should decay as jα1j2t (see Fig. 1,
top and bottom panels). Technically, obtaining the RPR in
the limit N → ∞ becomes very hard, because it involves
N2 × N2 matrices. Classical Ulam partitioning is not any
easier. Rather, we profit from the fact that only the largest
(in modulus) eigenvalue is needed and an iterative method
based on Lanczos power iteration can be used [44,46,47].
It essentially consists of iterating an initial arbitrary state
forward and back, building a matrix, and solving a
generalized eigenvalue problem. The key issue is that
the existence of a finite gap reduces the size of the
eigenvalue problem to solve drastically. The method
guarantees that, in a limited region of ϵ and N
(ϵN ¼ const [36,45]), we can extract from the unitary
operator a certain number of resonances that are indepen-
dent of both ϵ and N so that they are classical (N → ∞)
characteristics of the map. Numerically, for N ≈ 1000 we
can extract up to around 10–15 of the largest resonances.
As an alternative, since cϵðξÞ is quasi-Gaussian, it effec-
tively truncates the propagator in Fourier space, and this
fact can be used to compute the spectrum in what is
sometimes called the chord representation [48].
In Figs. 1 and 2 the effect of the coarse graining is shown

for both CðtÞ and jO1ðtÞj. Since OðϵÞ
2 ðtÞ is no longer

constant (see Ref. [37]), CðϵÞðtÞ does not saturate, but
decays also according to the largest RPR. In Fig. 2 we show
jOðϵÞ

1 ðtÞj for different values of ϵ. We can see how the
Ruelle-Pollicott behavior, even though already present
without coarse graining, is progressively unveiled and lasts
longer as ϵ becomes larger. Eventually, after some thresh-
old value the decay of jO1j saturates to jα1j2t (dashed red
line). This behavior is expected to be valid for a limited
range of ϵ. For large enough values, the effect of Dϵ will
dominate over the unitary dynamics.

We point out that the decay governed by RPRs presented
by the OTOC, beyond the Ehrenfest time, for dissipative
time evolution is reminiscent of the long time behavior
exhibited by the Loschmidt echo [43–45]. Such concomi-
tance suggests a link between both time-dependent corre-
lators [13,49]. In the Supplemental Material [37] we
present numerical results for two other examples of chaotic
maps: the standard and Harper maps. The numerics for
these other maps fully support the results presented here.
Conclusions.—The OTOC is a powerful tool to charac-

terize chaos in a great variety of domains from single
particle to many-body physics, up to black holes and
high energy thermodynamics. Part of this power comes
from the possibility to relate its time dependence to
classical quantities like the Lyapunov exponent, that can
be independently determined. We have analytically shown,
for simple systems, how the classical Lyapunov exponent
appears explicitly in the early time dependence of the
OTOC. Moreover, we have also shown that after the
Ehrenfest time the approach to saturation of the OTOC
or its eventual decay is determined by the RPRs, which are
the classical quantities responsible for the decay of corre-
lations in strongly chaotic systems. This leads us to
conclude that the main traits of classical chaos are
embedded in both the short and long time dynamics of
the OTOC.
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