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A B S T R A C T

Ion flow tube mass spectrometry (SIFT-MS) in combination with chemometrics was used to authenticate the ge-
ographical origin of Mediterranean virgin olive oils (VOOs) produced under geographical origin labels. In partic-
ular, 130 oil samples from six different Mediterranean regions (Kalamata (Greece); Toscana (Italy); Meknès and
Tyout (Morocco); and Priego de Cordoba and Baena (Spain)) were considered. The headspace volatile finger-
prints were measured by SIFT-MS in full scan with H3O+, NO+ and O2

+ as precursor ions and the results were
subjected to chemometric treatments. Principal Component Analysis (PCA) was used for preliminary multivari-
ate data analysis and Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to build different models
(considering the three reagent ions) to classify samples according to the country of origin and regions (within
the same country). The multi-class PLS-DA models showed very good performance in terms of fitting accuracy
(98.90–100%) and prediction accuracy (96.70–100% accuracy for cross validation and 97.30–100% accuracy for
external validation (test set)). Considering the two-class PLS-DA models, the one for the Spanish samples showed
100% sensitivity, specificity and accuracy in calibration, cross validation and external validation; the model for
Moroccan oils also showed very satisfactory results (with perfect scores for almost every parameter in all the
cases).

1. Introduction

The fact that VOO trade is becoming increasingly internationalized
and very competitive is causing that various olive producing regions use
different instruments to protect and promote specific qualities and at-
tributes of their olive oils. They basically want to increase their eco-
nomic profitability and gain competitive advantages in the global mar-
ket (Parras-Rosa, 2013). Among these tools, there are geographical in-
dications labels such as protected designations of origin (PDOs), pro-
tected geographical indications (PGIs) and traditional specialties guar-
anteed (TSGs). The emergence and further proliferation of these ge-
ographical indications labeling systems as a differentiating marketing
strategy was mainly stimulated by the recent trend in consumers´ pur

chasing habits, that are increasingly placing value on products that they
can associate with a certain place and/or special means of production
(Barham, 2003; Lenglet, 2014; Verbeke & Roosen, 2009).

Under these labeling systems, two main types of olive oil attrib-
utes are enhanced: tangible characteristics related to olive oil distinc-
tive quality and composition profile; and intangible features, linked to
the cultural heritage from the protected region, local know-how, ances-
tral traditions, and legacy of olive tree (Olea europaea L.) cultivation and
oil production. For all these characteristics (which constitute distinctive
peculiarities of origin-labeled olive oils), this kind of products are usu-
ally commercialized at higher prices in the market. As a consequence,
frauds and adulterations of these products with cheaper oils (with the
obvious aim of obtaining a greater production) have become a raising
problem over the last decades (López-Feria, Cárdenas, García-Mesa, &
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Valcárcel, 2008). Therefore, the assessment of the traceability and au-
thenticity of this type of products is a relevant concern which is attract-
ing a lot of interest internationally at the moment.

Indeed, fraudulent practices have become more sophisticated, even
if the use of production and origin labels of olive oil is strictly controlled
by regulations, directives and laws that define a set of rules for its pro-
duction, management, conservation and packaging (as well as inter-
nal and external control measures) (European Commission Regulation
(EEC), 2012). For this reason, there is a need for reliable and effective
methodological approaches to verify the authenticity of origin-labeled
olive oils (Galtier et al., 2007; Giacalone, Giuliano, Gulotta, Monfreda,
& Presti, 2015; Korifi, Le Dréau, Molinet, Artaud, & Dupuy, 2011).

In the described context, metabolomic approaches could offer (and
are already doing it) positive perspectives for the assessment of olive oil
geographical origin authenticity. Indeed, metabolomic strategies based
on obtaining qualitative and/or quantitative information from major
and/or minor olive oil compounds have been proposed as powerful
methods to trace the geographical origin of this matrix. To date, var-
ious approaches, coming from the classical ones (based on the analy-
sis of specific marker compounds) to the most advanced (more holis-
tic approaches based on the use of olive oil fingerprints, consider-
ing the contribution of a wider number of compounds of this matrix,
which can make adulteration detection more efficient) have been devel-
oped and successfully applied to olive oil geographical origin traceabil-
ity monitoring (Beltrán, Sánchez-Astudillo, Aparicio, & García-González,
2015; Ben-Ayed, Kamoun-Grati, & Rebai, 2013; Nescatelli et al., 2014;
Petrakis, Agiomyrgianaki, Christophoridou, Spyros, & Dais, 2008;
Pizarro, Rodríguez-Tecedor, Pérez-Del-Notario, Esteban-Díez, &
González-Sáiz, 2013; Portarena, Gavrichkova, Lauteri, & Brugnoli,
2014). In general, these approaches take advantage of the high sensi-
tivity, selectivity and robustness of advanced analytical platforms (such
as high performance liquid chromatography, gas chromatography, mass
spectrometry, spectroscopic techniques and nuclear magnetic reso-
nance) and the power of chemometric tools (such as PCA, Linear Dis-
criminant Analysis (LDA), and PLS-DA, among others). At this point, it
is important to bear in mind that, as it happens with other foodstuffs,
the quality of olive oil and the concentration of its chemical components
exhibit seasonal variations; moreover, this vegetable oil can also suffer
some qualitative and quantitative changes on its composition along its
shelf-life (Beltrán, Del Rio, Sánchez, & Martínez, 2004; Criado, Romero,
Casanovas, & Motilva, 2008; Romero, Tovar, Ramo, & Motilva, 2003;
Salvador, Aranda, Gómez-Alonso, & Fregapane, 2003). This means that
the mathematical models classifying or characterizing samples of a par-
ticular geographical origin have to be updated or enriched over the time
to keep being useful; pluri-annual projects as well as studies including
a very wide number of samples are absolutely advisable in order to get
robust, reliable and powerful models.

Among the minor components of olive oil, volatile compounds are of
great interest within this context. The crucial role of aroma compounds
to define sensorial attributes of olive oil is very well-known (Kesen,
Kelebek, Sen, Ulas, & Selli, 2013; Morales et al., 1995). Moreover, they
are among the most widely investigated components of this oily matrix
for their ability to authenticate the geographical origin of this product
(Ben Temime, Campeol, Cioni, Daoud, & Zarrouk, 2006; Cajka et al.,
2010; Pizarro, Rodríguez-Tecedor, Pérez-del-Notario, & González-Sáiz,
2011). In most of the studies focused on olive oil aroma, the analysis
of the volatile fraction is carry out by headspace plus chromatographic
techniques and selective MS detection, especially GC–MS. The useful-
ness of this coupling has been, beyond a doubt, demonstrated; however
(but not questioning the suitability of GC–MS), these methodologies are
often time-consuming, require skilled operators and are relatively ex-
pensive.

SIFT-MS partially overcomes the just listed limitations. It is a direct
injection-mass spectrometric technique which allows real-time moni-
toring of most volatile compounds. It has been characterized by very
low detection limits, typically low part-per-billion (ppb) levels (Gibson,
Dekker, & Ross, 2015). Furthermore, SIFT-MS allows collecting the
overall MS fingerprints of the samples which can be further processed
with chemometric techniques trying to achieve a successful discrimina-
tion and classification. Even though SIFT-MS has been previously used
to investigate the volatile compounds present in olive oil headspace
(Davis & McEwan, 2007; Davis, Senthilmohan, & McEwan, 2011; Davis,
Senthilmohan, Wilson, & McEwan, 2005), this is the first report about
the use of the same technology applied to the geographical assessment
of origin-labeled olive oils. Thus, the aim of the present study was to de-
velop a fast and reliable method for the discrimination of geographical
indication labeled-olive oils by means of SIFT-MS fingerprinting mea-
surements in combination with subsequent statistical interpretation of
the obtained MS data.

2. Material and methods

2.1. Sample collection

A total of 130 samples belonging to six different Mediterranean
origin-labeled regions were purchased from local stores or supplied
by Agro-pôle Olivier National School of Agriculture's partners (i.e. or-
ganisms located in Meknès (Morocco)). The number of EVOO samples
from each region was as follows: PDO Kalamata, Greece (n = 15); PDO
Priego de Córdoba, Spain (n = 25); PDO Baena, Spain (n = 20); PDO
Tyout-Chiadma, Morocco (n = 25); PGI Toscana, Italy (n = 20); and
Meknès, Morocco (n = 25). A homogeneous bulk sample was prepared
by mixing the same quantity of all bottles from the same region, creat-
ing 6 samples-mixtures which could be considered as overall representa-
tions of each geographical indication. Those batch materials were con-
sidered as quality control samples and were used during the preliminary
study and, later on, for the method optimization and validation. Suffi-
cient quantity of each sample (both individual olive oils and mixtures)
was stored in dark bottles at − 20 °C under nitrogen atmosphere until
instrumental analysis.

2.2. Samples preparation and SIFT-MS experiments

After preliminary studies, for each investigated sample, 10 g were
exactly weighed in a glass bottle of 100 mL (Schott Duran bottles, Ger-
many), which was then sealed with screw cap with two closed ports.
Each one of them was equipped with a tube connection. Immediately
after, glass bottles were placed in a water bath heated at 40 ± 1 °C for
10 min. A temperature sensor (± 0.1 °C) was used to ensure a homoge-
neous temperature distribution in the hot water bath. In order to allow
the equilibrium of the analytes between the liquid phase and the head-
space, the sample was continuously agitated with a magnetic stirring
bar. After the heating time finished, the samples were removed from the
bath for headspace analysis by mean of a Voice 200Ultra SIFT-MS (Syft
Technologies, Christchurch, New Zealand).

Thus, one of two tubes connection was coupled to a nitrogen gas
bag and the other was connected to the inlet needle of the SIFT-MS
instrument. So, to sweep volatile compounds present in the headspace
of the glass bottle, the screw cap ports were opened, nitrogen gas
was added by passing an adjusted air stream through the headspace
of the glass bottle at 0.35 bar using a needle valve, and volatile com-
pounds were, then, sampled via a needle into the SIFT-MS flow tube
through a calibrated and heated stainless steel flow limiter at a rate of
1.69 ± 0.1 Torr L s− 1 (133 ± 8 mL/min under standard conditions).
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The reagent ions (H3O+, NO+ and O2
+) were generated by a mi-

crowave air discharge at 0.5 Torr, selected by using a quadrupole mass
filter and injected into a stream of carrier gas in the flow tube. After-
wards, the sample headspace was introduced into the carrier gas at a
known rate, and product ions started to be formed (Fig. 1-supplemen-
tary information). All the ion products of the chemical ionization reac-
tion and un-reacted reagent ions were monitored by a quadrupole mass
spectrometer in the full scan mode in the mass-to-charge ratio (m/z)
range of 10–200 over 60 s. The full scan data (ion counts per second)
averaged over the sampling time for each m/z value was used for the
statistical analyses.

The sample analysis order was randomized, at the beginning of each
sequence and after every 10 analyses a blank and a test or control analy-
sis was conducted.

Sample analyses were carried out in triplicate. For each replicate,
and for each ion precursor, four full mass scans were recorded, but the
first and last cycles were discarded for further calculations. The second
and third scans were averaged yielding a mean mass spectrum/repli-
cate. Then, the three averaged mass spectrums of the three replicates
of each sample were put together to compute another average, obtain-
ing a mean mass spectrum/sample. LabSyft software package (version
1.4.4, Syft Technologies) was used for the mass spectrum acquisition
and data exportation as comma-separated values (CSV) files. In total,
three data sets were obtained: H3O+ data matrix [130 (samples) × 187
(m/z) values]; NO+ data set [130 × 187 (m/z) values] and O2

+ data
matrix [130 × 187 (m/z) values].

2.3. Chemometrics

The usefulness of the headspace fingerprints generated using
SIFT-MS to authenticate the origin of geographical labeled Mediter-
ranean VOOs was examined. For this purpose, the three built data sets
mentioned above (H3O+, NO+ and O2+) were imported into MATLAB
(version 7.9) to create the data matrices and split data into training and
testing sets. The Classification toolbox for MATLAB (version 7.9) and
Solo - Eigenvector Research environment (version 8.5.1) were used for
chemometric treatment of data.

Prior to the chemometrics analysis, individual data matrices from
H3O+, NO+ and O2

+ analyses were preprocessed using an ‘auto-scaling’
method (i.e., it standardizes the columns of the processed data matrix to
have zero mean and unit variance).

As a first step, an exploratory data analysis based on PCA was ap-
plied as unsupervised multivariate technique just to reduce the dimen-
sionality of the three data sets, detect the presence of outliers, explore

samples and variables correlations and visualize general trends within
the data. In a second step, multi-class and two-class PLS-DA models
were built for each SIFT-MS data set obtained (H3O+, NO+ and O2

+)
with the aim of evaluating the ability of the different proposed analyt-
ical approaches to authenticate the studied oils according to their geo-
graphical origin. In multi-class models, all the countries were included
within analysis, whereas the two-class models were built to discriminate
between samples from the same country, but coming from different re-
gions. This latter approach was especially interesting to study samples
from Spain and Morocco. In other words, three PLS-DA models were
constructed for each data set (H3O+, NO+ and O2

+) after removing out-
liers:

Model 1: a multi-class model built from the entire sample set (128
samples) to classify the samples according to their country of origin;
Model 2: a two-class model constructed with the subset of Spanish oils
(44 samples), and Model 3: a two-class model built from the subset of
Moroccan oils (49 samples). For each of the mentioned data sets, sam-
ples were randomly divided into training and test sets, containing 70%
and 30% of the total number of considered samples, respectively (see
Table 1 for details). In each case, the training set was used to calibrate
the PLS-DA classification models, whereas test samples were only used
in the final stage to evaluate the true predictive ability of the calibrated
models.

An important issue when calibrating a PLS-DA model is the selec-
tion of the optimal number of Latent Variables (LVs), which is usually
carried out by cross validation procedures. Cross validation is usually
performed by dividing the training samples in several cross validation
groups. Each cross validation group is then removed from the original
training set, one at a time. Each time the model is calibrated on the re-
maining training samples and, then, used to predict samples of the cross
validation group (Ballabio & Consonni, 2014). In this work, a venetian
blind cross-validation comprising 10 data splits was used to determine
the classification error average of cross-validation. The number of latent
variables (LVs) for each PLS-DA model was estimated using the plots of
the classification error average obtained in calibration and cross-valida-
tion. The optimal number of LVs was chosen to minimize the classifi-
cation error average obtained by cross-validation (these results will be
illustrated in Results and Discussion section).

Once the optimal number of latent variables for each model was cho-
sen, the training sets were used to build the PLS-DA models. Calcula-
tion of the final PLS-DA models was performed selecting 7 latent vari-
ables (for model 1) and 2 (for models 2 and 3) and 10 cross valida-
tion groups for internal validation. After model calibration, the optimal
models were validated on the external test sets. In PLS-DA, the n-di

Table 1
Olive oil dataset for the three PLS-DA models studied: oil classes included in each model, number of samples per class, as well as sample partition in training and test sets for the three
considered SIFT-MS data sets (H3O+, NO+, O2

+) after elimination of outliers.

PLS-DA model 1 (6 classes)

Baena Kalamata Meknès Priego de Córdoba Toscana Tyout

(Class 1) (Class 2) (Class 3) (Class 4) (Class 5) (Class 6) Total

Training set 14 11 17 17 14 18 91
Test set 6 4 7 7 6 7 37
Total 20 15 24 24 20 25 128

PLS-DA model 2 (2 Spanish classes) PLS-DA model 3 (2 Moroccan classes)

Baena Priego de Córdoba Meknès Tyout

(Class 3) (Class 4) Total (Class 3) (Class 6) Total

Training set 14 17 31 17 18 35
Test set 6 7 13 7 7 14
Total 20 24 44 24 25 49
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mensional class vector (containing the membership of samples to the M
classes) is transformed into a binary two-dimensional matrix Y, with n
rows (samples) and M columns (the class information). Each element yim
of Y represents the membership of the i-th sample to the m-th class ex-
pressed with a binary code (1 = in class or 0 = not in class). For each
i-th sample and for each m-th class, PLS-DA returns estimated values
class yim

est (raw predictions) which may have values between zero and
one. A value closer to zero indicates the new sample is not in the mod-
eled class, while a value closer to one is evidence that the sample is in
the modeled class. In practice, two major classification rules are used
to make the class assignment of the samples: ‘strict class predictions’
and ‘most probable predictions’. Strict class predictions are based on
the rule that each sample belongs to a class if the probability is greater
than a specified threshold probability value (typically > 0.5) for one
and only one class. If no class has a probability greater than the thresh-
old, or if more than one class has a probability exceeding it, then the
sample is assigned to class zero (0) indicating no class could be assigned.
On the other hand, most probable predictions are based on choosing the
class that has the highest probability regardless of the magnitude of that
probability. Unlike to strict class predictions, under this approach, sam-
ples are always classified in one of the classes. In this work, this latter
approach was used as class prediction rule for all PLS-DA models built.

The classification performance of PLS-DA models for each class was
assessed from the confusion matrices obtained in fitting, cross valida-
tion and test. Confusion matrix is a table of results showing True Pos-
itive (TR), False Positive (FP), True Negative (TN) and False Nega-
tive (FN) rates as a matrix for each class modeled with a given clas-
sification model. These classification rates are defined as: TPR: pro-
portion of positive cases that were correctly identified (Sensitivity),
= TP / (TP + FN); FPR: proportion of negatives cases that were in-
correctly classified as positive, = FP / (FP + TN); TNR: proportion of
negatives cases that were classified correctly (Specificity),
= TN / (TN + FP); FNR: proportion of positive cases that were incor-
rectly classified as negative, = FN / (FN + TP). In this work, different

classification parameters, such as the class specificity and sensitivity,
non-error rate (NER or accuracy), error rate (ER), precision and F1-score
were derived from the confusion matrices in order to better evalu-
ate the classification performance. The last three classification para-
meters were obtained as: ER or misclassification error: proportion of
samples which were incorrectly classified, = 1 – accu-
racy = (FP + FN) / (TP + TN + FP + FN); precision: proportion of
correctly assigned positive samples, = TP / (TP + FP); and F1-score:
is the harmonic mean of the precision and sensitivity, = 2 ∗ TP/(
2 ∗ TP + FP + FN). It should be noted that, TP/TN/FP/FN refer to the
counts rather than the rates for these quantities. All parameters were
reported as percentages, with the exception of the F1-score parameter
(range of values between 0 and 1).

3. Results and discussion

3.1. SIFT-MS full scan headspace analysis

Fig. 1 shows the MS spectrum of headspace of a “control sample”
using H3O+ (Fig. 1a), NO+ (Fig. 1b) and O2

+ (Fig. 1c) as precursor
ions. The possibility of using three different precursor ions is one of
the advantages of SIFT-MS, since it can provide complementary infor-
mation which could be very useful for the identification of the sam-
ple compounds. For example, E-2-hexenal (C6H10O) reported as one of
the major olive oil volatile compounds gives rise to the following re-
actions: with the H3O+, in a primary reaction a proton is transferred
to the molecule producing C6H11O+ with an m/z of 99. There is also
the possibility to form clusters with the atmospheric water which is
introduced alone with the sample. This secondary reaction can create
two ion products C6H11O+⋅ 2H2O (m/z = 135) and C6H11O+⋅ H2O (m/
z = 117). With NO+, however, a hydride abstraction reaction can take
place leading to the formation of C6H9O+ (m/z = 97). Finally, reactions
ratios with O2 remain very small (between 0.2 and 0.3), which indicates
the low reactivity of the mentioned compounds with this precursor ion.

Fig. 1. Example of the fingerprint mass spectra of a quality control sample-headspace volatile fraction: (a) precursor ion H3O+; (b) precursor ion NO+ and (c) precursor ion O2
+.
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3.2. Geographical classification of the studied oils

The data matrices containing the whole SIFT-MS spectrum (187 m/
z values and their intensities) for samples coming from the six stud-
ied regions were submitted to PCA without any prior class label (in
an unsupervised manner) to identify outliers and visualize the underly-
ing trends. The projection of the samples onto the first four principal
components allowed the observation of the distribution of the samples
and gave us the chance to have a look at their grouping. Results are
given in Fig. 2; there is a clear discrimination of Tyout-Chiadma (PC1
vs. PC2) and Toscana (PC2 vs. PC3, and PC3 vs. PC4) from the oils com-
ing from the remaining regions (for which a significant overlapping is

shown). Two samples (from Meknès and Priego de Córdoba) were iden-
tified as outliers.

Subsequently, the attention was driven towards the application of a
supervised statistical technique (PLS-DA) to classify the olive oil sam-
ples on the basis of their geographical origins. As stated above, before
building the PLS-DA models, the optimal number of LVs was chosen to
minimize the classification error average obtained by cross-validation
(see Fig. 2-supplementary material).

Fig. 3 shows the PLS-DA score plots of LV1, LV2 and LV3 obtained
with the model 1 using the three calibration SIFT-MS data sets (H3O+,
NO+, O2

+) after elimination of outliers. Similarly, Fig. 4 shows the
PLS-DA score plots of LV1 and LV2 obtained with the models 2 and
3 for the three calibration SIFT-MS data sets. On the other hand, the
achieved classification results in fitting, cross validation and test for

Fig. 2. PCA score plots of the studied olive oil samples on the first four principal components using the H3O+, NO+ and O2
+ data sets.*Samples' colour/shape codes are indicated and will

be the same in illustrations 3 and 4 of the manuscript.
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Fig. 3. Score plots (LV1 vs LV2 vs LV3) of PLS-DA model 1 for the three calibration SIFT-MS data sets (H3O+, NO+, O2
+) after elimination of outliers.

PLS-DA models 1, 2 and 3 are summarized in Tables 2 and 3, respec-
tively. In addition, three of the most representative classification para-
meters (sensitivity, specificity and accuracy) are also represented graph-
ically in Fig. 5 to facilitate comparison of data.

When considering the multi-class PLS-DA model (Table 2), it is pos-
sible to say that, regardless of the data set used, the multi-class PLS-DA
models provided the possibility to discriminate among the six studied
groups. They ensured almost excellent specificity and sensitivity in dis

crimination; the models were slightly worse for Kalamata oils. Besides,
the similarity between the parameters obtained for the training and
test sets indicate that overfitting did not occur, which assured the ro-
bustness and reliability of the PLS-DA models developed. Furthermore,
very good classification and prediction rates were obtained regard-
less of the precursor ion employed. Thus, in calibration PLS-DA mod-
els showed an accuracy of 100% for all the studied categories, except
for Priego de Córdoba and Tyout-Chiadma class, for which a value of

6
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Fig. 4. Score plots (LV1 vs LV2) of PLS-DA models 2 and 3 for the three calibration SIFT-MS data sets (H3O+, NO+, O2
+) after elimination of outliers.

98.90% was obtained. In terms of prediction, accuracy values (in cross
validation) were between 96.70% and 100%; whereas in external vali-
dation (test set), calculated rates were between 97.30% and 100%. The
applied PLS-DA models gave the best results (100%, in both fitting and
test set) for samples from Toscana (see Table 2 and Fig. 5A).

Considering the two-class PLS-DA models (Table 3), it is possible
to stand out that regardless of the data sets used, model 2 showed
100% sensitivity, specificity and accuracy in calibration, cross valida-
tion and external validation (Fig. 5B). This result, from our point of
view, proves the ability of the proposed methodology to correctly iden-
tify oils of the two selected Spanish geographical labeled regions (Priego
de Cordoba and Baena). Likewise, model 3 -computed to discriminate
between oils from the two considered Moroccan regions- showed very
satisfactory results (see Table 3 and Fig. 5B). Sensitivity, specificity and
accuracy values were 100% in all the cases (fitting, cross validation
and test set), just finding few exceptions (when PLS-DA was applied to
H3O+ and NO+ data sets in cross validation, reporting values of sensi-
tivity and specificity between 94.44% and 100%, and accuracy values

between 97.14% and 100%). This outcome allowed us to verify the suit-
ability of SIFT-MS, in combination with PLS-DA chemometric treatment,
to efficiently differentiate the oils from the studied Moroccan regions.

Volatile compounds analysis had been already reported to be suit-
able for tracing the geographical origin of olive oil. However, to the
best of our knowledge, the methodology proposed herewith seems to be
advantageous (in comparison, for instance, with GC–MS), as it is less
time-consuming (only 21 min in total are required for sample prepara-
tion and analysis) and provides higher recognition and prediction abili-
ties.

4. Conclusions

The developed chemometric models, based on the SIFT-MS data of
the volatile fingerprints of 130 VOO samples from six of the most im-
portant Mediterranean regions, provided a strong discrimination. The
use of the entire headspace volatile fingerprinting matrices, of the

7
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Table 2
Classification parameters obtained by PLS-DA multi-class models (model 1) in fitting, cross validation (with 10 groups split venetian blinds) and on the external test set for the three SIFT-MS data sets (H3O+, NO+, O2

+).

PLS-DA model 1 a

Parametersb H3O+ NO+ O2
+

Fitting (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
Sensitivity
(%)

100.00 100.00 100.00 100.00 100.00 94.44 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Specificity
(%)

100.00 100.00 100.00 98.65 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Accuracy
(%)

100.00 100.00 100.00 98.90 100.00 98.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ER (%) 0.00 0.00 0.00 1.10 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Precision
(%)

100.00 100.00 100.00 94.44 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

F1-score 1.000 1.000 1.000 0.971 1.000 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cross
validation

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Sensitivity
(%)

100.00 100.00 100.00 100.00 100.00 94.44 100.00 90.91 94.12 94.12 100.00 94.44 100.00 100.00 100.00 94.12 100.00 94.44

Specificity
(%)

100.00 98.75 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.30 100.00 97.26 100.00 100.00 100.00 98.65 100.00 98.63

Accuracy
(%)

100.00 98.90 100.00 100.00 100.00 98.90 100.00 98.90 98.90 96.70 100.00 96.70 100.00 100.00 100.00 97.80 100.00 97.80

ER (%) 0.00 1.10 0.00 0.00 0.00 1.10 0.00 1.10 1.10 3.30 0.00 3.30 0.00 0.00 0.00 2.20 0.00 2.20
Precision
(%)

100.00 91.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 88.89 100.00 89.47 100.00 100.00 100.00 94.12 100.00 94.44

F1-score 1.000 0.957 1.000 1.000 1.000 0.971 1.000 0.952 0.970 0.914 1.000 0.919 1.000 1.000 1.000 0.941 1.000 0.944
Test set (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
Sensitivity
(%)

100.00 75.00 100.00 100.00 100.00 100.00 100.00 75.00 100.00 100.00 100.00 100.00 100.00 75.00 100.00 100.00 100.00 100.00

Specificity
(%)

96.77 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.67 100.00 100.00 100.00 100.00 100.00 96.67

Accuracy
(%)

97.30 97.30 100.00 100.00 100.00 100.00 100.00 97.30 100.00 100.00 100.00 97.30 100.00 97.30 100.00 100.00 100.00 97.30

ER (%) 2.70 2.70 0.00 0.00 0.00 0.00 0.00 2.70 0.00 0.00 0.00 2.70 0.00 2.70 0.00 0.00 0.00 2.70
Precision
(%)

85.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 87.50 100.00 100.00 100.00 100.00 100.00 87.50

F1-score 0.923 0.857 1.000 1.000 1.000 1.000 1.000 0.857 1.000 1.000 1.000 0.933 1.000 0.857 1.000 1.000 1.000 0.933

Sample codes: (1) Baena; (2) Kalamata; (3) Meknès; (4) Priego de Córdoba; (5) Toscana; (6) Tyout.
a 7 LVs were chosen to build the PLS-DA models for all data sets. PLS-DA classification rule was “Class Pred Most Probable”. This rule makes predictions based on choosing the class that has the highest probability (regardless of the magnitude of that

probability). Note this differs from “Strict class predictions” because if more than one class has > 0.50 probability, the highest probability will “win” the sample. Likewise, if all probabilities are below 0.50, the largest probability still “wins”.
b Parameters: Sensitivity (%): proportion of positive cases that were correctly identified, = 100 × TP/(TP + FN) (in percentage); Specificity (%): proportion of negatives cases that were classified correctly, = 100 × TN / (TN + FP) (in percentage);

Accuracy (%): proportion of samples which were correctly classified, = 1-ER (in percentage); ER or Misclassification error (%): proportion of samples which were incorrectly classified (i.e., for a class A, ER represents: 1) samples of class A which were
incorrectly classified as not class A, and 2) samples not of class A which were incorrectly classified as being class A), =(FP + FN) / (TP + TN + FP + FN) (in percentage); Precision (%): proportion of correctly assigned positive samples, = TP / (TP + FP)
(in percentage); F1-score: is the harmonic mean of the precision and sensitivity, = 2 ∗ TP/(2 ∗ TP + FP + FN) (range of values between 0 and 1).
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Table 3
Classification parameters obtained by PLS-DA two-class models (models 2 and 3) in fitting, cross validation (with 10 groups split venetian blinds) and on the external test set for the three SIFT-MS data sets (H3O+, NO+, O2

+).

PLS-DA model 2 a PLS-DA model 3 a

Parametersb H3O+ NO+ O2
+ H3O+ NO+ O2

+

Fitting (1) (4) (1) (4) (1) (4) (3) (6) (3) (6) (3) (6)
Sensitivity (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Specificity (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ER (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Precision (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F1-score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cross validation (1) (4) (1) (4) (1) (4) (3) (6) (3) (6) (3) (6)
Sensitivity (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.44 100.00 94.44 100.00 100.00
Specificity (%) 100.00 100.00 100.00 100.00 100.00 100.00 94.44 100.00 94.44 100.00 100.00 100.00
Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00 97.14 97.14 97.14 97.14 100.00 100.00
ER (%) 0.00 0.00 0.00 0.00 0.00 0.00 2.86 2.86 2.86 2.86 0.00 0.00
Precision (%) 100.00 100.00 100.00 100.00 100.00 100.00 94.44 100.00 94.44 100.00 100.00 100.00
F1-score 1.000 1.000 1.000 1.000 1.000 1.000 0.971 0.971 0.971 0.971 1.000 1.000
Test set (1) (4) (1) (4) (1) (4) (3) (6) (3) (6) (3) (6)
Sensitivity (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Specificity (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ER (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Precision (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F1-score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model 2: Discrimination between Spanish olive oils: (1) Baena and (4) Priego de Córdoba; Model 3: Discrimination between Moroccan olive oils: (3) Meknès and (6) Tyout.
a 2 LVs were chosen to build the PLS-DA models for all data sets.
b The description of the classification parameters can be found in Table 2.
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Fig. 5. A) Graphical representation of classification parameters (sensitivity, specificity and accuracy) obtained by PLS-DA multi-class models (model 1) in fitting, cross validation (with 10
groups split venetian blinds) and on the external test set for the three SIFT-MS data sets (H3O+, NO+, O2

+). B) Idem for PLS-DA two-class models (models 2 and 3).

three precursor ions, provided a holistic approach and the possibility of
deducing the best possible combination to achieve our discrimination
purpose for each studied region. This study indicates that the described
methodology can be considered as a non-time consuming strategy suit-
able for routine analysis of origin-labeled olive oils.

To the best of our knowledge, the present work is the first report
highlighting the use and potential of SIFT-MS fingerprinting for geo-
graphical origin authentication.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2017.12.027.
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