
1 23

Journal of Sol-Gel Science and
Technology
 
ISSN 0928-0707
 
J Sol-Gel Sci Technol
DOI 10.1007/s10971-013-3238-8

Synthesis and applications of mesoporous
nanocomposites containing metal
nanoparticles

Paula C. Angelomé & Luis M. Liz-
Marzán



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



ORIGINAL PAPER

Synthesis and applications of mesoporous nanocomposites
containing metal nanoparticles
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Abstract Metal nanoparticles (NP) and mesoporous

(MP) oxides are complementary materials, since the size

scale of pores in MP oxides matches that of NP and both

systems have potential applications in similar fields.

Besides, nanocomposites obtained through their combina-

tion possess not only the intrinsic properties of each

component, but also new features derived from the synergy

between them, mainly due to the high interfacial area

between the metal and the oxide. Thus, new optical, cata-

lytic and sensing properties can be achieved that are not

easily available from the individual components. In this

review, we focus our attention on such NP@MP compos-

ites, not only from the point of view of the most common

synthesis pathways but also briefly describing their appli-

cations in fields as diverse as (photo)catalysis, sensing,

photochromism and other optical properties, as well as

patterning.

Keywords Metal nanoparticles � Mesoporous oxides �
Thin films � Sensors � Catalysis

1 Introduction

The renewed interest that metal nanoparticles (NP) have

raised during the past decade has been motivated by their

various special properties, which give rise to potential

applications in diverse fields [1, 2], with a particularly strong

focus on their catalytic and optical properties. The use of NP

in catalysis is related in part to their high specific surface

area but also to their high surface reactivity, which may

drastically change as compared with their bigger counter-

parts [3, 4]. The field of NP catalysis is often termed ‘‘semi-

heterogeneous catalysis’’, as it is at the frontier between

homogeneous and heterogeneous catalysis. NP catalysis has

been applied for a large amount of organic reactions, but

mainly in redox catalysis, photocatalysis (photocatalytic

water splitting and photo-hydrogenation of alkenes, alkynes,

and CO2), hydrogenation and oxidation [4]. On the other

hand, the optical properties of NP are related to localized

surface plasmon resonances (LSPR) [5, 6], which give rise to

intense extinction bands in the visible and NIR, as well as

high electric field enhancements at the NP surface [7]. The

optical response of NP can be tuned by modifying their size

and shape, as well as their dielectric environment (refractive

index of the surrounding medium, presence of neighboring

particles, etc.) [8]. These interesting optical properties make

metal NP interesting for use in diverse fields such as

(bio)sensors [9], surface enhanced Raman scattering (SERS)

[10], production of devices that require light confinement

(solar cells, vapor production, local heating, etc.) [11, 12]

and biological applications (disease diagnosis and photo-

therapy, drug delivery, etc.) [12, 13].
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Due to the close relationship between synthesis, prop-

erties and applications, the synthesis of NP has been

extensively developed during the last decades [1] and a

wide variety of morphologies can be obtained in a repro-

ducible way by means of colloid chemistry methods.

Readily obtainable morphologies include spheres, nano-

rods, various polyhedra, nanostars and nanoplates [1, 14].

On the other hand, the synthesis of mesoporous (MP, pore

diameters between 2 and 50 nm) oxides has also experi-

enced an important development during the last 20 years.

These materials are prepared combining the self-assembly

of amphiphilic molecules (which act as templates) and sol–

gel reactions (which give rise to the oxide), thereby leading

to materials with extremely high specific surface area and

highly ordered arrays of monodisperse pores. The field

started its development with the MCM silica family [15],

but an increasing amount of mesoporous materials with

diverse chemical compositions, shaped as powders,

monoliths, thin films, membranes, or fibers have also been

developed [16–18]. MP oxide thin films (especially SiO2

and TiO2) are particularly interesting [19] because they can

be easily extracted from a medium, thus rendering them

ideal for applications that require reusability. Additionally,

they show a high ability for integration in current material

processing technologies, due to the high flexibility of its

synthesis.

Metal NP and MP oxides can somehow complement

each other, since the pores are complementary with the

particles, both in size and potential applications. The

obtained NP@MP composites possess the intrinsic prop-

erties of each family, but also new features derived from

the synergy between the components, mainly due to the

large interfacial area between the metal and the oxide.

Powder NP@MP composites have been recently investi-

gated in great detail, and several excellent reviews have

been published on this subject [20, 21]. In this review, we

Fig. 1 Scheme of the different

alternatives to prepare NP@MP

composite films: a Impregnation

and reduction, b one-pot method

and c use of pre-synthesized

particles
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focus our attention towards NP@MP composites prepared

by combining MP oxide thin films and metal NP. We

describe the most common synthesis methods as well as

tested and potential applications.

2 Synthesis methods

Three general synthesis methods are commonly used for

the preparation of NP@MP composite films. These meth-

ods are summarized in Fig. 1, and explained in this section.

2.1 Impregnation and reduction

The impregnation and reduction approach is, by far, the

most common method for the preparation of NP@MP

composite films. The general idea behind this process is

depicted in Fig. 1a. In a first step, the MP films are pre-

pared, usually by Evaporation Induced Self-Assembly [22],

and the template is then eliminated by either thermal

treatment or solvent extraction. Once the pores are emp-

tied, the metal salt is adsorbed, which may involve elec-

trostatic forces (for Ag(I) adsorption [23–30]), or specific

interactions with amino groups (for Au(III)) [31–33], but

trapping within polyelectrolyte brushes [34] has also been

tested. In all cases, reduction of the metal ions into metallic

particles is the last step. The reduction can be performed by

thermal treatment [23], UV irradiation [27, 35–37] or by

chemical reduction, using formaldehyde [38, 39], hydrogen

gas [25, 29, 31, 32, 36, 40–42] or NaBH4 [30, 34, 39],

among other reducing agents. It has been demonstrated that

the NP size and spatial distribution within the film depends

on the specific reducing treatment [28], particularly on the

strength of the selected reducing agent. It should be noted

that most often a single impregnation and reduction cycle is

not sufficient to fill the pores completely, since the number

of metal ions that can be adsorbed is limited. Nevertheless,

the impregnation–reduction cycle can be repeated several

times, which allows to control the amount of metal formed

inside the pores. Interestingly, the final particle shape is

determined by the pore size and connectivity. Thus,

spherical NP are obtained in most cases, as can be seen in

Fig. 2a. The main drawbacks of this approach are the lack

of control in the location of the NP within the film and the

formation of an unwanted metallic layer on top of the films

[37, 39], but both problems can be overcome by modifying

the synthesis procedure.

A variation of this method is the electrochemically

induced impregnation and reduction [24, 43–45]. In this

case, the film is supported onto a conductive substrate,

which is used as a working electrode. Subsequently,

immersion in an Au(III) or Pt(IV) solution and application

Fig. 2 TEM images of different

NP@MP composite films: a Ag

NP@MP TiO2 obtained by

impregnation and reduction

(reproduced with permission

from Ref. [38]. Copyright 2009

Wiley–VCH Verlag GmbH &

Co. KGaA, Weinheim); b Ag

NP@MP SiO2 obtained by one-

pot synthesis (Reproduced from

Ref. [47] with permission from

The Royal Society of

Chemistry); c Au NP@MP SiO2

obtained using NP suspended in

the sol (reproduced with

permission from Ref. [48]

Copyright � 2005 WILEY–

VCH Verlag GmbH & Co.

KGaA, Weinheim); d Au

NP@MP SiO2 obtained by

adhesion of NP to a substrate

followed by film deposition
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of an electrical potential leads to metal deposition. The

metal may completely replicate the pore array, and it is

even possible to dissolve the oxide leaving a metallic

mesoporous material [44, 45]. Another variation of the

method was proposed by Bois and coworkers [46], com-

prising the impregnation of Ag(I) in a mesostructured film

(i.e., with the template still inside the pores). In this case,

the metal is formed only on the topmost pore layer, which

facilitates the control over the final particle shape by

controlling the pore array, which is an interesting approach

e.g. to obtain rod shaped NP. Further work to reproduce

and expand these findings with MP films would be really

interesting.

2.2 One pot synthesis

In this approach, a metal salt is included in the sol mixture

that gives rise to the MP films, as shown in Fig. 1b. As the

sols are highly acidic, the metal salt is stable under those

conditions and the film deposition can be performed as

usual. Both the oxide and the particles are formed at the

same time under laser irradiation [49], X-ray irradiation

[47, 50] or conventional thermal treatment [51–53]. Using

this methodology, the obtained particles are small (due to

the limited amount of metal salt that can be loaded in the

sol) and are distributed both inside the oxide framework

and at the surface of the pores. An example of a typical NP

distribution is presented in Fig. 2b, where the small dark

dots are Ag NP. In principle, due to their different locali-

zation, these NP are expected to be less accessible for

chemical reactions, as compared to those obtained by the

impregnation–reduction method, since a portion of the total

metallic surface is covered by the oxide. However, no

studies about this subject have been presented so far, ren-

dering this topic an open question that should be studied in

the future. Nevertheless, the method does provide a simple

way to obtain metallic patterns inside the MP framework,

as discussed in the applications section below.

2.3 Use of preformed particles

In all its variations, this method requires the preparation of

metal NP by a colloid chemistry method before their

incorporation within the film. Thus, both the size and shape

of the NP can be defined prior to MP oxide synthesis and it

is not restricted to spherical particles. However, these

methods do not allow a high NP loading, as a consequence

of the low NP concentrations in usual metal colloids.

2.3.1 Incorporation of particles within the sol

This method (schematically depicted in Fig. 1c.1) is rare,

since metallic NP are usually unstable under the conditions

required to prepare a stable sol (highly concentrated acidic

medium, organic solvents). Consequently, this method

requires a careful selection of the NP stabilizer, so as to

make them compatible with the properties of the sols.

Additionally, the NP size and shape should be controlled to

allow formation of a smooth film, without cracks or

thickness variations. An example of this method is the

work by Goettmann et al. [48], who used Au NP stabilized

by a phosphinine ligand to prepare composites with SiO2

MP films (Fig. 2c). The NP were introduced in the silica

sol just before deposition in a mass ratio (calculated on the

basis of the final SiO2 mass) of 0.5, 2, 5, and 10 % but only

the samples with NP content below 2 % showed good

optical quality. This work was later extended by the same

group to Pd NP and MP TiO2 films [54]. Another approach

was tested by Yang et al. [55], who included Au rods@-

SiO2 in a sol with silica precursors and obtained a com-

posite in which the rods are first surrounded by a dense

silica shell and then embedded in a MP film, which had

been previously used for incorporation in standard silica

gels [56, 57]. In this case however, access to the particles is

severely restricted, since they are surrounded by a micro-

porous silica shell.

2.3.2 Particle diffusion thorough the film

This method (depicted in Fig. 1c.2) is also unusual, since it

requires the use of particles that are small enough to diffuse

between the pores and the connecting necks [58, 59]. To

improve diffusion, Patel et al. [60] used electrophoretic

deposition to include 3.1 nm Au nanocrystals stabilized by

dodecanethiol within TiO2 MP thin films (deposited onto a

conductive substrate). With this methodology, Au nano-

crystal loadings up to 21 wt% were reached. However, in

all cases an irregular distribution along the film thickness

was obtained, since the tortuosity of the MP films does not

allow the diffusion of the particles to the innermost layer of

pores.

2.3.3 Adhesion of particles to a substrate followed by film

deposition

This method has been recently reported by our group [61–

63] and represents a new approach that is schematically

shown in Fig. 1c.3: a sub-monolayer of NP (spheres with

different diameters, decahedra or other shapes) are chem-

ically bound to a glass slide and subsequently covered with

a MP thin film. The method allows obtaining fully covered

metallic NP and well-ordered MP thin films. With this

approach, the particles (whose shape and size can be finely

tuned by well-known colloid chemistry methods) under-

neath the porous films remain accessible but not in direct

contact with the medium, opening the way toward new
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applications. An example of this type of composites is

presented in Fig. 2d. In a second step, the NP shape can be

modified by seeded growth [62, 63], which allows

obtaining either larger NP or even ‘‘hairy’’ NP (Fig. 3b),

depending on the mesoporous material used and the growth

conditions. By this procedure, it was possible to obtain

novel NP shapes that are neither easily obtained in solution

nor easily encapsulated within oxide films. Interestingly,

such templated growth leads to intense and useful optical

changes in the nanocomposite material (Fig. 3a).

3 Applications

Although the literature has so far mainly focused on syn-

thetic methods to obtain NP@MP composites, several

examples have also been presented on the possible appli-

cations of these materials. We review in the following

subsections some of the most usual and (in our view)

interesting applications.

3.1 Catalysis

In traditional catalysis of organic reactions by metals,

inclusion of the NP inside MP films allows easy recovery

and recycling of the catalyst [59] and may also influence

the activity and selectivity of the reactions [64]. For

example, Cortial et al. [54] tested Au NP@TiO2 as catalyst

for glycol oxidation and Pd NP@SiO2 to catalyze the

allylic amination of cinnamyl acetate by benzylamine. In

the latter case, they found that immobilized NP were three

orders of magnitude more active than their homogeneous

counterparts and that the regioselectivity was totally in

favor of one of the possible products. In the case of pho-

tocatalysis by semiconductors (SC), a synergic effect

occurs: it has been demonstrated that metal NP can

improve the electron flow from the SC surface to the metal,

thereby suppressing electron–hole recombination, one of

the main causes of activity loss of the photocatalysts. Thus,

several groups tried to improve the photocatalytic activity

of MP TiO2 by including Au or Ag NP in its framework or

inside the pores of the MP oxides. For example, in a pio-

neering work by Stucky’s group [23], an apparent differ-

ence in the reaction mechanism and a higher apparent

initial activity were reported upon incorporation of Ag NP

in TiO2 MP films. Bannat et al. [24] demonstrated that Au

can also improve the photocatalytic efficiency of TiO2,

with almost no difference between composites prepared by

impregnation–reduction and electrochemical methods.

They found that, for photocatalytic NO oxidation, the

presence of Au NP and dendritic nanostructures in the

pores of TiO2 films substantially increases the photocata-

lytic activity by a factor of about 3 (from 15 to 40 % of the

theoretical photon efficiency). A summary of these prom-

ising results is presented in Fig. 4.

3.2 Sensors

NP@MP composites have been tested as sensors of dif-

ferent kinds, taking advantage of diverse characteristics of

the composites. For example, our group used NP@MP

composite films to follow the evaporation of solvents from

the pores, by simple spectroscopic monitoring of changes

in the LSPR band of Au nanodecahedra covered with dif-

ferent MP films (Fig. 5a) [61]. By using this synthesis path,

the NP remain accessible to solvents and, as a conse-

quence, their LSPR band can be spectrally shifted as the

effective refractive index varies during evaporation of the

solvent initially wetting the mesopores, as shown in

Fig. 5b, c. The evaporation profile can then be related to

the boiling point of the solvent, type of film, and accessi-

bility of the NP. Therefore, these NP@MP composites can
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Fig. 3 a UV–vis spectra before and after seeded growth of 15 nm Au spheres covered by SiO2 MP film (template with block copolymer Pluronic

F127); b TEM image of the composite after growth, showing ‘‘hairy’’ NP

J Sol-Gel Sci Technol

123

Author's personal copy



Fig. 4 Left Comparison of the

photocatalytic activities of

pristine and Au-loaded MP TiO2

films as well as commercial Sto

Photosan. Right Cross-section

TEM micrographs and optical

images of the composite films

prepared by impregnation and

chemical (Au NP) or

electrochemical reduction (Au

NW). Adapted with permission

from [24]. Copyright 2009

American Chemical Society
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Fig. 5 a TEM image of Au

decahedra covered with a SiO2

MP film; b Spectra of the

material shown in a before

(black curve) and after (red

curve) toluene evaporation.

c Dkmax(LSPR) as a function of

time, during the evaporation of

different solvents. Lines are

guides for the eye. Adapted with

permission from Ref. [61]

Copyright 2010 American

Chemical Society (Color figure

online)

J Sol-Gel Sci Technol

123

Author's personal copy



be used to study the interactions between a solvent and an

oxide thin film.

In a similar approach, Goettmann et al. [48] used Au

NP (prepared ex situ and included in the sol just before

film synthesis) embedded in MP SiO2 films to detect

organic molecules (PMe3 and dodecanethiol) in solution,

by following the LSPR band position. They also demon-

strated that the system was selective toward small mole-

cules, in principle due to the small pore size of the MP

silica. Another recent application of the filtering ability of

MP films has been reported, related to the exclusion of

proteins from complex biological media, thereby facili-

tating the detection of small molecules by SERS [63]. In

particular, 4-nitrobenzenethiol was clearly detected from a

solution containing Bovine Serum Albumin (a usual serum

protein) in buffer, without any contamination of the

spectroscopic signal. In a related work, Malfatti et al.

prepared SERS substrates from NP@MP composites [47]

comprising the formation of metallic patterns inside the

MP film by X-ray irradiation, so that a lab on a chip

application can be envisioned for those composites. It is

important to note that, although all these works are still

closer to a proof-of-concept than to a real application, they

are a promising first step of a novel approach that needs to

be fully developed.

3.3 Optical properties

As discussed above, the preparation of NP@MP compos-

ites grants access to new properties due to the synergy

between the components. In particular, the optical proper-

ties have been studied in detail, since they can have a key

impact for the next generation of communication and

information technology devices, as well as (bio)sensors and

other biomedical products. We describe here a few selected

studies regarding this subject.

3.3.1 Non linear optics

It has been demonstrated that NP incorporated in a

dielectric matrix thin film present outstanding third-order

optical nonlinearities [65]. These composites have been

widely investigated due to their potential application in the

next generation of optical communication and logical

processing devices. Initially the composites were prepared

by physical methods, such as co-sputtering, but suffered

from drawbacks due to uncontrollable particle size and

spatial distribution. Recently, several groups started to

develop NP@MP thin film composites for non linear

optics. By using these composites, it is possible to ensure a

high dispersion and a good distribution uniformity of the

NP in the films and thus, the nonlinear optical properties

can be carefully controlled. With this approach, relatively

high third order nonlinear optical susceptibilities (v(3))

were obtained, by using Au@MP TiO2 [40, 66] and

Au@MP SiO2 composites [31, 32, 41]; and it was even

possible to control the v(3) value by controlling the amount

of Au incorporated in the matrix [32].

3.3.2 Photochromism

It is well known that photochromism (reversible change of

color upon exposure to light) appears when Ag species

interact with TiO2. The process is similar to that described

in the catalysis section above: under UV irradiation elec-

trons at the valence band of TiO2 are excited into the

conduction band and then migrate toward Ag? species,

reducing them to Ag0. Then, the opposite reaction can

occur: Ag NP interact with visible light through their LSPR

and electrons migrate to the conduction band of TiO2,

which induces the oxidation of Ag0 to Ag? [39]. The whole

process is accompanied by a color change and therefore

this property can be exploited in the design of optical data

storage and display devices. The use of Ag@MP TiO2 for

this purpose was first demonstrated by Bois and collabo-

rators in 2009 [39]. They observed the disappearance of the

color associated to the LSPR band upon irradiation with

visible light, which was then applied to ‘‘write’’ and

‘‘erase’’ Ag NP within MP TiO2 by using UV and visible

light (see Fig. 6). Interestingly, they found that at low

irradiance, selective oxidation occurs leading to changes in

the film color according to the wavelength used; whereas at

higher irradiance, the oxidation of large NP is accompanied

by the formation of many small NP in their vicinity, which

provides the films with the same color for all tested

wavelengths [35].

3.3.3 Emission enhancement

Noble metal NP can cause significant changes in the

fluorescence behavior of adjacent fluorophores. This phe-

nomenon is also present when the fluorophores are inclu-

ded within a MP matrix, and thus it has been measured for

NP@MP composite films. As an example, Leroy et al. [67]

demonstrated that the introduction of Ag NP can enhance

the photoluminescence emission intensity of Eu3?

embedded in MP ZrO2, probably due to energy transfer

from Ag NP to Eu3? or/and change of radiative decay

rates. This is an interesting result, because these lanthanide

doped ZrO2 matrices are promising for optical amplifica-

tion and light waveguides. Other groups have reported

related results, such as rhodamine 6G photoluminescence

enhancement (by a factor of 3) in Ag@Ti doped MP SiO2

films [26] and fluorescence enhancement of organic fluo-

rophores generated by Au nanorods embedded in MP SiO2

films [55].
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3.4 Patterning

Au(III)@MP SiO2 [50] and Ag(I)@MP SiO2 [47] com-

posites were synthesized by Innocenzi’s group by means of

a one-pot route. By Deep X-ray Lithography (performed in

a synchrotron source), they managed to obtain metallic (Au

or Ag) NP embedded within the film, only in the irradiated

region. As X-rays also condense the inorganic framework,

the method allows for the preparation of 3D MP structures

onto a substrate. In a related approach, Martı́nez et al. [27]

prepared Ag@MP TiO2 composites by UV-exposure of

Ag(I) impregnated MP TiO2 using a conventional lithog-

raphy mask. Patterns could be obtained (see Fig. 7) with

arbitrary shapes in the submicron scale, rendering this

method very powerful, as it is fully compatible with the

techniques and substrates currently used in the sensors and

microelectronics industry. Conductivity measurements [68]

were performed in these composites and the results indi-

cated a 3-dimensional connectivity between the embedded

Ag NP.

Additionally, as described in Sect. 3.3.2 and shown in

Fig. 5, it is also possible to create dot patterns by using

irradiation with UV light without masks [35]. Despite only

being the first steps, these studies pave the way toward the

integration of MP films and NP@MP nanocomposites into

real devices.

4 Outlook and perspectives

It is clear that the synthesis of NP@MP composite films is

nowadays sufficiently well developed, and several methods

are readily available to researchers. The variety of synthesis

approaches offers several possible configurations, in which

the composites may contain the NP inside the pores of MP

oxides, but also included in the oxide framework or com-

pletely covered by the film. Interesting post-synthesis

(templated) growth processes have also been devised, which

allow exploiting the pore architecture to obtain new prop-

erties for the metallic component. Thus, the design of

Fig. 6 a Ag dot printed onto a

TiO2 MP film by irradiation at

244 nm for 150 ms with an

intensity below the threshold

(30 kW cm-2) and b erased.

c UV-printed dot (a) locally

erased by a focused 488 nm-

wavelength beam. d Words

successively printed at 244 nm

(30 kW cm-2 for 150 ms) and

erased at 488 nm at the same

place. The films are observed in

reflection with an optical

microscope. Reproduced with

permission from Ref. [35].

Copyright � 2010 WILEY–

VCH Verlag GmbH & Co.

KGaA, Weinheim

J Sol-Gel Sci Technol

123

Author's personal copy



NP@MP composite films can be easily varied according to

the desired application. Although the synthesis methods are

settled and understood from the basic point of view, the

applications of these composites are still under development.

Several interesting seminal works have been presented and

reviewed in this article, but a lot of work remains to be

performed until useful devices are fully developed. Even

though we have only discussed a few applications in catalysis

and plasmonics, other fields may readily benefit from the

special properties of these nanocomposites, such as envi-

ronmental remediation or surface protection, among others.

We expect that advancements in these areas and most

probably many others will be reported in years to come.
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