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Conditions d’optimalité du premier et second ordre pour

des problèmes de commande optimale d’équations intégrales

avec contraintes sur l’état

Résumé : On s’intéresse dans cet article à des problèmes de commande optimale d’équations
intégrales, avec contraintes sur l’état initial-final ainsi que sur l’état à chaque instant. L’ordre
d’une contrainte sur l’état à chaque instant est défini dans le cadre d’une dynamique intégrale,
et on considère ici des contraintes d’ordre quelconque. On obtient des conditions d’optimalité
nécessaires du premier et second ordre, ainsi que des conditions suffisantes du second ordre.

Mots-clés : commande optimale, équations intégrales, contraintes sur l’état, conditions
d’optimalité du second ordre
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1 Introduction

The dynamics in the optimal control problems we consider in this paper is given by an integral
equation. Such equations, sometimes called nonlinear Volterra integral equations, belong to
the family of equations with memory and thus are found in many models. Among the fields of
application of these equations are population dynamics in biology and growth theory in economy:
see [25] or its translation in [21] for one of the first use of integral equations in ecology in 1927
by Volterra, who contributed earlier to their theoretical study [24]; in 1976, Kamien and Muller
model the capital replacement problem by an optimal control problem with an integral state
equation [16]. First-order optimality conditions for such problems were known under the form
of a maximum principle since Vinokurov’s paper [22] in 1967, translated in 1969 [23] and whose
proof has been questionned by Neustadt and Warga [18] in 1970. Maximum principles have then
been provided by Bakke [2], Carlson [9], or more recently de la Vega [12] for an optimal terminal
time control problem. First-order optimality conditions for control problems of the more general
family of equations with memory are obtained by Carlier and Tahraoui [8].

None of the previously cited articles consider what we will call ’running state constraints’.
That is what Bonnans and de la Vega did in [3], where they provide Pontryagin’s principle,
i.e. first-order optimality conditions. In this work we are particularly interested in second-
order necessary conditions, in presence of running state constraints. Such constraints drive to
optimization problems with inequality constraints in the infinite-dimensional space of continuous
functions. Thus second-order necessary conditions on a so-called critical cone will contain an
extra term, as it has been discovered in 1988 by Kawasaki [17] and generalized in 1990 by
Cominetti [11], in an abstract setting. It is possible to compute this extra term in the case of
state constrained optimal control problems; this is what is done by Páles and Zeidan [19] or
Bonnans and Hermant [4, 6] in the framework of ODEs.

Our strategy here is different and follows [5], with the differences that we work with integral
equations and that we add initial-final state constraints which lead to nonunique Lagrange mul-
tipliers. The idea was already present in [17] and is closely related to the concept of extended
polyhedricity [7]: the extra term mentioned above vanishes if we write second-order necessary
conditions on a subset of the critical cone, the so-called radial critical cone. This motivates to
introduce an auxiliary optimization problem, the reduced problem, for which under some assump-
tions the radial critical cone is dense in the critical cone. Optimality conditions for the reduced
problem are relevant for the original problem and the extra term now appears as the derivative
of a new constraint in the reduced problem. We will devote a lot of effort to the proof of the
density result and we will mention a flaw in [5] concerning this proof.

The paper is organized as follows. We set the optimal control problem, define Lagrange
multipliers and work on the notion of order of a running state constraint in our setting in
section 2. The reduced problem is introduced in section 3, followed by first-order necessary
conditions and second-order necessary conditions on the radial critical cone. The main results
are presented in section 4. After some specific assumptions, we state and prove the technical
lemma 23 which is then used to strengthen the first-order necessary conditions already obtained
and to get the density result that we need. With this density result, we obtain second-order
necessary conditions on the critical cone. Second-order suficient conditions are also given in this
section. Some of the technical aspects are postponed in the appendix.

Notations We denote by ht the value of a function h at time t if h depends only on t, and
by hi,t its ith component if h is vector-valued. To avoid confusion we denote partial derivatives
of a function h of (t, x) by Dth and Dxh. We identify the dual space of Rn with the space R

n∗

of n-dimensional horizontal vectors. Generally, we denote by X∗ the dual space of a topological
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4 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

vector space X . We use | · | for both the Euclidean norm on finite-dimensional vector spaces and
for the cardinal of finite sets, ‖ · ‖s and ‖ · ‖q,s for the standard norms on the Lesbesgue spaces
Ls and the Sobolev spaces W q,s, respectively.

2 Optimal control of state constrained integral equations

2.1 Setting

We consider an optimal control problem with running and initial-final state constraints, of the
following type:

(P ) min
(u,y)∈U×Y

∫ T

0

ℓ(ut, yt)dt+ φ(y0, yT ) (2.1)

subject to yt = y0 +

∫ t

0

f(t, s, us, ys)ds, t ∈ [0, T ], (2.2)

g(yt) ≤ 0, t ∈ [0, T ], (2.3)

ΦE(y0, yT ) = 0, (2.4)

ΦI(y0, yT ) ≤ 0, (2.5)

where

U := L∞([0, T ];Rm), Y :=W 1,∞([0, T ];Rn)

are the control space and the state space, respectively.
The data are ℓ : Rm × R

n → R, φ : Rn × R
n → R, f : R× R× R

m × R
n → R

n, g : Rn → R
r,

ΦE : Rn×R
n → R

sE , ΦI : Rn×R
n → R

sI and T > 0. We set τ as the symbol for the first variable
of f . Observe that if Dτf = 0, we recover an optimal control problem of a state constrained
ODE. We make the following assumption:

(A0) ℓ, φ, f, g,ΦE,ΦI are of class C∞ and f is Lipschitz.

We call trajectory a pair (u, y) ∈ U × Y which satisfies the state equation (2.2). Under
assumption (A0) it can be shown by standard contraction arguments that for any (u, y0) ∈
U ×R

n, the state equation (2.2) has a unique solution y in Y, denoted by y[u, y0]. Moreover, the
map Γ: U × R

n → Y defined by Γ(u, y0) := y[u, y0] is of class C∞.

2.2 Lagrange multipliers

The dual space of the space of vector-valued continuous functions C ([0, T ];Rr) is the space of
finite vector-valued Radon measures M ([0, T ];Rr∗), under the pairing

〈µ, h〉 :=

∫

[0,T ]

dµtht =
∑

1≤i≤r

∫

[0,T ]

hi,tdµi,t.

We define BV ([0, T ];Rn∗), the space of vector-valued functions of bounded variations, as follows:
let I be an open set which contains [0, T ]; then

BV ([0, T ];Rn∗) :=
{
h ∈ L1(I;Rn∗) : Dh ∈ M (I;Rn∗) , supp(Dh) ⊂ [0, T ]

}
,

Inria



Optimal control of state constrained integral equations 5

where Dh is the distributional derivative of h; if h is of bounded variations, we denote it by dh.
For h ∈ BV ([0, T ];Rn∗), there exists h0− , hT+ ∈ R

n∗ such that

h = h0− a.e. on (−∞, 0) ∩ I,
h = hT+ a.e. on (T,+∞) ∩ I.

(2.6)

Conversely, we can identify any measure µ ∈ M ([0, T ];Rr∗) with the derivative of a function of
bounded variations, denoted again by µ, such that µT+ = 0. This motivates the notation dµ for
any measure in the sequel, setting implicitly µT+ = 0. See appendix A.1 for more details.

Let
M := M ([0, T ];Rr∗) , P := BV ([0, T ];Rn∗) .

We define the Hamiltonian H : [P ]× R× R
m × R

n → R by

H [p](t, u, y) := ℓ(u, y) + ptf(t, t, u, y) +

∫ T

t

psDτf(s, t, u, y)ds (2.7)

and the end points Lagrangian Φ: [Rs∗]× R
n × R

n → R by

Φ[Ψ](y1, y2) := φ(y1, y2) + ΨΦ(y1, y2) (2.8)

where s := sE + sI and Φ := (ΦE ,ΦI). We also denote K := {0}sE × (R−)
sI , so that (2.4)-(2.5)

can be rewritten as Φ(y0, yT ) ∈ K. Given a trajectory (u, y) and (dη,Ψ) ∈ M×R
s∗, the adjoint

state p, whenever it exists, is defined as the solution in P of

{
−dpt = DyH [p](t, ut, yt)dt+ dηtg

′(yt),
(−p0− , pT+) = DΦ[Ψ](y0, yT ).

(2.9)

Note that dηtg
′(yt) =

∑r
i=1 dηi,tg

′
i(yt). The adjoint state does not exist in general, but when it

does it is unique. More precisely, we have:

Lemma 1. There exists a unique solution in P of the adjoint state equation with final condition
only (i.e. without initial condition):

{
−dpt = DyH [p](t, ut, yt)dt+ dηtg

′(yt),
pT+ = Dy2Φ[Ψ](y0, yT ).

(2.10)

Proof. The contraction argument is given in appendix A.1.

We can now define Lagrange multipliers for optimal control problems in our setting:

Definition 2. (dη,Ψ, p) ∈ M× R
s∗ × P is a Lagrange multiplier associated with (ū, ȳ) if

p is the adjoint state associated with (ū, ȳ, dη,Ψ), (2.11)

dη ≥ 0, g(ȳ) ≤ 0,

∫

[0,T ]

dηtg(ȳt) = 0, (2.12)

Ψ ∈ NK (Φ(ȳ0, ȳT )) , (2.13)

DuH [p](t, ūt, ȳt) = 0 for a.a. t ∈ [0, T ]. (2.14)
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6 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

2.3 Linearized state equation

For s ∈ [1,∞], let
Vs := Ls([0, T ];Rm), Zs :=W 1,s([0, T ];Rn).

Given a trajectory (u, y) and (v, z0) ∈ Vs × R
n, we consider the linearized state equation in Zs:

zt = z0 +

∫ t

0

D(u,y)f(t, s, us, ys)(vs, zs)ds. (2.15)

It is easily shown that there exists a unique solution z ∈ Zs of (2.15), called the linearized state
associated with the trajectory (u, y) and the direction (v, z0), and denoted by z[v, z0] (keeping
in mind the nominal trajectory).

Lemma 3. There exists C > 0 and Cs > 0 for any s ∈ [1,∞] (depending on (u, y)) such that,
for all (v, z0) ∈ Vs × R

n and all t ∈ [0, T ],

|z[v, z0]t| ≤ C

(
|z0|+

∫ t

0

|vs|ds

)
, (2.16)

‖z[v, z0]‖1,s ≤ Cs (|z0|+ ‖v‖s) . (2.17)

Proof. (2.16) is an application of Gronwall’s lemma and (2.17) is a consequence of (2.16).

Observe that for s = ∞, the linearized state equation arises naturally: let (u, y0) ∈ U × R
n,

y := Γ(u, y0) ∈ Y. We consider the linearized state associated with the trajectory (u, y) and a
direction (v, z0) ∈ U × R

n. Then

z[v, z0] = DΓ(u, y0)(v, z0). (2.18)

Similarly we can define the second-order linearized state:

z2[v, z0] := D2Γ(u, y0)(v, z0)
2. (2.19)

Note that z2[v, z0] is the unique solution in Y of

z2t =

∫ t

0

(
Dyf(t, s, us, ys)z

2
s +D2

(u,y)2f(t, s, us, ys)(vs, z[v, z0]s)
2
)
ds. (2.20)

2.4 Running state constraints

The running state constraints gi, i = 1, . . . , r, are considered along trajectories (u, y). They
produce functions of one variable, t 7→ gi(yt), which belong a priori to W 1,∞([0, T ]) and satisfy

d

dt
gi(yt) = g′i(yt)

(
f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds

)
. (2.21)

There are two parts in this derivative:

⊲ t 7→ g′i(yt)f(t, t, ut, yt), where u appears pointwisely.

⊲ t 7→ g′i(yt)
∫ t

0 Dτf(t, s, us, ys)ds, where u appears in an integral.

Below we will distinguish these two behaviors and set ũ as the symbol for the pointwise variable,
u for the integral variable (similarly for y). If there is no dependance on ũ, one can differentiate
again (2.21) w.r.t. t. This motivates the definition of a notion of total derivative that always
“forget” the dependence on ũ. Let us do that formally.

Inria



Optimal control of state constrained integral equations 7

First we need a set which is stable by operations such as in (2.21), so that it will contain the
derivatives of any order. It is also of interest to know how the functions we consider depend on
(u, y) ∈ U × Y. To answer this double issue, we define the following commutative ring:

S :=



h : h(t, ũ, ỹ, u, y) =

∑

α

aα(t, ũ, ỹ)
∏

β

∫ t

0

bα,β(t, s, us, ys)ds



 , (2.22)

where (t, ũ, ỹ, u, y) ∈ R×R
m ×R

n ×U ×Y, the aα, bα,β are real functions of class C∞, the sum
and the products are finite and an empty product is equal to 1. The following is straightforward:

Lemma 4. Let h ∈ S, (u, y) ∈ U × Y. There exists C > 0 such that, for a.a. t ∈ [0, T ] and for
all (ṽ, z̃, v, z) ∈ R

m × R
n × U × Y,

∣∣D(ũ,ỹ,u,y)h(t, ut, yt, u, y)(ṽ, z̃, v, z)
∣∣ ≤ C

(
|ṽ|+ |z̃|+

∫ t

0

(|vs|+ |zs|) ds

)
. (2.23)

Next we define the derivation D(1) : S −→ S as follows (recall that we set τ as the symbol
for the first variable of f or b):

1. for h : (t, ũ, ỹ) ∈ R× R
m × R

n 7→ a(t, ũ, ỹ) ∈ R,

(
D(1)h

)
(t, ũ, ỹ, u, y) := Dta(t, ũ, ỹ)

+Dỹa(t, ũ, ỹ)

(
f(t, t, ũ, ỹ) +

∫ t

0

Dτf(t, s, us, ys)ds

)
.

2. for h : (t, u, y) ∈ R× U × Y 7→
∫ t

0
b(t, s, us, ys)ds ∈ R,

(
D(1)h

)
(t, ũ, ỹ, u, y) := b(t, t, ũ, ỹ) +

∫ t

0

Dτb(t, s, us, ys)ds.

3. for any h1, h2 ∈ S,

(
D(1)(h1 + h2)

)
=

(
D(1)h1

)
+
(
D(1)h2

)
,

(
D(1)(h1h2)

)
=

(
D(1)h1

)
h2 + h1

(
D(1)h2

)
.

It is clear that D(1)h ∈ S for any h ∈ S. The following formula, which is easily checked on
h = a(t, ũ, ỹ) and h =

∫ t

0
b(t, s, us, ys)ds, will be used for any h ∈ S:

(
D(1)h

)
(t, ut, yt, u, y) = Dth(t, ut, yt, u, y) +Dỹh(t, ut, yt, u, y)f(t, t, ut, yt)

+Dỹh(t, ut, yt, u, y)

∫ t

0

Dτf(t, s, us, ys)ds. (2.24)

Let us now highlight two important properties of D(1). First, it is a notion of total derivative:

RR n° 7961



8 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

Lemma 5. Let h ∈ S be such that Dũh ≡ 0, (u, y) ∈ U × Y be a trajectory and

ϕ : t 7→ h(t, ut, yt, u, y). (2.25)

Then ϕ ∈W 1,∞([0, T ]) and

dϕ

dt
(t) =

(
D(1)h

)
(t, ut, yt, u, y). (2.26)

Proof. We write h as in (2.22). If Dũh ≡ 0, then for any u0 ∈ R
m,

ϕ(t) = h(t, u0, yt, u, y) (2.27)

=
∑

α

aα(t, u0, yt)
∏

β

∫ t

0

bα,β(t, s, us, ys)ds. (2.28)

By (2.28), ϕ ∈W 1,∞([0, T ]). And by (2.27),

dϕ

dt
(t) = Dth(t, u0, yt, u, y) +Dỹh(t, u0, yt, u, y)ẏt

= Dth(t, ut, yt, u, y) +Dỹh(t, ut, yt, u, y)ẏt

since DũDth ≡ DtDũh ≡ 0 and DũDỹh ≡ 0. Using the expression of ẏt and (2.24), we recognize
(2.26).

Second, it satisfies a principle of commutation with the linearization:

Lemma 6. Let h, (u, y) be as in lemma 5, (v, z0) ∈ Vs×R
n, z := z[v, z0] ∈ Zs for some s ∈ [1,∞]

and
ψ : t 7→ D(ỹ,u,y)h(t, ut, yt, u, y)(zt, v, z). (2.29)

Then ψ ∈ W 1,s([0, T ]) and

dψ

dt
(t) = D(ũ,ỹ,u,y)

[(
D(1)h

)
(t, ut, yt, u, y)

]
(vt, zt, v, z). (2.30)

Proof. Using DũD(ỹ,u,y)h ≡ 0, we have

ψ(t) = D(ỹ,u,y)h(t, u0, yt, u, y)(zt, v, z)

=
∑

α

Dỹaα(t, u0, yt)zt
∏

β

∫ t

0

bα,βds

+
∑

α,β

aα(t, u0, yt)

∫ t

0

D(u,y)bα,β(t, s, us, ys)(vs, zs)ds
∏

β′ 6=β

∫ t

0

bα,β′ds.

It implies that ψ ∈W 1,s([0, T ]) and that

dψ

dt
(t) = D2

t,(ỹ,u,y)h(t, ut, yt, u, y)(zt, v, z)

+D2
ỹ,(ỹ,u,y)h(t, ut, yt, u, y) (ẏt, (zt, v, z)) +Dỹh(t, ut, yt, u, y)żt.

On the other hand, we differentiate D(1)h w.r.t. (ũ, ỹ, u, y) using (2.24). Then with the expres-
sions of ẏt and żt, we get the relation (2.30).

Inria



Optimal control of state constrained integral equations 9

Finally we define the order of a running state constraint gi. We denote g(j+1)
i := D(1)g

(j)
i

(with g
(0)
i := gi). Note that gi ∈ S, so g

(j)
i ∈ S for all j ≥ 0. Moreover, if we write g(j)i as

in (2.22), the aα and bα,β are combinations of derivatives of f and gi.

Definition 7. The order of the constraint gi is the greatest positive integer qi such that

Dũg
(j)
i ≡ 0 for all j = 0, . . . , qi − 1.

We have a result similar to Lemma 9 in [4], but now for integral dynamics. Let (u, y) ∈ U ×Y
be a trajectory, (v, z0) ∈ Vs × R

n, and z := z[v, z0] ∈ Zs for some s ∈ [1,∞].

Lemma 8. Let gi be of order at least qi ∈ N
∗. Then

t 7→ gi(yt) ∈W qi,∞([0, T ]),
t 7→ g′i(yt)zt ∈W qi,s([0, T ]),

and

dj

dtj
gi(y)|t = g

(j)
i (t, yt, u, y), j = 1, . . . , qi − 1, (2.31)

dqi

dtqi
gi(y)|t = g

(qi)
i (t, ut, yt, u, y), (2.32)

dj

dtj
g′i(y)z|t = D̂g

(j)
i (t, yt, u, y)(zt, v, z), j = 1, . . . , qi − 1, (2.33)

dqi

dtqi
g′i(y)z|t = Dũg

(qi)
i (t, ut, yt, u, y)vt + D̂g

(qi)
i (t, ut, yt, u, y)(zt, v, z), (2.34)

where we denote by D̂ the differentiation w.r.t. (ỹ, u, y).

Proof. It is straightforward with lemmas 5 and 6, definition 7 and an induction on j.

3 Weak results

3.1 A first abstract formulation

The optimal control problem (P ) can be rewritten as an abstract optimization problem on (u, y0).
The most naive way to do that is the following equivalent formulation:

(P ) min
(u,y0)∈U×Rn

J(u, y0) (3.1)

subject to g(y[u, y0]) ∈ C− ([0, T ];Rr) , (3.2)

Φ(y0, y[u, y0]T ) ∈ K, (3.3)

where

J(u, y0) :=

∫ T

0

ℓ(ut, y[u, y0]t)dt+ φ(y0, y[u, y0]T ) (3.4)

and Φ = (ΦE ,ΦI), K = {0}sE ×(R−)
sI . In order to write optimality conditions for this problem,

we first compute its Lagrangian

L(u, y0, dη,Ψ) := J(u, y0) +

∫

[0,T ]

dηtg(y[u, y0]t) + ΨΦ(y0, y[u, y0]T ) (3.5)

RR n° 7961



10 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

where (u, y0, dη,Ψ) ∈ U×R
n×M×R

s∗ (see the beginning of section 2.2). A Lagrange multiplier
at (u, y0) in this setting is any (dη,Ψ) such that

D(u,y0)L(u, y0, dη,Ψ) ≡ 0, (3.6)

(dη,Ψ) ∈ NC−([0,T ];Rr)×K (g(y),Φ(y0, yT )) . (3.7)

This definition has to be compared to definition 2:

Lemma 9. We have that (dη,Ψ) is a Lagrange multiplier of the abstract problem (3.1)-(3.3) at
(ū, ȳ0) iff (dη,Ψ, p) is a Lagrange multiplier of the optimal control problem (2.1)-(2.5) associated
with (ū, y[ū, ȳ0]), where p is the unique solution of (2.10).

Proof. Using the Hamiltonian (2.7), the end points Lagrangian (2.8) and the formula (A.10) of
integration by parts for functions of bounded variations (see appendix A.1), we get

L(u, y0, dη,Ψ) =

∫ T

0

H [p](t, ut, yt)dt+

∫

[0,T ]

(dptyt + dηtg(yt))

+ p0−y0 − pT+yT +Φ[Ψ](y0, yT )

for any p ∈ P and y = y[u, y0]. We fix (ū, ȳ0, dη,Ψ), we differentiate L w.r.t. (u, y0) at this
point, and we choose p as the unique solution of (2.10). Then

D(u,y0)L(ū, ȳ0, dη,Ψ)(v, z0) =

∫ T

0

DuH [p](t, ūt, ȳt)vtdt

+
(
p0− +Dy1Φ[Ψ](ȳ0, ȳT )

)
z0

for all (v, z0) ∈ U ×R
n. It follows that (3.6) is equivalent to (2.11) and (2.14). And it is obvious

that (3.7) is equivalent to (2.12)-(2.13).

Second we need a qualification condition.

Definition 10. We say that (ū, ȳ) is qualified if

(i)

{
(v, z0) 7→ DΦE(ȳ0, ȳT )(z0, z[v, z0]T )
U × R

n → R
sE

is onto,

(ii) there exists (v̄, z̄0) ∈ U × R
n such that, with z̄ = z[v̄, z̄0],





DΦE(ȳ0, ȳT )(z̄0, z̄T ) = 0,
DΦI

i (ȳ0, ȳT )(z̄0, z̄T ) < 0, i ∈
{
i : ΦI

i (ȳ0, ȳT ) = 0
}
,

g′i(ȳt)z̄t < 0 on {t : gi(ȳt) = 0} , i = 1, . . . , r.

Remark 11. 1. This condition is equivalent to Robinson’s constraint qualification (intro-
duced in [20], Definition 2) for the abstract problem (3.1)-(3.3) at (ū, ȳ0); see the discussion
that follows Definition 3.4 and Definition 3.5 in [17] for a proof of the equivalence.

2. It is sometimes possible to give optimality conditions without qualification condition by
considering an auxiliary optimization problem (see e.g. the proof of Theorem 3.50 in [7]).
Nevertheless, observe that if (ū, ȳ) is feasible but not qualified because (i) does not hold,
then there exists a singular Langrange multiplier of the form (0,ΦE , 0). One can see that
second-order necessary conditions become pointless since −(0,ΦE, 0) is a singular Lagrange
multiplier too.
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Optimal control of state constrained integral equations 11

Finally we derive the following first-order necessary optimality conditions:

Theorem 12. Let (ū, ȳ) be a qualified local solution of (P ). Then the set of associated Lagrange
multipliers is nonempty, convex, bounded and weakly ∗ compact.

Proof. Since the abstract problem (3.1)-(3.3) is qualified, we get the result for the set {(dη,Ψ)}
of Lagrange multipliers in this setting (Theorem 4.1 in [26]). We conclude with lemma 9 and the
fact that

M× R
s∗ −→ M× R

s∗ × P

(dη,Ψ) 7−→ (dη,Ψ, p)

is affine continuous (it is obvious from the proof of lemma 1).

We will prove a stronger result in section 4, relying on another abstract formulation, the
so-called reduced problem. The main motivation for the reduced problem, as mentioned in the
introduction, is actually to satisfy an extended polyhedricity condition (see Definition 3.52 in [7]),
in order to easily get second-order necessary conditions (see Remark 3.47 in the same reference).

3.2 The reduced problem

In the sequel we fix a feasible trajectory (ū, ȳ), i.e. which satisfies (2.2)-(2.5), and denote by Λ
the set of associated Lagrange multipliers (definition 2). We need some definitions:

Definition 13. An arc is a maximal interval, relatively open in [0, T ], denoted by (τ1, τ2), such
that the set of active running state constraints at time t is constant for all t ∈ (τ1, τ2). It includes
intervals of the form [0, τ) or (τ, T ]. If τ does not belong to any arc, we say that τ is a junction
time.

Consider an arc (τ1, τ2). It is a boundary arc for the constraint gi if the latter is active on
(τ1, τ2); otherwise it is an interior arc for gi.

Consider an interior arc (τ1, τ2) for gi. If gi(τ2) = 0, then τ2 is an entry point for gi; if
gi(τ1) = 0, then τ1 is an exit point for gi. If τ is an entry point and an exit point, then it is a
touch point for gi.

Consider a touch point τ for gi. We say that τ is reducible if d2

dt2 gi(ȳt), defined in a weak
sense, is a function for t close to τ , continuous at τ , and

d2

dt2
gi(ȳt)|t=τ < 0.

Remark 14. Let τ be a touch point for gi. By lemma 8, if gi is of order at least 2, then τ is
reducible if t 7→ g

(2)
i (t, ūt, ȳt, ū, ȳ) is continuous at τ and g

(2)
i (τ, ūτ , ȳτ , ū, ȳ) < 0. Note that the

continuity holds either if u is continuous at τ or if gi is of order at least 3.

The interest of reducibility will appear with the next lemma. For τ ∈ [0, T ] and ε > 0 (to be
fixed), we define µτ : W

2,∞([0, T ]) → R by

µτ (x) := max {xt : t ∈ [τ − ε, τ + ε] ∩ [0, T ]} . (3.8)

Lemma 15. Let gi not be of order 1 (i.e. Dũg
(1)
i ≡ 0) and τ be a reducible touch point for gi.

Then for ε > 0 small enough, µτ is C1 in a neighbourhood of gi(ȳ) ∈ W 2,∞([0, T ]) and twice
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12 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

Fréchet differentiable at gi(ȳ), with first and second derivatives at gi(ȳ) given by

Dµτ (gi(ȳ))x = xτ , (3.9)

D2µτ (gi(ȳ))(x)
2 = −

(
d

dt
xt|τ

)2

d2

dt2
gi(ȳt)|τ

, (3.10)

for any x ∈ W 2,∞([0, T ]).

Proof. We apply Lemma 23 of [4] to gi(ȳ), which belongs toW 2,∞([0, T ]) by lemma 8 and satisfies
the required hypotheses at τ by definition of a reducible touch point.

Remark 16. We can write (3.9) and (3.10) for x = g′i(ȳ)z[v, z0] (since gi is not of order 1). By
lemma 8, (3.10) becomes

D2µτ (gi(ȳ))(g
′
i(ȳ)z)

2 = −

(
D̂g

(1)
i (τ, ȳτ , ū, ȳ)(zτ , v, z)

)2

g
(2)
i (τ, ūτ , ȳτ , ū, ȳ)

(3.11)

where z = z[v, z0], (v, z0) ∈ U × R
n and D̂ is the differentiation w.r.t. (ỹ, u, y). We will also use

(3.9) for x = g′′i (ȳ)(z[v, z0])
2 + g′i(ȳ)z

2[v, z0], z2[v, z0] being defined by (2.19). It can indeed be
shown that it belongs to W 2,∞([0, T ]).

In view of these results we distinguish running state constraints of order 1. Without loss of
generality, we suppose that

⊲ gi is of order 1 for i = 1, . . . , r1,

⊲ gi is not of order 1 for i = r1 + 1, . . . , r,

where 0 ≤ r1 ≤ r. We make now the following assumption:

(A1) There are finitely many junction times, and for i = r1 +1, . . . , r all touch points for gi are
reducible.

For i = 1, . . . , r1 we consider the contact sets of the constraints

Ii := {t ∈ [0, T ] : gi(ȳt) = 0}. (3.12)

For i = r1 + 1, . . . , r we remove the touch points from the contact sets:

Ti := the set of (reducible) touch points for gi, (3.13)

Ii := {t ∈ [0, T ] : gi(ȳt) = 0} \ Ti. (3.14)

For i = 1, . . . , r and ε ≥ 0 we denote

Iε
i := {t ∈ [0, T ] : dist(t, Ii) ≤ ε}. (3.15)

Assumption (A1) implies that Iε
i has finitely many connected components for any ε ≥ 0 (1 ≤

i ≤ r) and that Ti is finite (1 ≤ i ≤ r1). Let N :=
∑

r1<i≤r |Ti|.
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Optimal control of state constrained integral equations 13

Now we fix ε > 0 small enough (so that lemma 15 holds) and we define

G1(u, y0) :=
(
gi (y[u, y0]) |Iε

i

)
1≤i≤r

, K1 :=

r∏

i=1

C− (Iε
i ) , (3.16)

G2(u, y0) :=
(
µτ (gi (y[u, y0]))

)
τ∈Ti, r1<i≤r

, K2 :=
(
R−

)N
, (3.17)

G3(u, y0) := Φ (y0, y[u, y0]T ) , K3 := K. (3.18)

Recall that J has been defined by (3.4).

The reduced problem is the following abstract optimization problem:

(PR) min
(u,y0)∈U×Rn

J(u, y0), subject to





G1(u, y0) ∈ K1

G2(u, y0) ∈ K2

G3(u, y0) ∈ K3

.

Remark 17. We had fixed (ū, ȳ) as a feasible trajectory; then (ū, ȳ0) is feasible for (PR).
Moreover, (ū, ȳ) is a local solution of (P ) iff (ū, ȳ0) is a local solution of (PR), and the qualification
condition at (ū, ȳ) (definition 10) is equivalent to Robinson’s constraints qualification for (PR)
at (ū, ȳ0) (using lemma 15).

Thus it is of interest for us to write optimality conditions for (PR).

3.3 Optimality conditions for the reduced problem

The Lagrangian of (PR) is

LR(u, y0, dρ, ν,Ψ) := J(u, y0) +
∑

1≤i≤r

∫

Iε
i

gi(y[u, y0]t)dρi,t

+
∑

τ∈Ti

r1<i≤r

νi,τµτ (gi (y[u, y0])) + ΨΦ(y0, y[u, y0]T ) (3.19)

where u ∈ U , y0 ∈ R
n, dρ ∈

r∏

i=1

M (Iε
i ) , ν ∈ R

N∗, Ψ ∈ R
s∗.

As before, a measure on a closed interval is denoted by dµ and is identified with the derivative
of a function of bounded variations which is null on the right of the interval.

A Lagrange multiplier of (PR) at (ū, ȳ0) is any (dρ, ν,Ψ) such that

D(u,y0)LR(ū, ȳ0, dρ, ν,Ψ) = 0, (3.20)

dρi ≥ 0, gi(ȳ)|Iε
i
≤ 0,

∫

Iε
i

gi(ȳt)dρi,t = 0, i = 1, . . . , r, (3.21)

νi,τ ≥ 0, µτ (gi(ȳ)) ≤ 0, νi,τµτ (gi(ȳ)) = 0, τ ∈ Ti, i = r1 + 1, . . . , r, (3.22)

Ψ ∈ NK (Φ(ȳ0, ȳT )) . (3.23)

We denote by ΛR the set of Lagrange multipliers of (PR) at (ū, ȳ0). The first-order necessary
conditions for (PR) are the same as in theorem 12:

Lemma 18. Let (ū, ȳ0) be a qualified local solution of (PR). Then ΛR is nonempty, convex,
bounded and weakly ∗ compact.
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14 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

Given (dρ, ν) ∈
∏r

i=1 M (Iε
i )× R

N∗, we define dη ∈ M by

dηi :=

{
dρi on Iε

i , i = 1, . . . , r,∑
τ∈Ti

νi,τ δτ elsewhere, i = r1 + 1, . . . , r.
(3.24)

Conversely, given dη ∈ M, we define (dρ, ν) ∈
∏r

i=1 M (Iε
i )× R

N∗ by
{

dρi := dηi|Iε
i

i = 1, . . . , r,
νi,τ := dηi({τ}) τ ∈ Ti, i = r1 + 1, . . . , r.

(3.25)

In the sequel we use these definitions to identify (dρ, ν) and dη, and we denote

[ηi,τ ] := dηi({τ}). (3.26)

Recall that Λ is the set of Lagrange multipliers associated with (ū, ȳ) (definition 2). We have a
result similar to lemma 9:

Lemma 19. We have that (dρ, ν,Ψ) ∈ ΛR iff (dη,Ψ, p) ∈ Λ, with p the unique solution of (2.10).

Proof. With the identification between (dρ, ν) and dη given by (3.24) and (3.25), it is clear that
(3.21)-(3.22) are equivalent to (2.12). Let these relations be satisfied by (dρ, ν,Ψ) and (dη,Ψ).
Then in particular

supp(dηi) = supp(dρi) ⊂ Ii i = 1, . . . , r1,
supp(dηi) = supp(dρi) ∪ supp(

∑
νi,τδτ ) ⊂ Ii ∪ Ti i = r1 + 1, . . . , r.

(3.27)

We claim that in this case (3.20) is equivalent to (2.11) and (2.14). Indeed, using H [p] defined
by (2.7), Φ[Ψ] by (2.8), the integration by parts formula (A.10) and (3.27), we have

LR(u, y0, dρ, ν,Ψ) =

∫

[0,T ]

(H [p](t, ut, yt)dt+ dptyt) + p0−y0 − pT+yT

+
∑

1≤i≤r

∫

Ii

gi(yt)dηi,t +
∑

τ∈Ti

r1<i≤r

[ηi,τ ]µτ (gi(y)) + Φ[Ψ](y0, yT ) (3.28)

for any p ∈ P and y = y[u, y0]. Let us differentiate (say for i > r1)∫

Ii

gi(yt)dηi,t +
∑

τ∈Ti

[ηi,τ ]µτ (gi(y)) (3.29)

w.r.t. (u, y0) at (ū, ȳ0) in the direction (v, z0) and use (3.9) and (3.27); we get
∫

Ii

g′i(ȳt)ztdηi,t +
∑

τ∈Ti

[ηi,τ ]Dµτ (gi(ȳ)) (g
′
i(ȳ)z) =

∫

[0,T ]

g′i(ȳt)ztdηi,t

where z = z[v, z0]. Let us now differentiate similarly the whole expression (3.28) of LR; we get

∫ T

0

DuH [p](t, ūt, ȳt)vtdt+

∫

[0,T ]

(
DyH [p](t, ūt, ȳt)dt+ dpt + dηtg

′(ȳt)
)
zt

+
(
p0− +Dy1Φ[Ψ](ȳ0, ȳT )

)
z0 +

(
− pT+ +Dy2Φ[Ψ](ȳ0, ȳT )

)
zT . (3.30)

Fixing p as the unique solution of (2.10) in (3.30) gives

D(u,y0)LR(ū, ȳ0, dρ, ν,Ψ)(v, z0) =

∫ T

0

DuH [p](t, ūt, ȳt)vtdt

+
(
p0− +Dy1Φ[Ψ](ȳ0, ȳT )

)
z0.

It is now clear that (3.20) is equivalent to (2.11) and (2.14).

Inria



Optimal control of state constrained integral equations 15

For the second-order optimality conditions, we need to evaluate the Hessian of LR. For λ =
(dη,Ψ, p) ∈ Λ, (v, z0) ∈ U × R

n and z = z[v, z0] ∈ Y, we denote

J [λ](v, z0) :=

∫ T

0

D2
(u,y)2H [p](t, ūt, ȳt)(vt, zt)

2dt+D2Φ[Ψ](ȳ0, ȳT )(z0, zT )
2

+
∑

1≤i≤r

∫

Ii

g′′i (ȳt)(zt)
2dηi,t

+
∑

τ∈Ti

r1<i≤r

[ηi,τ ]
[
g′′i (ȳτ )(zτ )

2 +D2µτ (gi(ȳ)) (g
′
i(ȳ)z)

2
]
. (3.31)

In view of (3.11) and (3.27), we could also write

J [λ](v, z0) =

∫ T

0

D2
(u,y)2H [p](t, ūt, ȳt)(vt, zt)

2dt+D2Φ[Ψ](ȳ0, ȳT )(z0, zT )
2

+

∫

[0,T ]

dηtg
′′(ȳt)(zt)

2 −
∑

τ∈Ti

r1<i≤r

[ηi,τ ]

(
D̂g

(1)
i (τ, ȳτ , ū, ȳ)(zτ , v, z)

)2

g
(2)
i (τ, ūτ , ȳτ , ū, ȳ)

. (3.32)

Lemma 20. Let (dρ, ν,Ψ) ∈ ΛR. Let λ = (dη,Ψ, p) ∈ Λ be as in lemma 19. Then for all
(v, z0) ∈ U × R

n,
D2

(u,y0)2
LR(ū, ȳ0, dρ, ν,Ψ)(v, z0)

2 = J [λ](v, z0). (3.33)

Proof. We will use (3.28) and (3.29) from the previous proof. First we differentiate (3.29) twice
w.r.t. (u, y0) at (ū, ȳ0) in the direction (v, z0). Denoting z = z[v, z0] and z2 = z2[v, z0], defined
by (2.19), we get

∫

Ii

(
g′′i (ȳt)(zt)

2 + g′i(ȳt)z
2
t

)
dηi,t

+
∑

τ∈Ti

[ηi,τ ]
[
D2µτ (gi(ȳ)) (g

′
i(ȳ)z)

2 +Dµτ (gi(ȳ))
(
g′′i (ȳ)(z)

2 + g′i(ȳ)z
2
)]

=

∫

Ii

g′′i (ȳt)(zt)
2dηi,t +

∫

[0,T ]

g′i(ȳt)z
2
t dηi,t

+
∑

τ∈Ti

[ηi,τ ]
[
D2µτ (gi(ȳ)) (g

′
i(ȳ)z)

2 + g′′i (ȳτ )(zτ )
2
]
,

where we have used remark 16, (3.9) and (3.27). Second we differentiate LR twice using (3.28) and
then we fix p as the unique solution of (2.10). The result follows as in the proof of lemma 19.

Suppose that Λ 6= ∅ and let λ̄ = (dη̄, Ψ̄, p̄) ∈ Λ. We define the critical L2 cone as the set C2

of (v, z0) ∈ V2 × R
n such that

{
g′i(ȳ)z ≤ 0 on Ii,
g′i(ȳ)z = 0 on supp (dη̄i) ∩ Ii,

i = 1, . . . , r, (3.34)

{
g′i(ȳτ )zτ ≤ 0,
[η̄i,τ ] g

′
i(ȳτ )zτ = 0,

τ ∈ Ti, i = r1 + 1, . . . , r, (3.35)
{
DΦ(ȳ0, ȳT )(z0, zT ) ∈ TK (Φ(ȳ0, ȳT )) ,
Ψ̄DΦ(ȳ0, ȳT )(z0, zT ) = 0,

(3.36)
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16 J. Frédéric Bonnans & Constanza de la Vega & Xavier Dupuis

where z = z[v, z0] ∈ Z2. Then the critical cone for (PR) (see Proposition 3.10 in [7]) is the set

C∞ := C2 ∩ (U × R
n) ,

and the cone of radial critical directions for (PR) (see Definition 3.52 in [7]) is the set

CR
∞ := {(v, z0) ∈ C∞ : ∃σ̄ > 0 : gi(ȳ) + σ̄g′i(ȳ)z ≤ 0 on Iε

i , i = 1, . . . , r} ,

where z = z[v, z0] ∈ Y. These three cones do not depend on the choice of λ̄. In view of lemma 20,
the second-order necessary conditions for (PR) can be written as follows:

Lemma 21. Let (ū, ȳ0) be a qualified local solution of (PR). Then for any (v, z0) ∈ CR
∞, there

exists λ ∈ Λ such that
J [λ](v, z0) ≥ 0. (3.37)

Proof. Corollary 5.1 in [17].

4 Strong results

Recall that (ū, ȳ) is a feasible trajectory that has been fixed to define the reduced problem at
the beginning of section 3.2.

4.1 Extra assumptions and consequences

We were so far under the assumptions (A0)-(A1). We make now some extra assumptions, which
will imply a partial qualification of the running state constraints, as well as the density of CR

∞

in a larger critical cone.

(A2) Each running state constraint gi, i = 1, . . . , r is of finite order qi.

Notations Given a subset J ⊂ {1, . . . , r}, say J = {i1 < · · · < il}, we define G(q)
J : R × R

m ×
R

n × U × Y → R
|J| by

G
(q)
J (t, ũ, ỹ, u, y) :=




ḡ
(qi1 )
i1

(t, ũ, ỹ, u, y)
...

ḡ
(qil )

il
(t, ũ, ỹ, u, y)


 . (4.1)

For ε0 ≥ 0 and t ∈ [0, T ], let

Iε0t := {1 ≤ i ≤ r : t ∈ Iε0
i } , (4.2)

M ε0
t := DũG

(q)

I
ε0
t

(t, ūt, ȳt, ū, ȳ) ∈ R
|I

ε0
t | × R

m∗. (4.3)

(A3) There exists ε0, γ > 0 such that, for all t ∈ [0, T ],

∣∣(M ε0
t )T ξ

∣∣ ≥ γ |ξ| ∀ξ ∈ R
|I

ε0
t |. (4.4)

(A4) The initial condition satisfies g(ȳ0) < 0 and the final time T is not an entry point (i.e.
there exists τ < T such that the set I0t of active constraints at time t is constant for
t ∈ (τ, T ]).
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Optimal control of state constrained integral equations 17

Remark 22. 1. We do not assume that ū is continuous, as was done in [5].

2. Recall that ε has been fixed to define the reduced problem. Without loss of generality
we suppose that ε0 > ε, ε0 < min{τ : τ junction times} and 2ε0 < min{|τ − τ ′| :
τ, τ ′ distinct junction times}. We omit it in the notation M ε0

t .

3. In some cases, we can treat the case where T is an entry point, say for the constraint gi:

⊲ if 1 ≤ i ≤ r1 (i.e. if qi = 1), then what follows works similarly.

⊲ if r1 < i ≤ r (i.e. if qi > 1) and d
dtgi(ȳt)|t=T > 0, then we can replace in the reduced

problem gi(y[u, y0])|[T−ε,T ] ≤ 0 by the final constraint gi(y[u, y0]T ) ≤ 0.

4. By (A1), we can write
[0, T ] = J0 ∪ · · · ∪ Jκ (4.5)

where Jl (l = 0, . . . , κ) are the maximal intervals in [0, T ] such that Iε0t is constant (say equal
to Il) for t ∈ Jl. We order J0, . . . , Jκ in [0, T ]. Observe that for any l ≥ 1, Jl−1∩Jl = {τ±ε0}
with τ a junction time.

For s ∈ [1,∞], we denote

W (q),s([0, T ]) :=

r∏

i=1

W qi,s([0, T ]), W (q),s(Iε) :=

r∏

i=1

W qi,s(Iε
i ), (4.6)

and for ϕ =



ϕ1

...
ϕr


 ∈W (q),s([0, T ]), ϕ|Iε :=



ϕ1|Iε

1

...
ϕr|Iε

r


 ∈W (q),s(Iε).

Using lemma 8 we define, for s ∈ [1,∞] and z0 ∈ R
n,

As,z0 : Vs −→W (q),s([0, T ])

v 7−→ g′(ȳ)z[v, z0]. (4.7)

We give now the statement of a lemma in two parts, which will be of great interest for us
(particularly in section 4.3.3). The proof is technical and can be skipped at a first reading. It is
given in the next section.

Lemma 23. a) Let s ∈ [1,∞] and z0 ∈ R
n. Let b̄ ∈ W (q),s(Iε). Then there exists v ∈ Vs such

that

(As,z0v) |Iε = b̄. (4.8)

b) Let z0 ∈ R
n. Let (b̄, v̄) ∈W (q),2(Iε)× V2 be such that

(A2,z0 v̄) |Iε = b̄. (4.9)

Let bk ∈ W (q),∞(Iε), k ∈ N, be such that bk
W (q),2(Iε)
−−−−−−−→ b̄. Then there exists vk ∈ U , k ∈ N,

such that vk
L2

−−→ v̄ and (
A∞,z0v

k
)
|Iε = bk. (4.10)
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4.2 A technical proof

In this section we prove lemma 23. The proofs of a) and b) are very similar; in both cases we
proceed in κ + 1 steps using the decomposition (4.5) of [0, T ]. At each step, we will use the
following two lemmas, proved in appendixes A.3 and A.2, respectively.

The first one uses only (A1) and the definitions that follow.

Lemma 24. Let t0 := τ ± ε0 where τ is a junction time.

a) Let s ∈ [1,∞] and z0 ∈ R
n. Let (b̄, v) ∈ W (q),s(Iε)× Vs be such that

(As,z0v) |Iε = b̄ on [0, t0]. (4.11)

Then we can extend b̄ to b̃ ∈W (q),s([0, T ]) in such a way that

b̃ = As,z0v on [0, t0]. (4.12)

b) Let z0 ∈ R
n. Let (b̄, v̄) ∈W (q),2(Iε)× V2 be such that

(A2,z0 v̄) |Iε = b̄. (4.13)

Let (bk, vk) ∈W (q),∞(Iε)× U , k ∈ N, be such that (bk, vk)
W (q),2×L2

−−−−−−−→ (b̄, v̄) and

(
A∞,z0v

k
)
|Iε = bk on [0, t0]. (4.14)

Then we can extend bk to b̃k ∈ W (q),∞([0, T ]), k ∈ N, in such a way that b̃k
W (q),2([0,T ])
−−−−−−−−→ A2,z0 v̄

and
b̃k = A∞,z0v

k on [0, t0]. (4.15)

The second lemma relies on (A3).

Lemma 25. Let s ∈ [1,∞] and z0 ∈ R
n. Let l be such that Il 6= ∅. For t ∈ Jl, we denote (recall

that D̂ is the differentiation w.r.t. (ỹ, u, y))

{
Mt := DũG

(q)
Il

(t, ūt, ȳt, ū, ȳ) ∈ R
|Il| × R

m∗,

Nt := D̂G
(q)
Il

(t, ūt, ȳt, ū, ȳ) ∈ R
|Il| × R

n∗ × U∗ × Y∗.
(4.16)

a) Let (h̄, v) ∈ Ls(Jl;R
|Il|)× Vs. Then there exists ṽ ∈ Vs such that

{
ṽ = v on J0 ∪ · · · ∪ Jl−1,

Mtṽt +Nt (z[ṽ, z0]t, ṽ, z[ṽ, z0]) = h̄t for a.a. t ∈ Jl.
(4.17)

b) Let (h̄, v̄) ∈ Ls(Jl;R
|Il|)× Vs be such that

Mtv̄t +Nt (z[v̄, z0]t, v̄, z[v̄, z0]) = h̄t for a.a. t ∈ Jl. (4.18)

Let (hk, vk) ∈ L∞(Jl;R
|Il|)×U , k ∈ N, be such that (hk, vk)

Ls×Ls

−−−−→ (h̄, v̄). Then there exists

ṽk ∈ U , k ∈ N, such that ṽk
Ls

−−→ v̄ and

{
ṽk = vk on J0 ∪ · · · ∪ Jl−1,

Mtṽ
k
t +Nt

(
z[ṽk, z0]t, ṽ

k, z[ṽk, z0]
)
= hkt for a.a. t ∈ Jl.

(4.19)
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Proof of lemma 23. In the sequel we omit z0 in the notations.

a) Let b̄ ∈ W (q),s(Iε). We need to find v ∈ Vs such that

g′i(ȳ)z[v] = b̄i on Iε
i , i = 1, . . . , r. (4.20)

Since
v = v′ on [0, t] =⇒ z[v] = z[v′] on [0, t],

let us construct v0, . . . , vκ ∈ Vs such that, for all l,
{
vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

g′i(ȳ)z[v
l] = b̄i on Iε

i ∩ Jl, i = 1, . . . , r

and v := vκ will satisfy (4.20).
By (A4), J0 = [0, τ1 − ε0) where τ1 is the first junction time and Iε

i ∩ J0 = ∅ for all i. Then
we can choose v0 := 0.

Suppose we have v0, . . . vl−1 for some l ≥ 1 and let us construct vl. Applying lemma 24 a)
to (b̄, vl−1) with {t0} = Jl−1 ∩ Jl, we get b̃ ∈ W (q),s([0, T ]). Since Iε

i ∩ Jl = ∅ if i 6∈ Il, it is now
enough to find vl such that

{
vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

g′i(ȳ)z[v
l] = b̃i on Jl, i ∈ Il.

(4.21)

Suppose that vl = vl−1 on J0 ∪ · · · ∪ Jl−1. Then g′i(ȳ)z[v
l] = b̃i on Jl−1, and it follows that

g′i(ȳ)z[v
l] = b̃i on Jl (4.22)

m

dqi

dtqi
g′i(ȳ)z[v

l] =
dqi

dtqi
b̃i on Jl. (4.23)

And by lemma 8, (4.23) is equivalent to

Dũg
(qi)
i (t, ūt, ȳt, ū, ȳ)v

l
t + D̂g

(qi)
i (t, ūt, ȳt, ū, ȳ)(z[v

l]t, v
l, z[vl]) = b̃

(qi)
i (t) (4.24)

for a.a. t ∈ Jl.
If Il = ∅, we choose vl := vl−1. Otherwise, say Il = {i1 < · · · < ip} and define on Jl

h̄ :=




b̃
(qi1)

i1
...

b̃
(qip )

ip


 ∈ Ls(Jl;R

|Il|).

Then (4.21) is equivalent to
{
vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

Mtv
l
t +Nt(z[v

l]t, v
l, z[vl]) = h̄t for a.a. t ∈ Jl.

(4.25)

Applying lemma 25 a) to (h, vl−1), we get ṽ such that (4.25) holds; we choose vl := ṽ.

b) We follow a similar scheme to the one of the proof of a).
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Let (b̄, v̄) ∈W (q),2(Iε)× V2 be such that

g′i(ȳ)z[v̄] = b̄i on Iε, i = 1, . . . , r.

Let bk ∈ W (q),∞(Iε), k ∈ N, be such that bk
W (q),2

−−−−→ b̄. Let us construct vk,0, . . . , vk,κ ∈ U ,

k ∈ N, such that for all l, vk,l
L2

−−−−→
k→∞

v̄ and

{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

g′i(ȳ)z[v
k,l] = bki on Iε

i ∩ Jl, i ∈ Il.

We will conclude the proof by defining vk := vk,κ, k ∈ N.
We choose for vk,0 the truncation of v̄, k ∈ N (see definition 41 in appendix A.2).
Suppose we have vk,0, . . . , vk,l−1, k ∈ N, for some l ≥ 1 and let us construct vk,l, k ∈ N.

Applying lemma 24 b) to (bk, vk,l−1) with {t0} = Jl−1 ∩ Jl, we get b̃k ∈ W (q),∞([0, T ]), k ∈ N.
In particular,

b̃k
W (q),2

−−−−→ b̃ (4.26)

where b̃ := g′(ȳ)z[v̄] ∈ W (q),2([0, T ]). And it is now enough to find vk,l, k ∈ N, such that

vk,l
L2

−−−−→
k→∞

v̄ and
{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

g′i(ȳ)z[v
k,l] = b̃ki on Jl, i ∈ Il.

(4.27)

If Il = ∅, we choose vk,l = vk,l−1, k ∈ N. Otherwise, say Il = {i1 < · · · < ip} and define on Jl

h̄ :=




b̃
(qi1 )
i1
...

b̃
(qip )

ip


 ∈ L2(Jl;R

|Il|), hk :=



(b̃ki1)

(qi1 )

...
(b̃kip)

(qip )


 ∈ L∞(Jl;R

|Il|).

We have

Mtv̄t +Nt(z[v̄]t, v̄, z[v̄]) = h̄t for a.a t ∈ Jl

and (4.27) is equivalent to

{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

Mtv
k,l
t +Nt(z[v

k,l]t, v
k,l, z[vk,l]) = hkt for a.a. t ∈ Jl.

(4.28)

By (4.26), hk
L2

−−→ h̄, and by assumption, vk,l−1 L2

−−−−→
k→∞

v̄. Applying lemma 25 b) to (hk, vk,l−1),

we get ṽk, k ∈ N, such that ṽk
L2

−−→ v̄ and (4.28) holds; we choose vk,l = ṽk, k ∈ N.

4.3 Necessary conditions

Recall that we are under the assumptions (A0)-(A4).
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4.3.1 Structure of the set of Lagrange multipliers

Recall that we denote by Λ the set of Lagrange multipliers associated with (ū, ȳ) (definition 2).
We consider the projection map

π : M× R
s∗ × P −→ R

N∗ × R
s∗

(dη,Ψ, p) 7−→
(
([ηi,τ ])τ,i ,Ψ

)

where τ ∈ Ti, i = r1 + 1, . . . , r. A consequence of lemma 23 a) is the following:

Lemma 26. π|Λ is injective.

Proof. We will use the fact that one of the constraint, namely G1, has a surjective derivative.
For dρ ∈

∏r
i=1 M (Iε

i ), we define Fρ ∈
(
W (q),∞(Iε)

)∗
by

Fρ(ϕ) :=
∑

1≤i≤r

∫

Iε
i

ϕi,tdρi,t for all ϕ ∈W (q),∞(Iε).

Since by lemma 8, DG1(ū, ȳ0)(v, z0) ∈W (q),∞(Iε) for all (v, z0) ∈ U × R
n, we have

〈dρ,DG1(ū, ȳ0)(v, z0)〉 = 〈Fρ, DG1(ū, ȳ0)(v, z0)〉

=
〈
(DG1(ū, ȳ0))

∗
Fρ, (v, z0)

〉
.

Then differentiating LR, defined by (3.19), w.r.t. (u, y0) we get

D(u,y0)LR(ū, ȳ0, dρ, ν,Ψ)

= DJ(ū, ȳ0) +DG1(ū, ȳ0)
∗Fρ +DG2(ū, ȳ0)

∗ν +DG3(ū, ȳ0)
∗Ψ. (4.29)

Let (dη,Ψ, p), (dη′,Ψ′, p′) ∈ Λ and suppose that π ((dη,Ψ, p)) = π ((dη′,Ψ′, p′)). By lemma 19,
let (dρ, ν), (dρ′, ν′) be such that (dρ, ν,Ψ), (dρ′, ν′,Ψ′) ∈ ΛR. Then (ν,Ψ) = (ν′,Ψ′), and by
definition of ΛR,

D(u,y0)LR(ū, ȳ0, dρ, ν,Ψ) = D(u,y0)LR(ū, ȳ0, dρ
′, ν,Ψ) = 0.

Then by (4.29), DG1(ū, ȳ0)
∗Fρ = DG1(ū, ȳ0)

∗Fρ′ . And it is a consequence of lemma 23 a) that
DG1(ū, ȳ0)

∗ is injective on
(
W (q),∞(Iε)

)∗
. Then Fρ = Fρ′ , and by density of W (q),∞(Iε) in∏

C (Iε
i ), we get dρ = dρ′. Together with ν = ν′, it implies dη = dη′ and then (dη,Ψ, p) =

(dη′,Ψ′, p′).

As a corollary, we get a refinement of theorem 12:

Theorem 27. Let (ū, ȳ) be a qualified local solution of (P ). Then Λ is nonempty, convex, of
finite dimension and compact.

Proof. Let Λπ := π (Λ). By theorem 12, Λ is nonempty, convex, weakly ∗ compact and Λπ is
nonempty, convex, of finite dimension and compact (π is linear continuous and its values lie in
a finite-dimensional vector space). By lemma 26, π|Λ : Λ → Λπ is a bijection. We claim that its
inverse

m : Λπ −→ Λ
(([ηi,τ ])τ,i,Ψ) 7−→ (dη,Ψ, p)

is the restriction of a continuous affine map. Since Λ = m (Λπ), the result follows. For the claim,
using the convexity of both Λπ and Λ, the linearity of π and its injectivity when restricted to Λ,
we get that m preserves convex combinations of elements from Λπ. Thus we can extend it to an
affine map on the affine subspace of RN∗ × R

s∗ spanned by Λπ. Since this subspace is of finite
dimension, the extension of m is continuous.
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4.3.2 Second-order conditions on a large critical cone

Recall that for λ ∈ Λ, J [λ] has been defined on U × R
n by (3.31) or (3.32).

Remark 28. J is quadratic w.r.t. (v, z0) and affine w.r.t. λ. By lemmas 3, 4 and 8, J [λ] can be
extended continuously to V2 ×R

n for any λ ∈ Λ. We obtain the so-called Hessian of Lagrangian

J : [Λ]× V2 × R
n −→ R (4.30)

which is jointly continuous w.r.t. λ and (v, z0).

The critical L2 cone C2 has been defined by (3.34)-(3.36). Let the strict critical L2 cone be the
set

CS
2 := {(v, z0) ∈ C2 : g′i(ȳ)z = 0 on Ii, i = 1, . . . , r} ,

where z = z[v, z0] ∈ Z2.

Theorem 29. Let (ū, ȳ) be a qualified local solution of (P ). Then for any (v, z0) ∈ CS
2 , there

exists λ ∈ Λ such that

J [λ](v, z0) ≥ 0. (4.31)

The proof is based on the following density lemma, announced in the introduction and proved
in the next section:

Lemma 30. CR
∞ ∩ CS

2 is dense in CS
2 for the L2 × R

n norm.

Proof of theorem 29. Let (v, z0) ∈ CS
2 . By lemma 30, there exists a sequence (vk, zk0 ) ∈ CR

∞∩CS
2 ,

k ∈ N, such that
(vk, zk0 ) −→ (v, z0).

By lemma 21, there exists a sequence λk ∈ Λ, k ∈ N, such that

J [λk](vk, zk0 ) ≥ 0. (4.32)

By theorem 27, Λ is strongly compact; then there exists λ ∈ Λ such that, up to a subsequence,

λk −→ λ.

We conclude by passing to the limit in (4.32), thanks to remark 28.

4.3.3 A density result

In this section we prove lemma 30, using lemma 23 b). A result similar to lemma 30 is stated,
in the framework of ODEs, as Lemma 5 in [5], but the proof given there is wrong. Indeed, the
costates in the optimal control problems of steps a) and c) are actually not of bounded variations
and thus the solutions are not essentially bounded. It has to be highlighted that in lemma 23 b)
we get a sequence of essentially bounded vk.

Proof of lemma 30. We define one more cone:

CR+
∞ =

{
(v, z0) ∈ CR

∞ ∩CS
2 : ∃δ > 0 : g′i(ȳ)z[v, z0] = 0 on Iδ

i , i = 1, . . . , r
}
,

and we show actually that CR+
∞ is dense in CS

2 .
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To do so, we consider the following two normed vector spaces:

X+
∞ :=

{
(v, z0) ∈ U × R

n : ∃δ > 0 : g′i(ȳ)z[v, z0] = 0 on Iδ
i , i = 1, . . . , r

}
,

X2 := {(v, z0) ∈ V2 × R
n : g′i(ȳ)z[v, z0] = 0 on Ii, i = 1, . . . , r} .

Observe that CR+
∞ and CS

2 are defined as the same polyhedral cone by (3.35)-(3.36), respectively
in X+

∞ and X2. In view of Lemma 1 in [13], it is then enough to show that X+
∞ is dense in X2.

We will need the following lemma, proved in appendix A.3:

Lemma 31. Let b̄i ∈W (qi),2(Iε
i ) be such that

b̄i = 0 on Ii. (4.33)

Then there exists bδi ∈W (qi),∞(Iε
i ), δ ∈ (0, ε), such that bδi

W (qi),2

−−−−−→
δ→0

b̄i and

bδi = 0 on Iδ
i . (4.34)

Going back to the proof of lemma 30, let (v̄, z̄0) ∈ X2 and b̄ := (A2,z̄0 v̄) |Iε . We consider a
sequence δk ց 0 and for i = 1, . . . , r, bki := bδki ∈ W (qi),∞(Iε

i ) given by lemma 31. Applying
lemma 23 b) to bk, we get vk, k ∈ N. We have (vk, z̄0) ∈ X+

∞ and (vk, z̄0) −→ (v̄, z̄0). The proof
is completed.

4.4 Sufficient conditions

We still are under the assumptions (A0)-(A4).

Definition 32. A quadratic form Q over a Hilbert space X is a Legendre form if it is weakly
lower semi-continuous and if it satisfies the following property: if xk ⇀ x weakly in X and
Q(xk) → Q(x), then xk → x strongly in X .

Theorem 33. Suppose that for any (v, z0) ∈ C2, there exists λ ∈ Λ such that J [λ] is a Legendre
form and

J [λ](v, z0) > 0 if (v, z0) 6= 0. (4.35)

Then (ū, ȳ) is a local solution of (P ) satisfying the following quadratic growth condition: there
exists β > 0 and α > 0 such that

J(u, y0) ≥ J(ū, ȳ0) +
1

2
β (‖u− ū‖2 + |y0 − ȳ0|)

2 (4.36)

for any trajectory (u, y) feasible for (P ) and such that ‖u− ū‖∞ + |y0 − ȳ0| ≤ α.

Remark 34. Let λ = (dη,Ψ, p) ∈ Λ. The strengthened Legendre-Clebsch condition

∃ᾱ > 0 : D2
uuH [p](t, ūt, ȳt) ≥ ᾱIm for a.a. t ∈ [0, T ] (4.37)

is satisfied iff J [λ] is a Legendre form (it can be porved by combining Theorem 11.6 and
Theorem 3.3 in [15]).

Proof of theorem 33. (i) Let us assume that (4.35) holds but that (4.36) does not. Then there
exists a sequence of feasible trajectories (uk, yk) such that

{
(uk, yk0 )

L∞×R
n

−−−−−→ (ū, ȳ0), (u
k, yk0 ) 6= (ū, ȳ0),

J(uk, yk0 ) ≤ J(ū, ȳ0) + o
(
‖uk − ū‖2 + |yk0 − ȳ0|

)2
.

(4.38)
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Let σk := ‖uk − ū‖2 + |yk0 − ȳ0| and (vk, zk0 ) := σ−1
k

(
uk − ū, yk0 − ȳ0

)
∈ U × R

n. There exists
(v̄, z̄0) ∈ V2 × R

n such that, up to a subsequence,

(vk, zk0 )⇀ (v̄, z̄0) weakly in V2 × R
n.

(ii) We claim that (v̄, z̄0) ∈ C2.
Let zk := z[vk, zk0 ] ∈ Y and z̄ := z[v̄, z̄0] ∈ Z2. We derive from the compact embedding

Z2 ⊂ C ([0, T ];Rn) that, up to a subsequence,

zk → z̄ in C ([0, T ];Rn) . (4.39)

Moreover, it is classical (see e.g. the proof of Lemma 20 in [4]) that

J(uk, yk0 ) = J(ū, ȳ0) + σkDJ(ū, ȳ0)(v
k, zk0 ) + o(σk), (4.40)

g(yk) = g(ȳ) + σkg
′(ȳ)zk + o(σk), (4.41)

Φ(yk0 , y
k
T ) = Φ(ȳ0, ȳT ) + σkDΦ(ȳ0, ȳT )(z

k
0 , z

k
T ) + o(σk). (4.42)

It follows that

DJ(ū, ȳ0)(v̄, z̄0) ≤ 0, (4.43)
{
g′i(ȳ)z̄ ≤ 0 on Ii i = 1, . . . , r1,
g′i(ȳ)z̄ ≤ 0 on Ii ∪ Ti i = r1 + 1, . . . , r.

(4.44)

DΦ(ȳ0, ȳT )(z̄0, z[v̄, z̄0]T ) ∈ TK (Φ(ȳ0, ȳT )) , (4.45)

using (4.38) for (4.43) and the fact that (ū, ȳ), (uk, yk) are feasible for (4.44) and (4.45). By
lemma 9, given λ̄ = (dη̄, Ψ̄, p̄) ∈ Λ, we have

DJ(ū, ȳ0)(v̄, z̄0) +

∫

[0,T ]

dη̄tg
′(ȳt) + Ψ̄DΦ(ȳ0, ȳT )(z̄0, z̄T ) = 0.

Together with definition 2 and (4.43)-(4.45), it implies that each of the three terms is null, i.e.
(v̄, z̄0) ∈ C2.

(iii) Then by (4.35) there exists λ̄ ∈ Λ such that J [λ̄] is a Legendre form and

0 ≤ J [λ̄](v̄, z̄0). (4.46)

In particular, J [λ̄] is weakly lower semi continuous. Then

J [λ̄](v̄, z̄0) ≤ lim inf
k

J [λ̄](vk, zk0 ) ≤ lim sup
k

J [λ̄](vk, zk0 ). (4.47)

And we claim that
lim sup

k

J [λ̄](vk, zk0 ) ≤ 0. (4.48)

Indeed, similarly to (4.40)-(4.42), one can show that, λ̄ being a multiplier,

LR(u
k, yk0 , λ̄)− LR(ū, ȳ0, λ̄) =

1

2
σ2
kD

2
(u,y0)2

LR(ū, ȳ0, λ̄)(v
k, zk0 )

2 + o(σ2
k). (4.49)

Since LR(u
k, yk0 , λ̄) − LR(ū, ȳ0, λ̄) ≤ J(uk, yk0 ) − J(ū, ȳ0), we derive from (4.38), (4.49) and

lemma 20 that
J [λ̄](vk, zk0 ) ≤ o(1). (4.50)
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(iv) We derive from (4.46), (4.47) and (4.48) that

J [λ̄](vk, zk0 ) −→ 0 = J [λ̄](v̄, z̄0).

By (4.35), (v̄, z̄0) = 0, and by definition of a Legendre form, (vk, zk0 ) −→ (v̄, z̄0) strongly in
V2 × R

n. We get a contradiction with the fact that ‖vk‖2 + |zk0 | = 1 for all k.

In view of theorems 29 and 33 it appears that under an extra assumption, of the type of strict
complementarity on the running state constraints, we can state no-gap second-order optimality
conditions. We denote by ri (Λ) the relative interior of Λ (see Definition 2.16 in [7]).

Corollary 35. Let (ū, ȳ) be a qualified feasible trajectory for (P ). We assume that CS
2 = C2 and

that for any λ ∈ ri (Λ), the strengthened Legendre-Clebsch condition (4.37) holds. Then (ū, ȳ) is a
local solution of (P ) satisfying the quadratic growth condition (4.36) iff for any (v, z0) ∈ C2 \{0},
there exists λ ∈ Λ such that

J [λ](v, z0) > 0. (4.51)

Proof. Suppose (4.51) holds for some λ ∈ Λ; then it holds for some λ ∈ ri (Λ) too and now J [λ]
is a Legendre form. By theorem 33, there is locally quadratic growth.

Conversely, suppose (4.36) holds for some β > 0 and let

Jβ(u, y0) := J(u, y0)−
1

2
β (‖u− ū‖2 + |y0 − ȳ0|)

2
.

Then (ū, ȳ0) is a local solution of the following optimization problem:

min
(u,y0)∈U×Rn

Jβ(u, y0), subject to Gi(u, y0) ∈ Ki, i = 1, 2, 3.

This problem has the same Lagrange multipliers as the reduced problem (write that the respective
Lagrangian is stationary at (ū, ȳ0)), the same critical cones and its Hessian of Lagrangian is

Jβ [λ](v, z0) = J [λ](v, z0)− β (‖v‖2 + |z0|)
2
.

Theorem 29 applied to this problem gives (4.51).

Remark 36. A sufficient condition (not necessary a priori) to have CS
2 = C2 is the existence

of (dη̄, Ψ̄, p̄) ∈ Λ such that
supp(dη̄i) = Ii, i = 1, . . . , r.

A Appendix

A.1 Functions of bounded variations

The main reference here is [1], Section 3.2. Recall that with the definition of BV ([0, T ];Rn∗)
given at the beginning of section 2.2, for h ∈ BV ([0, T ];Rn∗) there exist h0− , hT+ ∈ R

n∗ such
that (2.6) holds.

Lemma 37. Let h ∈ BV ([0, T ];Rn∗). Let hl, hr be defined for all t ∈ [0, T ] by

hlt := h0− + dh
(
[0, t)

)
, (A.1)

hrt := h0− + dh
(
[0, t]

)
. (A.2)
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Then they are both in the same equivalence class of h, hl is left continuous, hr is right continuous
and, for all t ∈ [0, T ],

hlt = hT+ − dh
(
[t, T ]

)
, (A.3)

hrt = hT+ − dh
(
(t, T ]

)
. (A.4)

Proof. Theorem 3.28 in [1].

The identification between measures and functions of bounded variations that we mention at
the beginning of section 2.2 relies on the following:

Lemma 38. The linear map

(c, µ) 7−→
(
h : t 7→ c− µ ([t, T ])

)
(A.5)

is an isomorphism between R
r∗ ×M ([0, T ];Rr∗) and BV ([0, T ];Rr∗), whose inverse is

h 7−→
(
hT+ , dh

)
. (A.6)

Proof. Theorem 3.30 in [1].

Let us now prove lemma 1:

Proof of lemma 1. By (A.3), a solution in P of (2.10) is any p ∈ L1(0, T ;Rn∗) such that, for a.e.
t ∈ [0, T ],

pt = Dy2Φ[Ψ](y0, yT ) +

∫ T

t

DyH [p](s, us, ys)ds+

∫

[t,T ]

dηsg
′(ys). (A.7)

We define Θ: L1(0, T ;Rn∗) → L1(0, T ;Rn∗) by

Θ(p)t := Dy2Φ[Ψ](y0, yT ) +

∫ T

t

DyH [p](s, us, ys)ds+

∫

[t,T ]

dηsg
′(ys) (A.8)

for a.e. t ∈ [0, T ], and we show that Θ has a unique fixed point. Let C > 0 such that
‖Dyf‖∞, ‖D2

y,τf‖∞ ≤ C along (u, y).

|Θ(p1)t −Θ(p2)t| =

∣∣∣∣∣

∫ T

t

(DyH [p1](s, us, ys)−DyH [p2](s, us, ys)) ds

∣∣∣∣∣

≤ C

∫ T

t

[
|p1(s)− p2(s)|+

∫ T

s

|p1(θ)− p2(θ)|dθ

]
ds

= C

∫ T

t

[
|p1(s)− p2(s)|+

∫ s

t

|p1(s)− p2(s)|dθ

]
ds

≤ C(1 + T )

∫ T

t

|p1(s)− p2(s)|ds.

We consider the family of equivalent norms on L1(0, T ;Rn∗)

‖v‖1,K := ‖t 7→ e−K(T−t)v(t)‖1 (K ≥ 0). (A.9)
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‖Θ(p1)−Θ(p2)‖1,K ≤ C(1 + T )

∫ T

0

∫ T

t

e−K(T−t)|p1(s)− p2(s)|dsdt

= C(1 + T )

∫ T

0

e−K(T−s)|p1(s)− p2(s)|

[∫ s

0

eK(t−s)dt

]
ds

≤
C(1 + T )

K
‖p1 − p2‖1,K .

For K big enough Θ is a contraction on L1(0, T ;Rn∗) for ‖ · ‖1,K ; its unique fixed point is the
unique solution of (2.10).

Another useful result is the following integration by parts formula:

Lemma 39. Let h, k ∈ BV ([0, T ]). Then hl ∈ L1(dk), kr ∈ L1(dh) and

∫

[0,T ]

hldk +

∫

[0,T ]

krdh = hT+kT+ − h0−k0− . (A.10)

Proof. Let Ω := {0 ≤ y ≤ x ≤ T }. Since χΩ ∈ L1(dh ⊗ dk), we have by Fubini’s Theorem
(Theorem 7.27 in [14]) and lemma 37 that hl ∈ L1(dk), kr ∈ L1(dh) and we can compute
dh⊗ dk(Ω) in two different ways:

dh⊗ dk(Ω) =

∫

[0,T ]

∫

[y,T ]

dhxdky

=

∫

[0,T ]

(
hT+ − hly

)
dky

= hT+

(
kT+ − k0−

)
−

∫

[0,T ]

hlydky,

dh⊗ dk(Ω) =

∫

[0,T ]

∫

[0,x]

dkydhx

=

∫

[0,T ]

krxdhx − k0−
(
hT+ − h0−

)
.

A.2 The hidden use of assumption 3

We use (A3) to prove lemma 25 (and then lemma 23, and then . . . ) through the following:

Lemma 40. Recall that Mt := DũG
(q)
Iε0 (t)(t, ūt, ȳt, ū, ȳ) ∈ R

|Iε0(t)|×R
m∗. Then for all t ∈ [0, T ],

MtM
T
t is invertible and |

(
MtM

T
t

)−1
| ≤ γ−2.

Proof. For any x ∈ R
|Iε0(t)|,

〈
MtM

T
t x, x

〉
= |MT

t x|
2 ≥ γ2|x|2.

Then MtM
T
t x = 0 implies x = 0 and the invertibility follows.

Let y ∈ R
|Iε0(t)| and x :=

(
MtM

T
t

)−1
y.

|y||x| ≥ 〈y, x〉 =
〈
MtM

T
t x, x

〉
= |MT

t x|
2 ≥ γ2|x|2.
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For y 6= 0, we have x 6= 0; dividing the previous inequality by |x|, we get

γ2
∣∣∣
(
MtM

T
t

)−1
y
∣∣∣ ≤ |y|.

The result follows.

Before we prove lemma 25, we define the truncation of an integrable function:

Definition 41. Given any φ ∈ Ls(J) (s ∈ [1,∞) and J interval), we will call truncation of φ
the sequence φk ∈ L∞(J) defined for k ∈ N and a.a. t ∈ J by

φkt :=




φt if |φt| ≤ k,

k
φt

|φt|
otherwise.

Observe that φk
Ls

−−−−→
k→∞

φ.

Proof of lemma 25. In the sequel we omit z0 in the notations.
(i) Let v ∈ Vs. We claim that v satisfies

Mtvt +Nt (z[v]t, v, z[v]) = ht for a.a. t ∈ Jl (A.11)

iff there exists w ∈ Ls(Jl;R
m) such that (v, w) satisfies

{
Mtwt = 0,

vt =MT
t

(
MtM

T
t

)−1
(ht −Nt(z[v]t, v, z[v])) + wt,

for a.a. t ∈ Jl. (A.12)

Clearly, if (v, w) satisfies (A.12), then v satisfies (A.11). Conversly, suppose that v satisfies
(A.11). With lemma 40 in mind, we define α ∈ Ls(Jl;R

|Il|) and w ∈ Ls(Jl;R
m) by

α :=
(
MMT

)−1
Mv,

w :=
(
Im −MT

(
MMT

)−1
M

)
v.

Then {
Mw = 0,
v =MTα+ w,

on Jl. (A.13)

We derive from (A.11) and (A.13) that

MtM
T
t αt +Nt (z[v]t, v, z[v]) = ht for a.a. t ∈ Jl.

Using again lemma 40 and (A.13), we get (A.12).

(ii) Given (v, h, w) ∈ Vs × Ls(Jl;R
|Il|)× Ls(Jl;R

m), there exists a unique ṽ ∈ Vs such that

{
ṽ = v on J0 ∪ · · · ∪ Jl−1 ∪ Jl+1 ∪ · · · ∪ Jκ,

ṽt =MT
t

(
MtM

T
t

)−1
(ht −Nt(z[ṽ]t, ṽ, z[ṽ])) + wt for a.a. t ∈ Jl,

(A.14)

Indeed, one can define a mapping from Vs to Vs, using the right-hand side of (A.14). Then it
can be shown, as in the proof of lemma 1, that this mapping is a contraction for a well-suited
norm, using lemmas 3, 4 and 40. The existence and uniqueness follow. Moreover, a version of
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the contraction mapping theorem with parameter (see e.g. Théorème 21-5 in [10]) shows that ṽ
depends continuously on (v, h, w).

(iii) Let us prove a): let (h̄, v) ∈ Ls(Jl;R
|Il|) × Vs and let w := 0. Let ṽ ∈ Vs be the unique

solution of (A.14) for (v, h̄, w). Then ṽ is a solution of (4.17) by (i).

(iv) Let us prove b): let (h̄, v̄) ∈ Ls(Jl;R
|Il|)×Vs as in the statement and let w̄ be given by (i).

Then v̄ is the unique solution of (A.14) for (v̄, h̄, w̄).

Let (hk, vk) ∈ L∞(Jl;R
|Il|) × U , k ∈ N, be such that (hk, vk)

Ls×Ls

−−−−→ (h̄, v̄) and let wk ∈
L∞(Jl;R

m), k ∈ N, be the truncation of w̄. It is obvious from definition 41 that

Mtw
k
t = 0 for a.a. t ∈ Jl.

Let ṽk ∈ U be the unique solution of (A.14) for (vk, hk, wk), k ∈ N. Then by uniqueness and
continuity in (ii),

ṽk
Ls

−−→ v̄. (A.15)

And ṽk is a solution of (4.19) by (i).

A.3 Approximations in W
q,2

We will prove in this section lemmas 24 and 31. First we give the statement and the proof of a
general result:

Lemma 42. Let x̂ ∈W q,2([0, 1]). For j = 0, . . . , q − 1, we denote

{
α̂j := x̂(j)(0),

β̂j := x̂(j)(1),
(A.16)

and we consider αk
j , β

k
j ∈ R

q, k ∈ N, such that (αk
j , β

k
j ) −→ (α̂j , β̂j). Then there exists xk ∈

W q,∞([0, 1]), k ∈ N, such that xk
W q,2

−−−→ x̂ and, for j = 0, . . . , q − 1,

{
(xk)(j)(0) = αk

j ,

(xk)(j)(1) = βk
j .

(A.17)

Proof. Given u ∈ L2([0, 1]), we define xu ∈W q,2([0, 1]) by

xu(t) :=

∫ t

0

∫ s1

0

· · ·

∫ sq−1

0

u(sq)dsqdsq−1 · · · ds1, t ∈ [0, 1].

Then x(q)u = u and, for j = 0, . . . , q − 1,

x(j)u (1) = γj ⇐⇒ 〈aj , u〉L2 = γj

where aj ∈ C([0, 1]) is defined by

aj(t) :=
(1− t)q−1−j

(q − 1− j)!
, t ∈ [0, 1].

Indeed, a straightforward induction shows that

x(j)u (1) =

∫ t

0

∫ sj+1

0

· · ·

∫ sq−1

0

u(sq)dsqdsq−1 · · · dsj+1.
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Then integrations by parts give the expression of the aj . Note that the aj (j = 0, . . . , q − 1) are
linearly independent in L2([0, 1]). Then

A : R
q −→ L2([0, 1])


λ0
...

λq−1


 7−→

q−1∑

j=0

λjaj

is such that A∗A is invertible (A∗ is here the adjoint operator). And

x(j)u (1) = γj , j = 0, . . . , q − 1 ⇐⇒ A∗u = (γ0, . . . , γq−1)
T . (A.18)

Going back to the lemma, let û := x̂(q) ∈ L2([0, 1]). Observe that

x̂(t) =

q−1∑

l=0

α̂l

l!
tl + xû(t), t ∈ [0, 1],

and that A∗û = (γ̂0, . . . , γ̂q−1)
T where

γ̂j := β̂j −
q−1∑

l=j

α̂l

(l − j)!
, j = 0, . . . , q − 1.

Then we consider, for k ∈ N, the truncation (definition 41) ûk ∈ L∞([0, 1]) of û, and

γkj := βk
j −

q−1∑

l=j

αk
l

(l − j)!
, j = 0, . . . , q − 1, (A.19)

γk := (γk0 , . . . , γ
k
q−1)

T ,

uk := ûk +A(A∗A)−1
(
γk −A∗ûk

)
,

xk(t) :=

q−1∑

l=0

αk
l

l!
tl + xuk (t), t ∈ [0, 1]. (A.20)

It is clear that uk ∈ L∞([0, 1]) (by definition of A); then xk ∈ W q,∞([0, T ]). Since A∗uk = γk

and in view of (A.18), (A.19) and (A.20), (A.17) is satisfied. Finally, γkj −→ γ̂j (j = 0, . . . , q−1);
then γk −→ A∗û and uk −→ û.

We can also prove the following:

Lemma 43. Let x̂ ∈W q,2([0, 1]) be such that x̂(j)(0) = 0 for j = 0, . . . , q− 1. Then there exists

xδ ∈W q,∞([0, 1]) for δ > 0 such that xδ
W q,2

−−−→
δ→0

x̂ and

xδ = 0 on [0, δ]. (A.21)

Proof. We consider uδ ∈ L∞([0, 1]), δ > 0, such that uδ = 0 on [0, δ] and uδ
L2

−−−→
δ→0

û := x̂(q).

Then we define xδ := xuδ (see the previous proof).

Now the proof of lemma 31 is straightforward.
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Proof of lemma 31. We observe that b̄i = 0 on Ii implies that b̄(j)i = 0 at the end points of Ii for
j = 0, . . . , qi − 1 (note that with the definition (3.14), if one component of Ii is a singleton, then
qi = 1). Then the conclusion follows with lemma 43 applied on each component of Iε

i \ Ii.

Finally, we use lemma 42 to prove lemma 24.

Proof of lemma 24. In the sequel we omit z0 in the notations. We define a connection in W q,∞

between ψ1 at t1 and ψ2 at t2 as any ψ ∈W q,∞([t1, t2]) such that

{
ψ(j)(t1) = ψ

(j)
1 (t1),

ψ(j)(t2) = ψ
(j)
2 (t2),

j = 0, . . . , q − 1.

a) We define b̃i on [0, t0] by b̃i := g′i(ȳ)z[v], i = 1, . . . , r. We need to explain how we define b̃i
on (t0, T ], using b̄i and connections, to have b̃i ∈ W qi,s([0, T ]) and b̃i = b̄i on each component of
Iε
i ∩ (t0, T ]. The construction is slightly different whether t0 ∈ Iε

i or not, i.e. whether i ∈ Iεt0 or
not. Note that by definition of ε0 and of t0, Iεt is constant for t in a neighbourhood of t0. We
now distinguish the 2 cases just mentioned:

1. i ∈ Iεt0 : We denote by [t1, t2] the connected component of Iε
i such that t0 ∈ (t1, t2). We

derive from (4.12) that b̃i = b̄i on [t1, t0]. Then we define b̃i := b̄i on (t0, t2].

If Iε
i has another component in (t2, T ], we denote the first one by [t′1, t

′
2]. Let ψ be a

connection in W qi,∞ between b̃i at t2 to b̄i at t′1. We define b̃i := ψ on (t2, t
′
1), b̃i := b̄i on

[t′1, t
′
2], and so forth on (t′2, T ].

If Iε
i has no more component, we define b̃i on what is left as a connection in W qi,∞ between

b̄i and g′i(ȳ)z[v] at T .

2. i 6∈ Iεt0 : If Iε
i has a component in [t0, T ], we denote the first one by [t1, t2]. Note that

t1 − t0 ≥ ε0 − ε > 0. We consider a connection in W qi,∞ between b̃i at t0 and b̄i at t1 and
we continue as in 1.

If Iε
i has no component in [t0, T ], we do as in 1.

b) For all k ∈ N, we apply a) to (bk, vk) and we get b̃k. We just need to explain how we can get,
for i = 1, . . . , r,

b̃ki
W qi,2

−−−−→
k→∞

g′i(ȳ)z[v̄].

By construction we have

on [0, t0], b̃ki = g′i(ȳ)z[v
k] −→ g′i(ȳ)z[v̄],

on Iε
i , b̃ki = bki −→ b̄i = g′i(ȳ)z[v̄].

Then it is enough to show that every connection which appears when we apply a) to (bk, vk), for
example ψk

i ∈ W qi,∞([t1, t2]), can be chosen in such a way that

ψk
i −→ g′i(ȳ)z[v̄] on [t1, t2].

This is possible by lemma 42.
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