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a b s t r a c t

Graphic processing units have received much attention in last years. Compute-intensive algorithms oper-
ating on multidimensional arrays that have nearest neighbor dependency and/or exploit data locality can
achieve massive speedups. Simulation of problems modeled by time-dependent Partial Differential Equa-
tions by using explicit time-stepping methods on structured grids is an instance of such GPU-friendly
algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully explicit manner
due to the incompressibility constraint. Segregated algorithms like the fractional step method require the
solution of a Poisson problem for the pressure field at each time level. This stage is usually the most time-
consuming one. This work discuss a solver for the pressure problem in applications using immersed
boundary techniques in order to account for moving solid bodies. This solver is based on standard Con-
jugate Gradients iterations and depends on the availability of a fast Poisson solver on the whole domain
to define a preconditioner. We provide a theoretical and numerical evidence on the advantages of our
approach versus classical techniques based on fixed point iterations such as the Iterated Orthogonal Pro-
jection method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Graphics Processing Units (GPUs) are computer co-processors
used in desktop computers and workstations to off-load the rend-
erization of complex graphics from the main processor (CPU). They
have evolved to complex systems containing many processing
units, a large amount of on-board memory and a computing power
in the order of teraflops. They are instances of massively parallel
architectures and Single Instruction Multiple Data (SIMD)
paradigms.

Recently, GPUs are becoming increasingly popular among scien-
tists and engineers for High Performance Computing (HPC) appli-
cations [1–3,6,10,14,15,17–19,25,27]. This tendency motivated
GPU manufacturers to develop General Purpose Graphics Process-
ing Units (GPGPUs) targeting the HPC market.

In the pursuit of more realistic visualization algorithms for vi-
deo games and special effects, solving Partial Differential Equations
(PDEs) has become a necessary ingredient [4,5,12,24,29]. Numeri-
cal schemes employed in these applications usually sacrifice accu-
racy for speed, resulting in very fast implementations when
comparing to engineering codes.

The resolution of Computational Fluid Dynamics (CFD) prob-
lems on GPUs requires specialized algorithms due to the particular
hardware architecture of these devices. Algorithms that fall in the
category of Cellular Automata (CA) are the best fitted for GPUs. For
instance, explicit Finite Volume or Finite Element methods, jointly
with immersed boundary techniques [28] to represent solid bodies,
can be used on structured cartesian meshes. In the case of incom-
pressible flows, it is not possible to develop a purely explicit algo-
rithm, due to the essentially non-local nature of the
incompressibility condition.

Segregated algorithms solve an implicit Poisson equation for
the pressure field, being this stage the most time-consuming in
the solution procedure. Using fast Poisson solvers like Multigrid
(MG) or Fast Fourier Transform (FFT) is tempting but treating mov-
ing solid bodies becomes cumbersome in the case of MG or unsuit-
able for FFT. To surpass these difficulties, Molemaker et al.
proposed in [17] the Iterated Orthogonal Projection (IOP) method
which requires a series of projections on the complete grid (fluid
and solid) to enforce the incompressibility and boundary
conditions.

In this work we propose an alternative to IOP, that we call
Accelerated Global Preconditioning (AGP). The solver is based on
using a Preconditioned Conjugate Gradients (PCGs) algorithm, so
that, it is an accelerated iterative method in contrast to the station-
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ary scheme used in IOP. In addition, AGP method iterates only on
pressure, whereas IOP iterates on both pressure and velocity.

The remainder of this article is organized as follows. Section 2
describes the IOP solver and the QUICK scheme for advection
terms. Also, the rate of convergence of IOP is studied. Section 3
introduces the Accelerated Global Preconditioning solver providing
a theoretical evidence on the advantages of our approach versus
classical techniques based on fixed point iterations such as the
IOP method. The numerical performance of the method is studied
in Section 5. Concluding remarks are given in Section 6.

2. The Iterated Orthogonal Projection (IOP) solver

The Navier–Stokes governing equations for an incompressible,
laminar, constant viscosity fluid are (see Fig. 1)

@ui

@t
þ @ðujuiÞ

@xj
¼ � 1

q
@p
@xi
þ mDui þ fi; in Xfluid;

@uj

@xj
¼ 0; in Xfluid;

u ¼ ubdy; at Cbdy;

periodic B:C’s; at C1;

p ¼ 0; at x0;

ð1Þ

where ui are the components of velocity, q density, p is pressure, D
is the Laplace operator, xj are the spatial coordinates, fi a gravity
field, and t is time. Einstein’s summation convention on repeated
indices is assumed. Periodic boundary conditions are imposed on
the far boundary

C1 ¼ Cþx [ C�x [ Cþy [ C�y [ Cþz [ C�z ; ð2Þ

i.e.

uCþx
¼ uC�x ;

pCþx
¼ pC�x

;
ð3Þ

(and similar expressions for y and z). Also, pressure is defined up to
a constant.

The numerical scheme is based on a Fractional Step-like solver,
using the Quadratic Upstream Interpolation for Convection Kine-
matics (QUICK, see [16]) on a staggered grid. QUICK is an advection
scheme with very low numerical dissipation and is well suited for
structured finite difference schemes.

The rectangular box X = {0 6 x/Lx,y/Ly,z/Lz 6 1} is discretized
with Nx � Ny � Nz continuity cells. The mesh size h = Lj/Nj is as-
sumed to be the same for all the spatial directions (see Fig. 2).
The mesh is staggered, so that cells for the discrete balance of con-
tinuity and each of the momentum equations do not coincide. The
continuity cells are centered around x = (i + 1/2, j + 1/2,k + 1/2)h
positions, and pressure values are assumed to be positioned at
the center of these cells. The cells for x-momentum are shifted h/
2 in the x direction, i.e. they are centered at x = (i, j + 1/2,k + 1/
2)h, and similarly, mutatis mutandis, for the other directions. Inter-
nal solid bodies will be treated as embedded and the details will be
discussed later. The QUICK scheme can accommodate general
boundary conditions, but in this article slip or non-slip will be rep-
resented in terms of thin solid bodies covering the boundary of the
domain, due to the use of the FFT solver.

2.1. The predictor step: QUICK advection scheme

In the first stage, the velocity field un is advanced to an interme-
diate state un+1,p

unþ1;p
i � un

i

Dt
¼ @

@xj
un

j un
i

� �
þ fi; ð4Þ

where the superindex p stands for predictor. This predicted field
may be not divergence free, so that it is corrected via a Poisson stage
(or IOP, which is equivalent) to be explained later. The QUICK
implementation of the predictor stage is discussed in this section.

Let’s consider the x component of the balance equation. For the
discretization of the x-momentum balance the corresponding x-
momentum cell is used, which is shifted h/2 in the x direction, as
described before. The discrete equation is obtained by a Finite Vol-
ume Method (FVM) approach, i.e. by performing a momentum bal-
ance on the cell as

Xc unþ1;p
x ðxÞ�un

x ðxÞ
Dt

 !
ði;jþ1=2;kþ1=2Þ

¼Mn
x;ði;jþ1=2;kþ1=2Þ þXc f x;ði;jþ1=2;kþ1=2Þ:

ð5Þ

where Xc is the cell volume. Note that all terms are evaluated at the
center of the x-momentum cells. Discretization of temporal and
external force field terms are straightforward. The nonlinear con-
vection term is evaluated as

Fig. 1. Geometrical description of problem.

Fig. 2. Staggered scheme (2D). Continuity cells (CVp, in red) are centered at the
pressure nodes x = (i, j,k)h. x-momentum cells (CVu, in green) are centered at the u
nodes x = (i, j + 1/2,k + 1/2)h, and y-momentum cells (CVv, in blue) are centered at
the v nodes x = (i + 1/2, j,k + 1/2)h. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Mx;ði;jþ1=2;kþ1=2Þ ¼ Sx½ðucuQ Þiþ1=2;jþ1=2;kþ1=2 � ðucuQ Þi�1=2;jþ1=2;kþ1=2�

þ Sy½ðvcuQ Þi;jþ1;kþ1=2 � ðvcuQ Þi;j;kþ1=2�

þ Sz½ðwcuQ Þi;jþ1=2;kþ1 � ðwcuQ Þi;jþ1=2;k�; ð6Þ

where Sx is the area of the cell faces perpendicular to the x-axis, and
so on. The superscripts c and Q stand for centered and QUICK respec-
tively, and the superindex n has been dropped since all quantities
are evaluated in tn. Each term represents the flux of momentum
through a cell face. Each contribution involves the product of the
velocity normal to the surface (which is approximated with a cen-
tered expression) and the velocity component which is being ad-
vected (which is approximated with a QUICK-upwinded
expression). In Eq. (6) the advected component is always u (since
the x-momentum is considered) whereas the normal velocity may
be u, v, or w, depending on the face of the cell to be considered. Note
that in the first term, different approximations (centered or QUICK)
are used for the same component u depending on whether it is used
as a normal velocity or an advected component.

The centered approximations are

uc
iþ1=2;jþ1=2;kþ1=2 ¼ 1=2ðui;jþ1=2;kþ1=2 þ uiþ1;jþ1=2;kþ1=2Þ;

vc
i;j;kþ1=2 ¼ 1=2ðv i�1=2;j;kþ1=2 þ v iþ1=2;j;kþ1=2Þ;

wc
i;jþ1=2;k ¼ 1=2ðwi�1=2;jþ1=2;k þwiþ1=2;jþ1=2;kÞ:

ð7Þ

Note that the right hand sides involve u values in the center of the
corresponding x-momentum cells whereas the QUICK-upwinded
approximations are

uQ
i�1=2;jþ1=2;kþ1=2 ¼

ðc0ui þ c1ui�1 þ c2ui�2Þjþ1=2;kþ1=2;

if uc
i�1=2;jþ1=2;kþ1=2 > 0;

ðc0ui�1 þ c1ui þ c2uiþ1Þjþ1=2;kþ1=2;

if uc
i�1=2;jþ1=2;kþ1=2 < 0;

8>>>><>>>>:
uQ

i;j;kþ1=2 ¼
ðc0ujþ1=2 þ c1uj�1=2 þ c2uj�3=2Þi;kþ1=2; if vc

i;j;kþ1=2 > 0;

ðc0uj�1=2 þ c1ujþ1=2 þ c2ujþ3=2Þi;kþ1=2; if vc
i;j;kþ1=2 < 0;

(

uQ
i;jþ1=2;k ¼

ðc0ukþ1=2 þ c1uk�1=2 þ c2uk�3=2Þi;jþ1=2; if wc
i;jþ1=2;k > 0;

ðc0uk�1=2 þ c1ukþ1=2 þ c2ukþ3=2Þi;jþ1=2; if wc
i;jþ1=2;k < 0:

(
ð8Þ

The coefficients cj are c0 = 3/8, c1 = 6/8, c1 = �1/8. They are the basis
of QUICK and guarantee that the upwinded approximations are pre-
cise to third order.

The advection step is applied to the whole domain X = Xbdy

[Xfluid, independently of the position of the cell (inside the body,
boundary, or fluid). If some of the involved cell values fall outside
the fluid domain, they are obtained from interior values via the
periodic boundary conditions, i.e. all indices i, j,k are assumed to
be cyclic modulo Nx, Ny, Nz.

2.2. The projection step in FSM

Once the predicted field un+1,p(x) is computed, it may not satisfy
the divergence condition (second line in Eq. (1)), neither the
boundary conditions

unþ1;p ¼ ubdy; at Cbdy; ð9Þ

where ubdy is the velocity of the body. In the standard Fractional
Step method these conditions are enforced by computing a Poisson
stage

unþ1 ¼ unþ1;p �rP; ð10Þ

where P = (Dt/q)p and p is pressure. P is computed through the fol-
lowing Poisson equation

DP ¼ r � unþ1;p; in Xfluid;

@p
@n

����
Cbdy

¼ ðubdy � unþ1;pÞ � n̂: ð11Þ

where n̂ is the unit vector normal to Cbdy pointing towards the
fluid. An alternative form to enforce these conditions is the Iterated
Orthogonal Projection (IOP) method (see [17]). The idea behind IOP
is that as the mesh is structured and cartesian, there are fast solvers
(as Multigrid (MG) or Fast Fourier Transform (FFT)) that may solve
the Poisson equation very efficiently, provided there are no holes
(i.e. bodies) in the domain. Given a non-solenoidal vector field u,
the orthogonal projection operator Pdiv defined by

u0 ¼ PdivðuÞ )
u0 ¼ u�rP;

DP ¼ r � u;

�
in X: ð12Þ

projects orthogonally with respect to the L2 norm, onto the sub-
space of solenoidal fields Sdiv. Note that the Poisson equation is
solved in the whole domain, so that the projected velocity u0 may
be nonzero in Xbdy. u0 is then projected onto the subspace Sbdy of
velocity fields that satisfy the solid boundary condition

u00 ¼ Pbdyðu0Þ )
u00 ¼ ubdy; in Xbdy;

u00 ¼ u0; in Xfluid:

�
ð13Þ

In the case that the solid body is moving then ubdy – 0 and then Sbdy

is an affine subspace. It is easy to see that Pbdy is also an orthogonal
projection operator with respect to L2. Of course, if the u00 velocity
field satisfies also the continuity condition (i.e. u00 2 Sdiv) then
u00 2 Sdiv \ Sbdy, and the algorithm stops, i.e. u00 = un+1. In the general
case a sequence wk with w0 = un+1,p and w1 = un+1 is generated via
the successive application of the projection operators Pdiv and Pbdy,

wkþ1 ¼ PbdyPdivwk: ð14Þ

It can be shown that the sequence converges [17], provided that the
projection operators are orthogonal in the same norm, as it is the case
here. The geometric interpretation of the algorithm is shown in
Fig. 3.

2.3. Rate of convergence of IOP

The convergence of IOP is related to the eigenvalue spectrum of
the combined operator G = PbdyPdiv. If an eigenfunction of that
operator can be found, i.e.

G�v ¼ c�v; ð15Þ

then the IOP sequence for that velocity field will be

�v; c�v; c2 �v; . . . ; ck �v; . . . ð16Þ

Fig. 3. Geometric interpretation of the convergence of IOP. Starting at a velocity
field u the Pdiv operator projects it to u0 int the space of solenoidal velocity fields,
but perhaps violating the boundary condition. Then the Pbdy projects u0 on u00 in the
space of velocity fields that satisfy the boundary conditions. It can be shown that
the generated sequence is convergent, provided that both projection operators are
orthogonal in the same norm.
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Such an eigenfunction can be found in a particular geometry and
sheds light on the convergence of IOP and the behavior of the rate
of convergence with respect to refinement and the geometrical
characteristics of the domain, as for instance aspect ratio of the im-
mersed bodies.

Consider a 2D problem in X = [0,L] � [0,L], and a solid body
which is a vertical strip of width b centered at x = L/2, i.e.

Xbdy ¼ fjx� L=2j < b=2g: ð17Þ

Consider now the following function

/ðxÞ ¼

sinhðkxÞ
sinhðkLf Þ

sinðkyÞ; for x < x�;

� sinhðkðx�L=2ÞÞ
sinhðkb=2Þ sinðkyÞ; for x� < x < xþ;

� sinhðkðL�xÞÞ
sinhðkLf Þ

sinðkyÞ; for x > xþ:

8>>><>>>: ð18Þ

where x± = (L ± b)/2 are the vertical boundaries of the solid domain,
Lf = (L � b)/2 is the half length of fluid domain, and k = 2p/L is the
wave number. This function is shown at Figs. 4 and 5. By construc-
tion, D/ = 0 except at the boundary Cbdy = {jx � L/2j = b/2}.

Let’s start with the following velocity field

u ¼
r/; in Xfluid;

0; in Xbdy:

�
ð19Þ

By construction r � u = 0 in Xfluid, Xbdy. At the interface Cbdy, the
divergence can be computed in the sense of distributions and

r � u ¼ ðujðx�Þþ � ujðx�Þ� Þdðx� x�Þ þ ðujðxþÞþ � ujðxþÞ� Þdðx
� x�Þ;

¼ �@/
@x

����
ðx�Þ�

dðx� x�Þ þ
@/
@x

����
ðxþÞþ

dðx� xþÞ;

¼ k cothðkLf Þ sinðkyÞ½�dðx� x�Þ þ dðx� xþÞ�; ð20Þ

where d is Dirac’s d distribution.
Next, the second equation of (12) must be solved for P. The re-

sult is that P is a scalar multiple of /, i.e. P = c/. It results that

DP ¼ c
@/
@x

����
ðx�Þþ

� @/
@x

����
ðx�Þ�

 !
dðx� x�Þ þ c

@/
@x

����
ðxþÞþ

� @/
@x

����
ðxþÞ�

 !
dðx� xþÞ;

¼ ck½cothðkb=2Þ þ cothðkLf Þ� sinðkyÞ½�dðx� x�Þ þ dðx� xþÞ�; ð21Þ

and then,

c ¼ cothðkLf Þ
cothðkb=2Þ þ cothðkLf Þ

: ð22Þ

Applying the correction �rP to u (the first line in Eq. (12),

u0 ¼ u�rP ¼
ð1� cÞ r/; in Xfluid;

c r/; in Xbdy:

�
ð23Þ

Finally, the application of the Pbdy consists in simply setting to zero
the velocity field in Xbdy, so that

u00 ¼ Pbdyu0;

¼
ð1� cÞ r/; in Xfluid;

0; in Xbdy:

� ð24Þ

Comparing (24) with (19) shows that u is an eigenvalue of G = Pbdy-

Pdiv with eigenvalue

c ¼ 1� c ¼ 1� tanhðkb=2Þ
tanhðkb=2Þ þ tanhðkLf Þ

: ð25Þ

As expected, the amplification factor c results to be 0 < c < 1, other-
wise the scheme would be non-convergent.

A family of eigenfunctions can be constructed in the same way,
simply replacing the wave number k by higher frequency ones,
with the restriction that an integer number of wavelengths must
be present in the y direction, i.e.

km ¼
2pm

L
; m ¼ 1;2; . . . ð26Þ

and the corresponding amplification factors are

cas;m ¼
tanhðkmLf Þ

tanhðkmb=2Þ þ tanhðkmLf Þ
: ð27Þ

Of course, they fall all in the range 0 < cm < 1. It can be shown also
that for b < L/2 the cm is a decreasing sequence cm+1 < cm, so the
mode with slowest rate of convergence (highest c) is that one cor-
responding to k1, i.e. Eq. (25).

Note that the modes given by (18) are antisymmetric (hence the
‘‘as’’ subscript) with respect to the center of the strip, i.e. /(x �
L/2) = �/(L/2 � x). There is another branch of eigenvalues corre-
sponding to symmetric modes, in that case the amplification
factors are

cs;m ¼
tanhðkmb=2Þ

tanhðkmb=2Þ þ tanhðkmLf Þ
: ð28Þ

where the ‘‘s’’ subindex stands for symmetric. For b < L/2 it can be
shown that for this branch of amplification factors 0 < cs,m < 1/2,
so the slowest rate of convergence is still the first antisymmetric
mode.Fig. 4. Eigenmode with slowest convergence rate for IOP.

Fig. 5. Eigenmode with slowest convergence rate for IOP. Cut at y = 0.25.
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Also, it can be shown that the set of symmetric and antisym-
metric modes together represent a complete set of eigenfunctions
for the Stekhlov operators [21,22,26], and then the convergence
rate given by (25) is not an upper bound but rather the spectral ra-
dius of the amplification matrix G and hence the best estimate for
the rate of convergence of the algorithm.

2.4. Convergence in the discrete case

The rate of convergence given in (25) corresponds to the contin-
uum case. However, discretization affects mostly the high fre-
quency (large km) modes, but as it has been shown the global
rate of convergence is governed by the slowest mode, which is
slightly affected by refinement. In fact, as the mesh is refined
(h ? 0) the convergence rate approaches the value of the contin-
uum (25). This means that the rate of convergence for IOP does not
degrade with refinement.

2.5. Convergence and aspect ratio

Note that for high aspect ratio (i.e. L/b ?1) the amplification
factor c ? 1, i.e. convergence degrades. In fact for b� L the ampli-
fication factor is

c � 1� pb=L
tanhð2pÞ ;

� 1� 3:14
b
L
;

ð29Þ

i.e., the rate of convergence r (as number of iterations per order of
magnitude) is

cr ¼ 1=10;

r ¼ � log 10
log c

� 0:37
L
b
½iter=OM�:

ð30Þ

which is proportional to the aspect ratio and iter/OM means ‘‘itera-
tions per order of magnitude’’.

This result has been confirmed with numerical experiments for
other geometries as well. The physical explanation is that IOP has
good convergence when Pdiv is close to the solution of the Poisson
problem on the fluid domain only (recall that Pdiv solves the Poisson
problem in the whole domain Xfluid + Xbdy). Conversely, conver-
gence is poor when the inclusion of the solid body domain Xbdy

distorts too much the solution and this is just what happens when
the aspect ratio is large for a mode like (18). Note that the sources
on opposite sides of the strip have different sign and then a large
(spurious) flow is generated inside the body.

3. The Accelerated Global Preconditioning

The algorithm proposed in this paper is based in the IOP, in the
sense of using a fast solver on the whole mesh, but the main differ-
ence is that this global solution is used as a preconditioner for the
Preconditioned Conjugate Gradient (PCG) method. Recall that the
PCG method is an accelerated convergence method, i.e. the rate of
convergence increases during iteration, hence the name Acceler-
ated Global Preconditioning (AGP) (see [13]).

Consider a situation like that in Fig. 6, with a solid body de-
scribed by the boundary Cbdy. This is embedded in a structured
grid of constant mesh size h. In the traditional Fractional Step
Method a Poisson problem is solved outside the body. Recall that
pressure nodes are at the center of the continuity cells (marked
with dashed lines in the figure). In order to construct an approxi-
mation to the Poisson equation a Finite Element (FEM) mesh is
considered where the pressure nodes are at the corner of the finite
elements (marked as solid lines in the figure). Note that the cell

mesh is dual to the continuity cell mesh, i.e. the center of the con-
tinuity cells (which are the pressure nodes) are at semi-integer
positions (i + 1/2, j + 1/2,k + 1/2)h coincident with the corner of
the finite elements and, vice versa, the center of the finite elements
are then at full integer positions (ih, jh,kh). The center of the finite
elements are computed and it is checked whether the element falls
inside or outside the body. In this way the body is approximated by
a staircase geometry as is shown in gray in the figure. (This degrades
de convergence to O(h) instead of O(h2) and can be fixed by more
sofisticated techniques as the Immersed Boundary Method [23],
but this will be not discussed here.) As it is usual in FEM discreti-
zations the imposition of the homogeneous Neumann condition is
done by simply assembling only those elements that are in the
fluid part. The other elements that are not in gray are ghost ele-
ments and are not assembled for the solution of the Poisson prob-
lem. Only the pressure in the nodes connected to some element
that is assembled are relevant, i.e. those that are marked in blue
and red. Those that are marked in green are ghost and are not com-
puted. From those that are computed, the set that are surrounded
completely by computed elements (and then are not connected to
ghost elements) are classified as interior to the fluid, (subindex F)
and the rest are classified as boundary (subindex B, filled in red
in the figure). So the Poisson problem is

Ax ¼ b; ð31Þ

and the splitting of nodes induces a matrix splitting like this

AFF AFB

ABF ABB

� �
xF

xB

� �
¼

bF

bB

� �
ð32Þ

In the following, the preconditioning operator P will be de-
scribed. First consider the whole matrix for the Laplace operatoreP, i.e. assembling over fluid and ghost cells for F, B, and G nodes.
Note that a symbol different from A is used for this matrix since
it is assembled on a different set of element/cells. The precondi-
tioning is then defined formally as yFB = PxFB, where xFB is the solu-
tion of

ePFF
ePFB

ePFGePBF
ePBB

ePBGePGF
ePGB

ePGG

264
375 xFB

xG

� �
¼

yFB

0G

� �
: ð33Þ

However it can be seen that

� ePFF ¼ AFF since the F nodes are those for which all neighbor ele-
ments are assembled in the Poisson problem.
� ePFB ¼ AFB, and ePBF ¼ ABF since for instance, such a coefficient

would link nodes as a and b in the figure. This coefficient comes
from the assembly of all the elements that are connected to a
and b, but since a is an F node, it means that all elements con-
nected to a are assembled.
� ePFG ¼ ePGF ¼ 0 since F nodes are only connected to fluid ele-

ments and G are only connected to ghost elements, so that they
cannot share an element.

So

AFF AFB 0
ABF

ePBB
ePBG

0 ePGB
ePGG

264
375 xFB

xG

� �
¼

yFB

0G

� �
: ð34Þ

xG can be eliminated from the bottom line, and then the following
equations is obtained

AFF AFB

ABF
ePBB � ePBG

eP�1
GG
ePGB

� �
xFB ¼ yFB: ð35Þ
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This allows to obtain an explicit expression for the preconditioning
matrix

P ¼
AFF AFB

ABF
ePBB � ePBG

eP�1
GG
ePGB

� �
: ð36Þ

A first consequence of this expression is that most eigenvalues of
the preconditioned matrix will be 1. Consider the subspace of all
vectors x such that the boundary component B is null, i.e. the non-
null entries are only on F nodes, then

Ax ¼ Px;

P�1Ax ¼ x;
ð37Þ

so that x is an eigenvector with eigenvalue 1.
The proposed technique is named Accelerated Global Precondi-

tioning (AGP) because the solution of (33) is done on an infinite
mesh with periodic boundary conditions so that it can be solved
via FFT transform, which is very efficient, but the whole analysis
does not depend on how the solution of this system is done; i.e.
it may be obtained by Multigrid iteration as well.

3.1. Convergence of AGP

Note that in the IOP method after the first application of
u0 = Pdivu the velocity field u0 is solenoidal everywhere. After the
u00 = Pbdyu0 step, the field u00 is solenoidal at both Xfluid and Xbdy

(it is zero if the body is stationary, and a rigid motion if it is in
movement) but not at the interface. In the second application of
Pdiv the right hand side in Eq. (12) is zero everywhere, except for
a possible concentrated source term at the interface, i.e. a Dirac’s d.

Something similar happens for AGP, after the first iteration of
the PCG the right hand side for the preconditioning step (33) is
zero everywhere, except at the boundary nodes. In Section 3 the
AGP was introduced in the discrete version; the continuum coun-
terpart will be used now for assessing its convergence properties.
Both the Poisson problem (31) and the preconditioner are written
as mappings between surface values at Cbdy and solenoidal pres-
sure fields that satisfy the Laplace equation everywhere, except
at the interface.

First, the Poisson equation in the fluid domain Xfluid is written
in abstract form as

AðwÞ ¼ g; ð38Þ

where g is a source term in Cbdy and w a function defined on Xfluid

that satisfies

Dw ¼ 0; in Xfluid;

rw � n̂ ¼ �g; at Cbdy;

�
ð39Þ

where n̂ is the normal to Cbdy pointing into the fluid.
Next, the preconditioner is written in abstract form as

PðwÞ ¼ g; ð40Þ

where g is also a source term on Cbdy and w is defined on Xfluid and
is obtained from the following problem. Let w0 defined in X = Xfluid -
[Xbdy, satisfying

Dw0 ¼ 0; in Xfluid and Xbdy;

½ðrw0Þþ � ðrw0Þ�� � n̂ ¼ �g; at Cbdy;

(
ð41Þ

where (rw0)+ is evaluated on the side of the fluid region and (rw0)�

from the body region. Now, the AGP algorithm can be put in the
continuum case as solving (38) with PCG, using (40) as a precondi-
tioner. Then, rates of convergence for the AGP an be estimated in
terms of the condition number of the preconditioned operator

j ¼ condðP�1AÞ: ð42Þ

The condition number j will be computed for the strip problem
used before (see Section 2.3) for assessing the convergence of IOP.

The eigenfunctions of the preconditioned problem should
satisfy

P�1Aw ¼ kw: ð43Þ

If we define g ¼ Aw, then it is equivalent to

Pw ¼ ð1=kÞg;
Aw ¼ g:

ð44Þ

and it can be rewritten as

Dw0 ¼ 0; in Xfluid;Xbdy;

@w0

@n ¼ �g; at Cbdy;

@w0

@n

� �þ
� @w0

@n

� ��
¼ �ð1=kÞg; at Cbdy;

ð45Þ

and set w to the restriction of w0 to Xfluid. It can be shown that the
function / defined in (18) satisfies this set of equations. Effectively
/ by construction satisfies the first line of (45) and the second and
third lines give

g ¼ km cothðkmLf Þ sinðkmyÞ;
1
k

g ¼ km½cothðkmLf Þ þ cothðkmb=2Þ� sinðkmyÞ;
ð46Þ

so it gives,

g ¼ km cothðkmLf Þ sinðkmyÞ;

kas;m ¼
cothðkmLf Þ

cothðkmLf Þ þ cothðkmb=2Þ :
ð47Þ

Again, it can be shown that for b < L/2 km is a monotonically increas-
ing sequence, and in addition k1 = 1/2. The subindex ‘‘as’’ stands for
antisymmetric. Now for the symmetric modes it can be shown that

Fig. 6. Description of nodes and elements used in the AGP.
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ks;m ¼
tanhðkmLf Þ

tanhðkmLf Þ þ tanhðkmb=2Þ ; ð48Þ

and that ks,m is monotonically decreasing and 1 = ks,1 > ks,m > -
ks,1 = 1/2. Then, the highest eigenvalue is ks,1 = 1, and the lowest
is kas,m. Then, the condition number is

j ¼ ks;1

kas;1
;¼ tanhðpb=LÞ þ tanhð2pLf =LÞ

tanhðpb=LÞ : ð49Þ

Again, this approximation holds also in the discrete case, since both
the maximum and minimum eigenvalues have low frequency. Fol-
lowing the same arguments in Section 2.4, it can be shown that the
condition number of the preconditioned AGP operator and hence the rate
of convergence for PCG (with AGP) does not degrade under refinement.

3.2. High aspect ratio limit

For a high aspect ratio strip (L/b	 1) the limit is

j � tanhð2pÞ
p

L
b
;

� 0:32
L
b
;

ð50Þ

3.3. Spectrum of AGP operator and IOP convergence

It can be shown that the amplification factors for IOP (see equa-
tions (27) and (28)) are related to the eigenvalues of the AGP meth-
od by the simple relation
cm ¼ 1� km; ð51Þ
so that the slowest rate of convergence (the cm closer to 1) corre-
sponds to m = 1, i.e.
c ¼ 1� kmin;

r � log 10
1

kmin
; for kmin � 1:

ð52Þ

4. Comparison of IOP and AGP

The differences and similitudes of both methods are summa-
rized here:

� Both solvers are based on the fact that the Poisson equation on
the fluid domain can be approximated by solving on the global
domain (fluid + solid). Of course, this represents more computa-
tional work than solving the problem only in the fluid, but this
can be faster in a structured mesh using some fast solvers such
as Multigrid or FFT.
� Both solvers have their convergence governed by the spectrum

of the AGP preconditioned operator P�1A, more precisely on its
lowest eigenvalue kmin.
� It has been shown that for a fixed geometry kmin = O(1), i.e. it

does not degrade with refinement, so that IOP has a linear conver-
gence with limit rate O(1), i.e. it does not degrade with
refinement.
� By the same reason, the condition number for AGP does not

degrade with refinement.
� IOP is a stationary method and its limit rate of convergence is given

by

krnþ1k 6 ckrnk
c ¼ 1� kmin;

kmin ¼
tanhðkb=2Þ þ tanhðkLf Þ

tanhðkLf Þ
; ðstrip of aspect ratio L=bÞ;

c � 1� 3:14
b
L
; ðL=b	 1Þ:

ð53Þ

� AGP is an accelerated method (PCG) and the convergence for AGP
can be assessed from the condition number of the precondi-
tioned operator, which is

jðP�1AÞ¼ 1
kmin

;

¼ tanhðkLf Þ
tanhðkb=2Þþ tanhðkLf Þ

;ðstrip of aspect ratio L=bÞ;

�0:32
L
b

ðL=b	1Þ:

ð54Þ

� In fact, it can be shown that the iterates for both IOP and AGP
can be put as polynomials on the preconditioned operator
P�1A, and due to the minimization property characteristic of Kry-
lov space methods like CG (see [13]) the convergence of AGP is
always better than that of IOP.
� IOP iterates over both the velocity and pressure fields, whereas

AGP iterates only on the pressure vector (which is better for
implementation on GPUs architectures, since reduces memory
access).
� As the minimum eigenvalue is proportional to the reciprocal of

the aspect ratio (i.e. kmin / b/L) the convergence of both algo-
rithms degrade for high aspect ratio bodies. In the case of IOP,
the rate of convergence is proportional to L/b. In the case of
AGP the condition number of the preconditioned operator
jðP�1AÞ is proportional to L/b. Due to the estimates of rate of
convergence for CG as compared to stationary methods, it is
expected that the convergence rates of AGP will be compara-
tively much better than that for IOP for geometries with high
aspect ratio bodies.

4.1. Solving the Poisson equation with the FFT

Both IOP and AGP are based on the fact that a fast solver in the
whole domain (solid + fluid) exists. There are at least two possibil-
ities: MG and FFT. The second has been chosen in this work, and
the basis of this component of the algorithm will be given here.

The linear system to be solved is denoted as

Ax ¼ b: ð55Þ

Let ~x ¼ Ox denote the application of the Discrete Fourier Transform
(DFT) to a vector x. It can be shown that O is an orthogonal matrix
(i.e. OTO = I), where (�)T denotes transpose. By applying the transfor-
mation to (55) the transformed equation is obtained

ðOAOTÞðOxÞ ¼ ðObÞ: ð56Þ

It can be shown that the transformed system is diagonal (i.e.
OAOT = D, with D a diagonal matrix) provided that the matrix A is
invariant under translations, i.e. the stencil of the operator is the
same for all the cells of the mesh. Also, the boundary conditions
must be periodic (but this restriction will be removed below, see
Section 5.1.3).

Now consider the following algorithm that computes the solu-
tion of the linear system.

� Compute the transform of the right hand side: ~b ¼ Ob.
� Solve the diagonal system in the transformed basis ~x ¼ D�1 ~b.
� Obtain the antitransformed solution vector by applying the

inverse DFT: x ¼ OT ~x.

The total operation count for this algorithm is two DFT’s, plus
one element-by-element vector multiply (the reciprocals of the
values of the diagonal of D are precomputed), For N a power of 2
(i.e. N = 2p) the Fast Fourier Transform (FFT) is an algorithm that
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computes the DFT (and its inverse) in O(N log (N)) operations, then
the cost of the algorithm is O(N log (N)).

Another possibility is Multigrid (MG), which is a stationary iter-
ative method with cost O(N) for a given tolerance, i.e. its cost is O(N
log (�)), where � is the tolerance used as stopping criterion. On the
other hand the FFT solver is a direct method with operation count
O(N log (N)) to solve the linear system to machine precision.

5. Numerical experiments

5.1. Convergence of IOP and AGP. Condition number of AGP

5.1.1. Convergence of IOP iteration
Figs. 7 and 8 show the convergence of IOP iteration for a

16 � 16 � 16 and 64 � 64 � 64 meshes on a computational do-
main which is a cube of unit side L = 1. The body domain is a sphere
of radius 0.3, i.e. Xbdy = {kxk 6 R = 0.3}. As can be seen the IOP iter-
ation curves exhibit the typical linear rate of convergence of station-
ary methods. The convergence for both meshes start at a high
convergence rate of less than 3 iter/OM (iterations per order of
magnitude), and then they switch to a slower convergence of
13.7 iter/OM for the 163 mesh and 12.3 iter/OM for the fine 643

mesh. However note that the rates of convergence are independent
of mesh refinement.

5.1.2. Condition number for AGP does not degrade with refinement
The condition number of matrices for the Poisson problem have

been computed with and without preconditioning (see Fig. 9).

� In the experiments the number of cells Nx along x ranges from 8
to 64.
� The Poisson problem is computed selecting the quadrangles

whose center fall outside the body problem.
� In all cases the domain is the unit square with periodic bound-

ary conditions.
� The bodies considered are: cylinder of radius 0.2, a vertical strip

of width 0.5, and a square of side 0.5.
� The condition numbers are computed with Octave cond ()

function.

Note that in all cases the nonpreconditioned matrix condition
number grows as OðN2

x Þ, whereas with the preconditioning it remains
constant.

5.1.3. Bodies with large aspect ratio
Note that both IOP and AGP preconditioning are based on the

inclusion of the solid domain in the computation of the pressure
Poisson equation. As it have been shown, this causes convergence
to degrade when objects with large aspect ratio are present in the
domain. Consider the case where the fluid occupies the interior of a
square

Xfluid ¼ fðx; yÞ=maxðjx� L=2j; jy� L=2jÞ < L=2� bg ð57Þ

where b is the width of the wall (see Fig. 10).
Two cases are considered, a fixed wall width of thickness

b = 0.05L, and the case b = h, i.e. the width of the wall is of just
one cell. So as the mesh is refined, the aspect ratio of the wall in-
creases. The condition number for the problem with and without
preconditioning are shown.

In the case of a fixed value b = 0.05 the condition number of the
preconditioned case is bounded, whereas for the case of b = h the
condition number increases with aspect ratio. If no precondition-
ing is used the condition number increases as O N2

x

� �
.

This case is of practical interest because it is a workaround to
solve problems with solid boundary conditions. In its simplest
form the FFT solver requires periodic boundary conditions in order
to be applied. Other common boundary conditions like homoge-

Fig. 7. Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a
coarse mesh of 16 � 16 � 16.

Fig. 8. Convergence of IOP loop for a sphere of R = 0.3 in a cube of L = 1, with a fine
mesh of 64 � 64 � 64.

Fig. 9. Condition number of Poisson problem with and without the AGP
preconditioning.
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neous Dirichlet and Neumann boundary conditions can be also
implemented using different flavors of the FFT, but if all combina-
tions are to be considered (i.e. Dirichlet on some sides of the box,
and Neumann on the others) it requires a tedious programming
of all the cases and dispatch to the appropriate FFT routine.

But a solid boundary condition can be represent also by simply
putting a thin layer of solid at the boundary. However, this can be
inefficient if the additional work represented by the layer is signif-
icant. This numerical example shows that a layer as thin as a 5% of
the side length of the box can be used, with very little degradation
of the condition number. In such a case the increase in the compu-
tational time is not significant, approximately 30%, because the
layer covers all the 6 sides of the box, but it can be shown that
smaller widths b can be used for finer meshes. In the numerical re-
sults shown in following sections with closed cavities the width of
the solid layer is 2.5% of the domain length. In such a case the com-
putation overhead due to the wall layer is only 15%.

5.1.4. Convergence histories for IOP and AGP compared
In Fig. 11 the convergence histories for AGP and IOP in a 2D

problem, with a circular body of radius R = 0.3, and several degrees
of refinement Nx = 8, 16, 32, 64, where Nx is the number of cells per
side are shown.

It is observed that the convergence histories tend to a fixed rate
of convergence as the mesh is refined, in fact the convergence his-
tories are almost the same for Nx = 32 and 64. This verifies the esti-
mates discussed in Sections 2.4 and 3.1.

The rate of convergence is much higher for AGP. Note that if
higher (weaker) tolerances (for instance 10�3) are used then the
convergence of both methods is similar. This is acceptable for
non-critical applications like video-game and special effects, but
usually not for engineering computations. If lower (stronger) toler-
ances (let’s say 10�6) are enforced then the difference is
substantial.

5.2. Computational efficiency on GPU hardware

5.2.1. Computing times of FFT on GPU and CPU hardware
As it has been discussed, for large problems the most consum-

ing time component of the algorithm are the two FFT applications
per AGP iteration (same for IOP), so the efficiency of the available
libraries will be assessed.

The GPU implementation was coded using the Compute Unified
Device Architecture (CUDA) from Nvidia [7,20] (release 4.2,

V0.2.1221). CUDA comes with an efficient FFT implementation
called the CUFFT library. On the other hand, for CPU the Fastest
Fourier Transform in the West (FFTW) [8,9] (release 3.1–2) library
was used. The computing rates for this two libraries on the Nvidia
GTX-580 GPUs, and processors Intel i7-3820@3.60 GHz, and Intel
W3690@3.47 Ghz are shown in Figs. 12–14. The computing rate
in Gflops is computed as

rate½Gflops� ¼ 10�9 � 2Nv log2ðNvÞ
elapsed time ½s� ð58Þ

where Nv = Nx � Ny � Nz/2 is the total size of the complex vector to be
transformed. Note that this is half the number of cells, since using
the R2C (for Real to Complex) flavor of the FFT the number of oper-
ations can be reduced by a half. The computing rate for the GTX-580
is near 240 Gflops in simple precision for meshes of
256 � 128 � 128 (8 million cells, 4 million cells in the complex vec-
tor). For double precision the rate drops by almost a factor of 4. Note
that previous boards not in the Tesla family had a typical speed rela-
tion of 8:1 from simple to double precision, so this ratio 4:1 signifies
an improvement for the GTX-580. Typical boards on the Tesla fam-
ily have a speed ratio of 2:1.

On the other hand the fastest CPU processor tested is the Sandy
Bridge i7-3820 which (multi-threaded in its 6 cores) peaks at 20

Fig. 10. Condition number for Poisson problem on a square, with and without AGP
preconditioning.

Fig. 11. Convergence histories for a 2D problem with a circular body of radius
R = 0.3. Convergence is shown for both AGP and IOP, and several refinements. (Nx is
the number of cells per side).

Fig. 12. Computing rates for the CUFFT implementation on the Nvidia GTX-580
GPU.
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Gflops for vectors of size O(105). However this performance drops
at almost 8 Gflops for large vectors, when the vector does not fit in
the processor’s cache. So, in double precision for large vectors there
is a speedup of a factor 8 between the FFT on the GPU board and
the CPU.

Note also that, in contrast with the deterioration in perfor-
mance of the CPU’s, the computing rate of the CUFFT in simple pre-
cision seams to steadily increase as the vector length increases,
whereas the double precision shows a small increase in perfor-
mance. This means that it is likely that the performance will be
kept for boards with a larger device memory (the GTX-580 has
3 GB RAM) allowing for larger computations in a single device.

5.2.2. Computing rates
In Fig. 15 the computing rates in Mcell/s for the code presented

in this article on an Nvidia GTX-580 GPU, and a Nvidia Tesla C2050,
with single (SP) and double precision (DP), are shown. In DP for
large meshes it reaches a rate of 60 Mcell/s. As a reference, the
same algorithm was implemented in CPU using the GNU g++ com-
piler (with optimization flags -O3 -funroll-loops), obtaining a
rate on one core of the Intel i7-3820@3.47 GHz (Sandy Bridge) of
1.7 Mcell/s. Assuming perfect scalability a maximum of 6.8

Mcell/s at most would be reached using the four cores of the i7-
3820, which translates in a speedup of at least 7:1 for the GPU over
this CPU.

5.3. Real time computing

Many applications in engineering need Real Time Computing
(RTC), i.e. to have a code fast enough such that Tcomp 6 Tsim, where
Tcomp is the computing time needed for simulating Tsim seconds of
the physical problem. For instance this is the case in applications
where the computations are needed for take some action back on
the physical process, as in control or disaster management.

The approach presented here allows to do RTC in moderately
large meshes. Consider for instance a mesh of 1283 cells (�2 Mcell).
The computing time on the GTX-580 in SP is (see Fig. 15) 140
Mcell/s, so each time step takes approximately 2 Mcell/(140
Mcell/s) = 0.014 s per time step, i.e. 70 steps per second can be
computed.

A von Neumann stability analysis shows that the QUICK stabil-
ization scheme is inconditionally unstable if advanced in time with
Forward Euler. With a second order Adams-Bashfort scheme the
critical Courant-Friedrichs-Lewy (CFL) number is CFL < 0.588 for
an scalar advection problem, and for Navier–Stokes (at high Rey-
nolds numbers) it is somewhat lower, CFL < 0.5. If L = 1 (m), and
maximum velocity u = 1 (m/s), mesh step is h = 1/128 (m), then
the critical time step is Dt = 0.5h/u = 0.004 (s), so that
Tsim = 70Dt = 0.28 (s) can be computed in Tcomp = 1 (s) of computing
time. It means that for such a mesh the computations go 1:4 slower
than the physical process. Other approach to RTC is to circumvent
the restriction of CFL < 1 characteristic of explicit methods [11].

5.4. Flow simulations

Numerical simulations of several flows involving moving bodies
are shown in Figs. 16–20. In all cases (except for the case of the
example in Section 5.4.3) the flows represent a body moving inside
a square or cubic cavity of length side 1 (m). In order to circumvent
the restriction of periodic boundaries intrinsic to the FFT solver, a
thin layer (2.5% of the square or cubic domain side length) is
defined as a fixed body. In all cases the color corresponds to
log10(jxj), i.e. the absolute magnitude of the vorticity vector
x =r� u in logarithmic scale. This quantity helps in the visualiza-
tion of boundary layers, since the magnitude of vorticity has vari-
ations of several orders of magnitude there at high Reynolds

Fig. 13. Computing rates for the FFTW (SMP) implementation on the Intel i7-3820
(Sandy Bridge) CPU (double precision).

Fig. 14. Computing rates for the FFTW (SMP) implementation on the Intel W3690
(Nehalem) CPU (double precision).

Fig. 15. Computing rates in Mcell/s for the algorithm presented in this paper in an
Nvidia GTX-580 GPU, and a Nvidia Tesla C2050, with single (SP) and double
precision (DP).
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numbers. In 2D cases the mesh was 128 � 128 and in 3D cases
128 � 128 � 128. In all cases the side of the domain (square in
2D, cube in 3D) was L = 1 (m) and kinematic viscosity was
m = 6.33 � 10�5 (m2/s).

5.4.1. Square moving in curved trajectory
The body is a square of side Ls = 0.4 (m), and the center of the

body (xc,yc) describes an 8-shaped Lissajous curve, described by

xc ¼
L
2
þ A cosð2xtÞ; yc ¼

L
2
þ A cos

p
2
þxt

� �
;

x ¼ 1 ðs�1Þ; A ¼ 0:2 ðmÞ
ð59Þ

As the body displaces fluid high levels of vorticity can be observed
at the vertices. As the simulation progresses large vortices remain

rotating in the fluid with long filamentary vorticity layers that are
a characteristic 2D feature (they are unstable in 3D).

5.4.2. Moving rectangular obstacle
The body is a rectangle of height H = 0.5 (m) and width W = 0.2

(m). An harmonic horizontal displacement as follows

xc ¼ ðL=2Þ þ A cosðxtÞ;
x ¼ 1 ðs�1Þ; A ¼ 0:3 ðmÞ;

ð60Þ

is imposed. As the body displaces fluid a large concentration of vor-
ticity is observed in the upper corner of the body, with characteris-
tic trailing filamentary vortex layers that detach from the corners.

Fig. 16. Colormap of log10(jxj) for a square of side Ls = 0.4 (m) moving in a square domain of side L = 1 (m). The square moves forming a Lissajous 8-shaped curve. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Colormap of log10(jxj) for a rectangle sliding on the bottom of the domain. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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5.4.3. Square moving vertically with mean horizontal flow
In this example the exterior boundary of the computational do-

main is not at rest, but rather it is intended to generate a mean flow
that impinges on the body. This freestream flow is obtained with a
layer of width 0.025 (m) at the left and right sides were a positive x
velocity of u = 1 (m/s) is imposed. Periodic boundary conditions are
imposed in the vertical y direction. The body is a square of side
Ls = 0.4 (m), the center of the body (xc,yc) is centered in the x direc-
tion and experiences an harmonic vertical movement

yc ¼ ðL=2Þ þ A cosðxtÞ;
x ¼ 0:5 ðs�1Þ; A ¼ 0:2 ðmÞ:

ð61Þ

An accelerating boundary layer is formed at the left side facing the
fluid stream. The boundary layer accelerate towards the corners and
detach there. If the vertical movement were at a constant velocity
then the flow would be equivalent to a fixed body with an imping-
ing stream at an angle of attack. A notable feature of the flow is that
when the body reaches the extreme positions in the y direction the

vortex layers become unstable and start shedding vortices, whereas
when the body is moving the vortex layer stabilizes.

5.4.4. Moving cube
This is a 3D case. The center (xc,yc,zc) of a cube of side Ls = 0.4

(m) is describing a Lissajous 8-shaped figure in the z = 0.66 (m)
plane, as follows

xc ¼ L=2þ A cosðxtÞ;

yc ¼ L=2þ A cos
p
2
þ 2xt

� �
;

zc ¼ 0:66 ðmÞ;
x ¼ 2 ðs�1Þ; A ¼ 0:4 ðmÞ

ð62Þ

This is similar to the case Section 5.4.1 but 3D. The large filamentary
vortex layers are no more present, but instead there is a large
amount of small eddies characteristic of a 3D flow.

Fig. 18. Colormap of log10(jxj) for a square body performing harmonic motion in the vertical direction with a cross flow in the horizontal direction. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Colormap of log10(jxj) for a cube moving in a Lissajous 8-shaped curve. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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5.4.5. Falling block
The body is a parallelepiped block of dimensions Lx = Lz = 0.6

(m), Ly = 0.2 (m). The center of the body is initially at (xc,yc, -
zc) = (0.4125,0.95,0.5) [m] and starts falling vertically with a veloc-
ity of 1 (m/s). As the body falls it displaces a large quantity of fluid
that forms a turbulent region expanding from both sides of the
block.

6. Conclusions

We presented a new method called Accelerated Global Precon-
ditioning for solving the incompressible Navier–Stokes equations
with moving bodies. The algorithm is based on a pressure segre-
gated, staggered grid, Finite Volume formulation and uses a FFT
solver for preconditioning the CG solution of the Poisson problem.
Theoretical estimates of the condition number of the precondi-
tioned Poisson problem are given, and several numerical examples
are presented validating these estimates. The algorithm is specially
suited for implementation on GPU hardware. The condition num-
ber of the preconditioned Poisson equation does not degrade with
refinement. The algorithm allows computing 3D problems in real
time on moderately large meshes for many problems of practical
interest in the area of Computational Fluid Dynamics.
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