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Abstract 

Bagasse is an underutilized agro-industrial residue with great potential as raw material for 

the production of cellulose nanofibrils (CNF) for a range of applications. In this study, we 

have assessed the suitability of bagasse for production of CNF for three-dimensional (3D) 

printing. Firstly, pulp fibers were obtained from the bagasse raw material using two 

fractionation methods, i.e. soda, and hydrothermal treatment combined with soda. 

Secondly, the pulp fibers were pre-treated by TEMPO-mediated oxidation using two levels of 

oxidation for comparison purposes. Finally, the CNFs were characterized in detail and 

assessed as inks for 3D printing. The results show that CNF produced from fibers obtained by 

hydrothermal and soda pulping were less nanofibrillated than the corresponding material 
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produced by soda pulping. However, the CNF sample obtained from soda pulp was cytotoxic, 

apparently due to a larger content of silica particles. All the CNF materials were 3D printable. 

We conclude that the non-cytotoxic CNF produced from hydrothermally and soda treated 

pulp, can potentially be used as inks for 3D printing of biomedical devices. 

 

Keywords: nanocellulose, chemical modification, 3D printing, characterization, biomedical 

devices.  

 

Introduction 

Sugarcane bagasse is one of the most important agro-industrial residues in sugarcane-

producing regions. Only the Brazilian sugarcane industry was estimated to generate more 

than 160 million tons of bagasse in 2015-2016.1 Diversification of the sugarcane industry by 

producing byproducts from the renewable bagasse residue, offers important advantages by 

reducing the dependence on the marketing of the single main product (i.e. sugar). Sugarcane 

bagasse has a typical composition of 43-45% cellulose, 21-23% lignin, 25-32% hemicelluloses 

(mainly xylan) and minor amounts of extractives and ash. In a sugarcane biorefinery, refined 

components could be obtained from bagasse by application of appropriate fractionation and 

pulping methods.  

 

Hydrothermal (HT) treatment is used in the fractionation of hardwoods, canes, and grasses 

to extract hemicelluloses.2 Extraction of hemicelluloses as oligosaccharides and 

monosaccharides is achieved, and these can be used for different applications.2 By soda-

anthraquinone pulping a sulfur-free lignin can be separated from the bagasse pulp.3 

Compared to other non-wood fibers, bagasse pulp has been considered advantageous for 
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the manufacture of paper, when considering for collection, manipulation, and storage.4 

Furthermore, bagasse pulp can be used for the production of cellulose nanofibrils (CNF).5 

 

CNF have been obtained from several feedstocks including forest and agricultural biomass, 

e.g. from wood industrial waste,6–8  agricultural waste9–11 and bagasse5. CNF typically have 

lengths in the micrometer scale12 and widths in the nanometer scale (<100 nm)13. In addition 

to different chemical and enzymatic pretreatments, processing variables can also be applied 

to tailor the morphology and surface chemistry of the CNF.13–16 Bagasse pulp has proven to 

be a suitable raw material for CNF production,5,17–19 and the properties of the CNFs are 

analogous to those of CNF produced from wood pulps.16,20,21 However, the effect of a given 

pulping method and the chemical composition of the produced pulp fibers on the 

corresponding CNF characteristics, has not been assessed. 

 

Among the various technologies that exist for 3D printing of hydrogels, extrusion systems 

have been some of the preferred methods, as recently described by Rod et al.22 3D printing 

of hydrogels has gained considerable interest, mainly due to the prospect of engineering 

functional tissue for replacing or repairing human tissue and organs23. Other biomedical 

applications that have been proposed for 3D printing techniques include the in-situ 

production of advanced wound dressings,24  cell patterning for cell-based sensors,25 

development of drug delivery systems26 and for in vitro drug and toxicity testing.22 

 

Inks for 3D printing need to be fluid enough to be pressed through the nozzle during 

printing, yet they need to be viscous during printing to be deposited in 3D patterns and to 

retain the 3D structure after printing. CNF hydrogels based on TEMPO-mediated oxidation 
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are interesting candidates for inks due to their shear thinning properties27, which enables 

them to flow easily when shear is applied (i.e. when pressed through the nozzle) and to 

consolidate after the shear is released.  

 

The fractionation and pulping process, as well as the chemical pretreatment (TEMPO-

mediated oxidation) of the bagasse pulp, is expected to influence the chemical composition 

and characteristics of the CNF. According to the best of our knowledge, the influence of the 

hydrothermal treatment (prior to the alkaline pulping) on the production of CNF and its 

suitability as 3D printing ink has not been addressed. In this work, we studied the suitability 

of bagasse for the production of CNF inks for 3D printing, and how some properties of the 

inks differed when using bagasse pulps with different characteristics. Bagasse was processed 

by alkaline cooking and by a combination of hydrothermal treatment and alkaline cooking. 

The resulting pulps were treated by two levels of TEMPO-mediated oxidation before CNF 

production by homogenization. Important characteristics such as morphology, surface 

chemistry and potential cytotoxicity of the CNF inks were assessed. 

 

Materials and methods 

Materials 

Sugarcane bagasse was supplied by a local mill (San Javier Sugar Mill, Misiones, Argentina). 

Bagasse pith was wet-depithed to break its structure by a Bauer disc refiner (plate gap of 

0.01 in) and the pith was then removed by screening, using a plate with 2 mm wide slits 

(Wenmber).  

 

Pulping 
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Hydrothermal treatment was accomplished in a 4L pressurized reactor heated with direct 

vapor. Treatment conditions were: initial and final liquid/bagasse ratio of 2/1 and 5/1 

respectively, temperature 180°C, time of heating 9 min, and time at maximum temperature 

20 min. 

 

The alkaline cooking was performed in an MK digester of 7 liters capacity with liquor 

recirculation. The conditions of this treatment were: liquid/bagasse ratio of 10/1; 

temperature 170°C, time of heating 80 min; time at maximum temperature 60 min, alkaline 

charge 16% and 18% NaOH on oven dry (od) bagasse applied on material hydrothermally 

treated and untreated, respectively. For the charge of NaOH to be equivalent in both cases, 

in the BHS pulp, the alkali, which is neutralized by the formation of acetic acid coming from 

the reaction of the acetyl groups, was discounted. It is important to mention that the 

hydrothermal treatment and the soda pulping conditions applied In this study were selected 

on the base of previous works.28,29  

 

Chemical composition 

Raw material and pulps were characterized according to NREL-LAP standards, including total 

solids and moisture (NREL/TP-510-42621), extractives (NREL/TP-510-42619), glucans, xylans 

and arabinans, acetyl groups, and lignin soluble and insoluble in acid (NREL/TP-510-42618). 

The quantification of sugars, organic acids, and degradation products was carried out by 

liquid chromatography HPLC (Waters Corp. Massachusetts, USA), using a column AMINEX-

HPX97H (BIO-RAD) with the following chromatographic conditions: eluent: H2SO4 4mM, 

flow: 0.6 mL/min, temperature: 35 °C, detector: refraction index and diode array.  
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The quantification of homopolymers (glucans, xylans, and arabinans) in the solid was carried 

out multiplying sugars by the hydrolysis stoichiometric factors: 0.88 (or 132/150) for sugars 

with five carbons (xylose and arabinose) and 0.90 (162/180) for sugars with six carbons 

(glucose). Kappa number was determined according to ISO 302. 

 

CNF production 

The CNFs were produced according to Nordli et al. (2016)30 and based on 2,2,6,6-

tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation, to obtain CNF with appropriate 

characteristics for biomedical use. After washing the fibers with MQ water, the pulp fibers 

were autoclaved in 0.1 M NaOH for two hours and then washed with MQ water. This 

procedure was performed three times. 

 

For each series, TEMPO-mediated oxidation was applied,13 using 3.8 mmol and 6.0 mmol 

hypochlorite (9% NaClO) per gram of pulp fibers (Table 1). The amount of TEMPO and NaBr 

used in the reactions were 0.0125 g/g of fibers and 0.125 g/g of fibers, respectively. The pH 

was kept constant at 10.5 by adding NaOH 0.5 M. The reaction time was approx. 40 min. The 

carboxylic acid group content was quantified by conductometric titration. Homogenization 

of the oxidized fibers was performed with an ultra-turrax, at 24000 rpm for 6 min. The same 

homogenization process was applied to the four oxidized pulps. The concentration of the 

dispersion was 2 wt%.  
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Table 1 Series of the produced CNF samples.  

Sample name Pulping TEMPO-mediated oxidation (mmol/g) 

BHS_T3.8 HT+Soda 3.8 

BS_T3.8 Soda 3.8 

BHS_T6.0 HT+Soda 6.0 

BS_T6.0 Soda 6.0 

 

Structural characterization 

In order to assess the fibrillation degree, structures of 1 mm × 10 mm × 20 mm were printed 

directly on microscopy slides, using a Regemat3D printing unit. The structures were printed 

with a conical nozzle (size 0.58 mm) and a flow speed of 3.0 mm/s. The structures were 

allowed to dry for one day at room temperature (23oC). 

 

Optical images from the microscopy slides with the formed films were acquired with an 

Epson Perfection scanner (version V750 PRO) in transmission mode, using 4800 dots per inch 

resolution. The translucency and skewness of the films (optical images) were assessed as 

described previously.31 The apparent number of particles observed on the optical images 

were quantified with the ImageJ program (version 1.50i). Six optical images of 4 x 4 mm2 

were assessed per each sample.  The images were thresholded automatically and binarized. 

Noise particles that were less than 3000 µm2 and had a circularity shape of less than 0.85 

were excluded from the quantification.  

 

The films were sputtered with a thin layer of gold (Agar Auto Sputter Coater). Ten Laser 

profilometry (LP) topography images were acquired from each film sample using a LP 
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(Lehmann, Lehman Mess-Systeme AG Baden-Dättwil, Germany). The lateral and z-resolution 

of the LP system was 1 µm and 10 nm, respectively. The size of the local areas was 1 mm x 1 

mm. The root-mean-square (Sq) was quantified on the LP images.16 

 

Scanning electron microscopy (SEM) was performed with a Hitachi SU3500 microscope, in 

secondary electron imaging (SEI) mode. Images were acquired with 100x magnification, 

using 5 kV acceleration voltage. Additionally, a SEM assessment was performed with a LV-

field emission-SEM (Zeiss Supra 55 VP), equipped with an Energy Dispersive Spectroscopy 

(EDS) unit to provide an elemental analysis. The acceleration voltage and the working 

distance were 10 kV and 9.5 mm, respectively.  

 

Atomic force microscopy (AFM) imaging was performed on dried films of the CNF series. The 

films (20 g/m2) were dried in Petri dishes and the AFM analysis was conducted on the 

bottom side of the films as described elsewhere16. The AFM equipment was a Veeco 

Multimode AFM (with Nanoscope V controller), Digital Instruments. The images (2 µm × 2 

µm) were acquired in ScanAsyst mode at room temperature. 

 

3D printing 

The nanocellulose gels (2 wt%) were used as inks for 3D printing. The 3D printing was 

performed with a Regemat3D bioprinter (version 1.0), equipped with the Regemat3D 

Designer (version 1.8, Regemat3D, Granada, Spain). Grids having a diameter of 20 mm and a 

height of 2 mm were printed directly on microscopy slides for exemplification purposes. The 

target width of the printed tracks was 0.41 mm. The target space between the tracks was 2 
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mm. The inks were kept at room temperature (25 °C) for 24 h before printing. The flow 

speed was 3 mm/sec, using a 0.58 mm conical nozzle. 

 

Digital models of an ear and a nose were used for exemplifying the printing performance of 

the bagasse inks. The 3D printing was performed with a flow speed of 2 mm/sec, using a 

0.58 mm conical nozzle. 

 

Cytotoxicity 

In order to assess the cytotoxicity of the materials according to the ISO 10993-5:2009 Annex 

C, 0.3 g (dry matter) of CNF dispersions (0.4 wt%) were poured in Petri dishes (X525 aseptic 

120x120x15.8 mm from Fisher Scientific) and frozen at -30 oC during 24 hours. The freeze-

drying was performed with a Biobase BK-FD12S.The cytotoxicity potential of the CNF gels 

was determined using the MTT based method ISO 10993-5:2009 Annex C, which is the 

standard used for biological evaluation of medical device products. 

 

The CNF was extracted at 37±1°C for 24±2 h in Eagle’s Minimum essential medium 1X with 

non-essential amino acids (Gibco Life Technologies) and sodium pyruvate (GE Healthcare 

HyClone), supplemented with 5 % (v/v) Fetal Bovine Serum (Gibco Life Technologies), 4 mM 

L-glutamine (Lonza), 100 IU/ml penicillin and 100 µg/ml streptomycin (Gibco Life 

Technologies) using a ratio of 0.1 g/mL.    

 

Cytotoxicity was determined using two concentrations of the CNF extract (100 % and 50 %) 

together with positive control (latex) and negative control extracts. All dilutions were 

performed with blank (extraction vehicle not containing the test item but subjected to 
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conditions identical to those to which the test item was subjected to during extraction). Each 

extract solution was added to 6 replicate wells, containing a subconfluent monolayer of cells 

(cell line L929, mouse fibroblast). Blanks were also placed in 6 wells on each side of the 96 

well plate to confirm that no systematic cell seeding errors occurred, as well as to serve as a 

100% measure of cell viability. After the extracts were added the plate was incubated for 24 

hours at 37 ± 1 °C in 5 ± 1 % CO2. Following incubation, the extracts were removed and MTT 

(Sigma-Aldrich) solution was added to each well and the cells were incubated for 2 hours at 

37 ± 1 °C in 5 ±1 % CO2. After incubation, the MTT solution was removed and 2-propanol 

(Fischer Chemicals) was added to each well. The plate was then shaken rapidly until the 

formazan from the cells had been extracted and formed a homogeneous solution on which 

the absorbance was measured at 570 nm (reference wavelength 650 nm) using Synergy 2 

(Biotek). 

 

Results and discussion 

Chemical composition of bagasse and pulps 

The hydrothermal treatment of sugarcane bagasse has proven to be suitable to extract 

hemicelluloses components in a way that can be used for conversion to different 

products,32,33 without altering the capacity of the material to be later delignified by different 

processes. The soda process, using aqueous sodium hydroxide solution as cooking liquor, is 

usually used to produce chemical pulps from materials low in lignin, which are easily pulped 

like non-wood plants, as is the case of this study (Table 2). The HT + Soda pulp have a 

chemical composition that is characteristic for HT extracted and Soda delignified bagasse 

pulps (Table 2).34,35 
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Table 2 Chemical composition of the untreated bagasse and of bagasse pulps (% oven 

dried, od) 

Untreated bagasse 

(%od) Soda pulp (%od) HT+Soda pulp (%od) 

Screened yield -- 51.5 52.6 

Glucans  43.1 ± 0.26 66.77 ± 0.33 82.41 ± 0.08 

Xylans  23.8 ± 0.08 27.52 ± 0.1 13.17 ± 0.1 

Arabinans  1.66 ± 0.02 0.95 ± 0.03 0.28 ± 0.01 

Acetyl groups  1.70 ± 0.07 -- -- 

Lignin  21.3 ± 0.52 1.80 ± 0.15 4.33 ± 0.08 

Extractives  4.80 ± 0.30 -- -- 

Ash  1.45 ± 0.10 -- -- 

Hemicelluloses 27.16 28.47 13.45 

 

TEMPO-mediated oxidation and CNF morphology 

TEMPO-mediated oxidation has been widely used to produce CNF from various sources, 

including bagasse.36 The oxidation with NaClO introduces charges to the fibers, which 

facilitate the electrostatic repulsion between the fibrils in the fiber wall structure. The higher 

the level of oxidation, the higher the charge that is introduced and the easier the 

nanofibrillation of the material, i.e. the higher the yield of CNF.37 In this work, two levels of 

NaClO were applied for comparison purposes, i.e. 3.8 and 6.0 mmol/g of cellulose.  

The evolution of the kappa number, representing lignin content in pulps, is shown in Table 3. 

The relative percentages of extraction of lignin between the autoclave extraction and the 

oxidation stages were 29 % and 73 % for the BS pulp and 62 % and 87 % for the BHS pulp. 
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The material subjected to hydrothermal treatment is more porous (due to the spaces left by 

the hemicelluloses) and therefore the alkali in the alkaline treatment (autoclaving) and the 

NaClO in the TEMPO treatment can access the fiber structure more easily, thus extracting 

more lignin.  

 

Table 3 Evolution of Kappa number showing the delignification in each stage. The 

measurements were undertaken for the pulps, after the alkaline washing (3x NaOH and 

autoclaved) and after the TEMPO-mediated oxidation (6.0 mmol NaClO/g). 

  Samples 
Kappa number  

Relative extraction 
of lignin (%) 

BS  9.3  
 

BS + 3xNaOH 6.6  29 

BS + 3xNaOH + T6.0 1.8  73  

BHS  29.9    

BHS + 3xNaOH 11.5  62 

BHS + 3xNaOH + T6.0 1.5  87 

 

The carboxylic acid group content for the four produced series of CNF is given in Error! 

Reference source not found.. The higher amount of  NaClO clearly affect the level of 

oxidation of the two bagasse fibers, increasing the carboxylic acid content from roughly 1 to 

1.6 mmol/g. However, there is also a significant difference between the two pulps, BS-series 

being less oxidized than the BHS-series. It has been reported before that a higher xylan 

content has a significant negative effect on the oxidation rate.38 The BHS sample contains 

less hemicelluloses compared to the BS series (about 13.5 and 28.5 respectively). 

Additionally, TEMPO-mediated oxidation is regioselective for the primary hydroxyl groups of 

polysaccharides,39 i.e. attacking only the C6-position in the anhydroglucose unit (AGU) of 
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cellulose.  Xylan has two secondary hydroxyl groups but no primary ones and is therefore 

not functionalized by TEMPO-mediated oxidation.40  

 

The T6.0 series are more oxidized and thus yield a larger fraction of nanofibrils, which 

apparently increases the viscosity of the gels. The T6.0 series do not flow (Figure 1). This is 

exemplified in the right panel where the containers are placed upside down without causing 

any major flow of the CNF, compared to the T3.8 series. 

 

Table 4 Carboxylic acid group content of the CNF series, the roughness of the corresponding 

CNF films and the number of particles quantified on optical images. The average values are 

given ± 1 standard deviation. 

Sample name Carboxylic acid groups 

(µmol/g) 

LP roughness 

(µm) 

Number of apparent 

silica particles 

(#/mm2) 

BHS_T3.8 1150 ± 10 2.66 ± 0.16 0.1 ± 0.1 

BS_T3.8 1044 ± 1 2.04 ± 0.21 0.5 ± 0.2 

BHS_T6.0 1670 ± 5 0.87 ± 0.15 0.5 ± 0.2 

BS_T6.0 1444 ± 19 0.99 ± 0.07 1.7 ± 0.4 
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Figure 1 Bagasse CNF. Left) The four series of produced CNF. Right) The same vials placed 

up/down. The flow (white arrows) of the samples BHS_T3.8 and BS_T3.8 is exemplified. The 

dotted line indicates the border of the nanocellulose samples, which do not show signs of 

flow.  

 

The nanofibrillation degree can be easily assessed by quantifying the translucency of the 

printed films (Figure 2). The higher the translucency, the higher the nanofibrillation. This is 

also confirmed by the skewness values of the translucency distribution31 and by the 

roughness assessed by laser profilometry (Table 4). The roughness at the assessed scale is 

affected by the residual fibres16. The lesser the fraction of residual fibers, the higher the 

number of nanofibrils, and the smoother the films. This is confirmed by the SEM images of 

the four series (Figure 2). Additionally, the BS series shows significantly larger amount of 

particles (Table 4), which are presumptively silica particles from the bagasse parenchyma 

cells. Figure 3 exemplifies the nano-morphology of the nanofibrils. Although, in this case, it is 

demanding to estimate the length of the nanofibrils because of network entanglement, the 

width is clearly in the nanometer scale.  The nanofibrillated structure is relatively 

homogeneous, and composed of nanofibrils with diameters of roughly less than 20 nm and 
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lengths in the micrometer-scale (Figure 3) and have thus similar morphology as the CNFs 

produced with TEMPO-mediated oxidation from a variety of sources, softwood, hardwood, 

corn husks, oat hulls.8,11,41,42
 

 

 

 

Figure 2 Characterization of films. Upper panel) Optical images acquired with a desktop 

scanner in transmission mode, note the larger occurrence of round particles observed in the 

BS samples (red circles). Middle panel) Histogram of the scanner images showing the light 

transmittance distribution. Lower panel) The corresponding SEM images, exemplifying some 

of the particles observed in the scanner images (red arrows).  
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Figure 3 AFM images of samples BHS_T6.0 and BS_T6.0. 

 

Assessment of cytotoxicity  

The inks developed in this work are based on bagasse, which is an agro-industrial residue. 

Such residues may be contaminated with microorganisms and toxins, which may limit their 

application in high-value products such as 3D printing inks. As a first step regarding the 

suitability of the bagasse-based CNFs as inks for 3D printing, the cytotoxicity was assessed 

following concrete standards for testing materials intended for biomedical devices. The 

cytocompatibility of the material is a very important factor if it will be used in connection 

with cells. If the material is assessed as cytotoxic it cannot be used in contact with the 

human body or living organisms. The cell viability of the four series is given in Figure 4 and 

Figure 5.  

 

The viability of L929 mouse fibroblasts exposed to extract 100% from the device should be 

≥70% in an MTT assay to pass as a non-cytotoxic medical device (according to ISO 10993-

5:2009 Annex C). The BS_T6.0 100% is the only sample that is cytotoxic. Additionally, the 
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data indicate that the cytotoxicity (survival of cells) is better in the BHS samples. There is no 

major difference between BHS_T3.8 100% and BHS_T6.0 100%. All other test items were 

considered non-cytotoxic. Importantly, the BS_T6.0 series had similar Kappa number as the 

BHS_T6.0 series (Table 3). Hence, it is unlikely that the lignin is causing the cytotoxic effect 

detected for the BS series, which clarifies an important aspect not previously taken into 

account.  

 

The BHS series had a relatively small fraction of hemicelluloses, compared to the BS series 

(Table 2). Previously, a correlation has been demonstrated between the concentration of 

formic acid and chromosomal aberrations, i.e. frequency of micronuclei, apoptotic cells, and 

necrotic cells in vitro.43 The larger fraction of xylans encountered in the BS series may have 

contributed to the formation of acids with a potential cytotoxic effect. However, we have 

previously demonstrated that pulps differing in xylan content and treated with 3.8 mmol/g 

NaClO8 were not cytotoxic44. Additionally, although the hydrothermal treatment de-

acetylates xylans and generates acetic acid, the BHS series were considered cytocompatible.  
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Figure 4 Cytotoxicity determination of CNF samples. 70 % viability and below is considered 

cytotoxic according to ISO 10993-5:2009 Annex C.  
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Figure 5 Light microscopy with phase contrast images showing the cell morphology and cell 

number after 24 hours incubation of 100% extracts. The positive control is killing all cells and 

the negative control is not killing any cells. It is observed that the BS_T6.0 series has less cell 

survival than the negative control. 
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In the present study, the cytotoxic effect is strictly detected only for the BS_T6.0 series, 

although the cytotoxic trend is also evident for the BS_T3.8 series. There are various studies 

of the cytotoxicity of sugarcane bagasse, which seems to be caused by silica particles.45–49 

Silica is found in the parenchyma cells of bagasse. It is worthy of notice that the image of the 

BS sample shows greater number of particles (Figure 2,  

 

Table 4), which are silica particles as confirmed by EDS (Figure 6).  

 

Figure 6 Determination of silica by EDS. Note the major occurrence of silicon observed in the 

BS sample, compared to the BHS sample. 

 

Compared to the BS series, the pulps subjected to hydrothermal processing (BHS) passed 

through more washing stages, where the parenchyma cells could have passed the filters and 

were thus removed from the pulp. Additionally, the cytotoxicity assessment shows that the 

oxidation of the BS sample has an effect (Figure 4). TEMPO-mediated oxidation facilitates 

the de-construction of the fiber wall, which may also have induced the release of silica 

particles. The silica particles do not form an interlaced network and are thus presumptively 

released into the extract that is used for the cytotoxicity assay. The cytotoxicity effect is 

evidenced in the BS sample (Figure 4), since it seems to have a higher load of silica particles, 
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compared to the BHS pulp (Figure 2). There are precedents about the elimination of cane 

bagasse toxicity by different methods.50,51 In this work, the beneficial effect of the 

hydrothermal and alkaline treatments to reduce the cytotoxicity of bagasse CNF has been 

demonstrated. Importantly, these findings also emphasize the necessity of characterizing 

CNFs properly, considering chemical, structural and biological aspects.  

 

3D Printing 

It is expected that the structuring of biomedical devices having tailor-made functionality will 

be facilitated by 3D printing technology, because of the possibilities to design and modify a 

porous structure suitable for specific cells and tissues. There are already a series of studies 

pointing in this direction.23,52 Nanocelluloses (including CNF and cellulose nanocrystals) seem 

to be promising nanomaterials in this respect.24,53–57 This is mainly due to three reasons; i) 

nanocelluloses are thixotropic materials, which is beneficial for 3D printing, ii) nanocelluloses 

can form networks with a structure that resembles the extracellular matrix and iii) 

nanocelluloses are non-cytotoxic, allowing cell proliferation and differentiation. Specifically, 

TEMPO CNF fulfills these requirements, as has been demonstrated recently. 24,30,58 

 

In this study, we have demonstrated that non-cytotoxic TEMPO CNF can be obtained from 

bagasse. Additionally, it has been reported previously that TEMPO CNF is viscous and shows 

clear signs of shear thinning behavior.24,27 The BHS-T3.8 and BS-T6.0 are apparently the least 

and most viscous materials, respectively. As expected, the viscosity and the shear thinning 

affect the ink extrusion and the deposition during 3D printing.22 The BS-T6.0 sample yields 

the best print resolution and stability, i.e. the gel does not flow laterally when deposited on 

a surface and maintains a well-differentiated track structure (Figure 7). Although the 
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BHS_T3.8 sample is suitable for 3D printing, the 3D constructs have a limited print fidelity, 

i.e. the printed tracks flow laterally and merge with neighboring structures. This may be 

related to the degree of fibrillation of this sample, which is relatively low, as exemplified in 

Figure 2. The sample BHS_T3.8 contains a relatively large amount of residual fibers, which 

are clearly observed in the optical and SEM images (Figure 2) and quantified by laser 

profilometry (Table 4).  

 

Note that the print quality is improved when the material is more oxidized (Table 4), more 

nanofibrillated, and thus apparently more viscous (compare the T3.8 series with the 

respective T6.0 series). This is observed for both the BHS and the BS series. However, the 

degree of oxidation and fibrillation does not explain the lower print quality of the BHS_T6.0 

sample (carboxylic acid groups: 1.670 mmol/g) compared to the BS_T3.8 sample (carboxylic 

acid groups: 1.044 mmol/g). It has been reported that viscosity, rheology, and mechanical 

properties of CNF gels are affected by the hemicellulose content.38,59 Removal of xylan from 

pulp prior to TEMPO oxidation and CNF production, resulted in less network swelling, lower 

viscosity, and a weaker CNF gel structure.38 The addition of hemicellulose to CNF resulted in 

increased Young’s modulus.59 The mechanism by which the rheology is influenced may 

include alteration of the mechanical entanglement of fibrils and hemicellulose polymers, and 

alteration of hydrogen bonds between hemicellulose and chemical structures in the fibrils. 

The BS pulp contained 27.5 % of xylan compared to 13.2 % in the BHS pulp (Table 2). The 

larger amounts of xylan in the BS series can thus be one cause of their apparently higher 

viscosity and their better print quality.  
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As an attempt to improve the print quality of the BHS_T3.8 series the concentration of the 

CNF gel was increased to 2.6% by centrifugation. It is known that an increase in 

concentration leads to more viscous CNF gels.60 The concentration of 2.6 wt% of the sample 

BHS_T3.8 is expected to be above the estimated percolation threshold for similar TEMPO 

CNFs.61 Thus, the increase of concentration from 2.0 to 2.6 wt% is assumed to increase the 

viscosity by promoting the entanglement of nanofibrils in the network. For exemplification 

purposes, a nose and an ear were printed using the BHS_T3.8 (concentration 2.6 wt%) and 

BHS_T6.0 inks (concentration 2.0 wt%). Both printing operations were satisfactory and the 

results look promising for using the inks for 3D printing (Figure 8). As expected, the best 

print result was obtained with the BS_T6.0 ink, confirming the printing of the grid structures 

(Figure 7). The 3D objects were more delineated and apparently stable. However, the 

BS_T6.0 3D printed objects were also rougher, compared to the BHS-series. This 

characteristic detail was most probably caused by the low lateral flowability of the BS_T6.0 

ink (see also Figure 7), which does not permit a lateral diffusion of ink, thus limiting the 

smoothening of the object surface. 

 

Figure 7 3D Printing of the bagasse CNF inks. 
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Figure 8 3D printing of nose and ear scaffolds with the inks BHS_T3.8 (concentration 2.6 

wt%), BHS_T6.0 (concentration 2.0 wt%), BS_T3.8 (concentration 2.0 wt%), BS_T6.0 

(concentration 2.0 wt%). 

 

Given that the BS series print better (Figure 7 and Figure 8), and assuming that silica is the 

cause of the cytotoxicity, a more intensive depithing could be tried. Bagasse pith was 

removed in two stages, by mechanical treatment and screening. Two passes through the 

refiner could be applied to further open the bagasse structure, thus facilitating the 
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separation of the fibrovascular bundles from the parenchymal cells. This would also shrink 

the particle size, which would accelerate the pulping. The elimination of parenchyma also 

supposes the elimination of other minerals and extractive substances, which could also 

contribute to cytotoxicity. 

 

Considering the appropriate nanofibrillation and the lack of cytotoxicity of the BHS series 

(hydrothermal and alkaline treatment), we have demonstrated that a low-value agro-

industrial residue (bagasse) can be converted into a high-value product (inks for 3D printing). 

The inks have potential in 3D printing and may be used for structuring biomedical devices, 

e.g. wound dressings, scaffolds for drug testing and for tissue engineering. The non-cytotoxic 

materials (BHS samples) assessed in this study seem to be good candidates for such 

applications. However, there is some additional biological evaluation that needs to be 

performed if the materials should be used as medical devices, and of most importance in this 

respect is to test for skin irritation and skin sensitization, which will be performed in future 

studies. 
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Synopis: Bagasse is an abundant agro-industrial residue that can be used for production of inks for 

3D printing of nanocellulose constructs 
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