UNDERSTANDING DORMANCY BREAKAGE and GERMINATION ECOLOGY of Cynara cardunculus

Journal:	Weed Research		
Manuscript ID	WRE-2018-0076.R1		
Manuscript Type:	Original Article		
Date Submitted by the Author:	01-Aug-2018		
Complete List of Authors:	Huarte, Hector; Facultad de Ciencias Agrarias; Borlandelli, Federico; Universidad Nacional de Lomas de Zamora Facultad de Ciencias Agrarias, Cátedra de Fisiología Vegetal Varisco, Daina; Universidad Nacional de Lomas de Zamora Facultad de Ciencias Agrarias, Cátedra de Fisiología Vegetal Batlla, Diego; Facultad de Agronomía, Universidad de Buenos Aires, Cátedra de Cerealicultura		
Keywords:	alternating temperatures, dormancy, germination, emergence, imbibition		

SCHOLARONE ${ }^{m}$
Manuscripts

UNDERSTANDING SEED DORMANCY BREAKAGE and GERMINATION ECOLOGY of

 Cynara cardunculus (Asteraceae)H R HUARTE ${ }^{1 *}$, F BOLANDELLI 1, D VARISCO $^{1} \&$ D BATLLA 2,3
*1 CONICET/ IIPAAS/ Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Ruta 4 Kilómetro 2, Llavallol, 1836, Argentina. 1 Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Llavallol, 1836, Argentina. ${ }^{2}$ IFEVA, CONICET / Facultad de Agronomía de la Universidad de Buenos Aires. Av San Martín 4453 (C1417DSE) Ciudad de Buenos Aires, Argentina. ${ }^{3}$ Cátedra de Cerealicultura, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos Aires. Av San Martín 4453 (C1417DSE) Ciudad de Buenos Aires, Argentina.

Submitted on August $3^{\text {rd }}, 2018$

Revised version accepted

Running head: Achenes dormancy and germination in Cynara cardunculus

Correspondence: Dr H Roberto Huarte. Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora. Ruta 4, Kilómetro 2, LLavallol (1836). Argentina. Tel: (5411) 63719477; Email: hrhuarte@gmail.com.

Summary

Cynara cardunculus is a troublesome weed in temperate grazing lands. C. cardunculus achenes are usually dormant at dispersal and require alternating temperatures to terminate dormancy and germinate. Laboratory and greenhouse experiments were conducted to determine: I) the treatments able to terminate dormancy and II) the effect of environmental factors and agronomic practices germination and emergence of non-dormant (dry afterripened) achenes. Scarification, hydrogen peroxide and sodium hypochlorite promoted germination of dormant achenes. Dry afterripening and cold stratification were tested in two different populations. Dormancy of both populations were released from dormancy by dry afterripening. In contrast, cold stratification allowed dormancy release in just one of the populations, while the other was induced into secondary dormancy. Germination of non-dormant (dry afterripened) achenes was maximum in a range of temperatures from 10 to $20^{\circ} \mathrm{C}$ and was inhibited at higher temperatures. Reduction of osmotic potential below 0.6 MPa. led to a decrease in final germination. These results explain synchronic emergence of C. cardunculus seedlings in autumn after dormancy release during summer. Maximum seedling emergence was close to 60% at soil depths of 1 cm and only decreased as depth increased over 6 cm . In contrast, seedling emergence was not reduced by the presence of cover residues, while a flooding duration of 21 d was required to suppress emergence significantly. These results suggest that the achenes burial and the uses of agronomic practices that take advantage of synchronic emergence of achenes could be useful tools leading to better long-term management of C. cardunculus.

Keywords: alternating temperatures, dormancy, germination, emergence, imbibition.

Introduction

Cynara cardunculus L. (var. sylvestris) (wild artichoke) is a cross-pollinated species belonging to the Asteraceae (Sonnante et al., 2007). It is a C3, perennial herbaceous plant native to the Mediterranean basin that has invaded thousands of hectares in temperate grasslands of Argentina (Busso et al., 2013), Australia (Parsons \& Cuthbertson, 2001) and Uruguay (Marzocca, 1994). It is also present in the United States (Potts et al., 2008), Italy (Mauromicale et al., 2014), Spain and north Africa (Soumaya et al., 2013). In temperate grassland C. cardunculus is a highly competitive weed of perennial forages crops such as lucerne (Medicago sativa L.), orchardgrass (Dactyllis glomerata L.), tall fescue (Festuca arundinacea L.) and brome (Bromus catharticus L.), and also invades natural pastures (Marzocca, 1994). Cynara cardunculus is polycarpic and can produce several thousand wind-dispersed achenes each year that usually germinate throughout autumn (White \& Holt, 2005)

Although it is an important weed in many cultivated and natural systems, there is scarce information about C. cardunculus achene biology (Raccuia et al., 2016). Reported data show that most C. cardunculus populations produce dormant achenes at dispersal. Dormancy breakage of these dormant achenes depend on exposure of alternating temperatures (Huarte, 2006; Raccuia et al., 2016), and in a lesser extent of light (Huarte \& Benech-Arnold, 2010). Germination of these populations at constant temperatures is scarce (Huarte \& Benech-Arnold, 2005; Ierna et al., 2004). Some of the physiological processes behind the response of C. cardunculus achenes to alternating temperatures have been recently investigated. Alternating temperatures enhance embryo growth potential by reducing the abscisic acid (ABA) to gibberellins (GA) ratio (Huarte \& Benech-Arnold, 2010; Huarte et al., 2014). Abscisic acid and gibberellins are essential for the induction and maintenance of seed dormancy and the promotion of seed germination, respectively (Kucera et al., 2005). Despite of the progress made in relation to understanding the responses of C. cardunculus
achenes to alternating temperatures, there is almost no information about treatments that might improve germination of C. cardunculus dormant achenes when achenes are incubated at constant temperatures.

Batlla and Benech-Arnold (2010) pointed out that the stimulus of alternating temperatures, light, or both, are essential for germination of many species that have physiological dormancy. Finch-Savage and Leubner-Metzger (2006) stated that this type of dormancy is observed in many Asteraceae species and is exerted by the embryo covering layers, such as endosperm and/or pericarp, or by the embryo inability to growth. Physiological dormancy is gradually alleviated once achenes are dispersed from the mother plant by dry after-ripening or cold stratification (Nee et al., 2017). Seed dormancy alleviation is associated with a widening of the environmental conditions at which seeds can germinate. In many cases, when dormancy level is sufficiently low, seeds lose their requirement of alternating temperatures and/or light to germinate and can germinate under a wide range of constant temperatures (Benech-Arnold et al., 2000). Knowledge about the way in which the environment modulates dormancy alleviation in weed species is useful to predict germination and seedling emergence patterns in the field, and to develop rational strategies of weed management (Ramirez et al., 2014). Up to date, factors affecting dormancy alleviation of C. cardunculus achenes have not been assessed. Moreover, no information in relation to the range of temperatures under which non-dormant C. cardunculus achenes can germinate is available in the literature.

As previously commented, in situations where C cardunculus is a troublesome weed in cool season perennial forages and natural grasslands, achenes are usually accumulated on the soil surface and only buried during seed bed preparation for the new crop. To date, there has been no information about the way in which the presence of a close canopy and the depth of burial might affect emergence of C. cardunculus is absent. This knowledge may be useful to reduce C. cardunculus emergence and could be included as a component of integrated weed management systems. Cynara cardunculus is also found in some lowlands environments exposed to frequent flooding, as for example The Salado River basin (Buenos Aires Province, Argentina) (Busso et al.,
2013). Duration of flooding in this ecosystem is quite variable and might affect the fate of C. cardunculus soil seed-bank, as for example, its temporal germination pattern. However, no information is available about the capacity of C cardunculus achenes to survive and germinate after flooding events.

The general objective of this paper is to investigate different aspects of C. cardunculus seed biology that can be relevant for managing C. cardunculus natural seed-banks in the field. Some key questions are: I) what treatments can substitute alternating temperatures requirement for dormancy breakage and germination; II) what is the nature of C. cardunculus fruit dormancy (i.e. imposed by the embryo or the seed coats); III) how is dormancy alleviated (i.e. dry after-ripening or cold stratification); IV) what is the effect of temperature and osmotic stress on germination of nondormant achenes and V) what is the effect of achenes burial depth, the presence of stubble of different heights and flooding duration on C. cardunculus seedling emergence.

Materials and Methods

Seed collection

Mature achenes of Cynara cardunculus (L.) were collected from plants growing at infested roadsides in two locations in Buenos Aires Province, Argentina. Achenes were considered mature when the pappus of the capitulum had fully expanded and achenes could be easily detached from the receptacle. The first collection site (1) was located in Olavarría (latitude $37^{\circ} \mathrm{S}$, longitude 60° $35^{\prime} \mathrm{W}$) and achenes were collected in 2013, 2015 and 2016. The average annual precipitation is 730 mm and the mean temperature is $15.7^{\circ} \mathrm{C}$. The second site (2) was in Abasto (latitude $35^{\circ} 05 \mathrm{~S}$, longitude $58^{\circ} 11^{\prime} \mathrm{W}$) and achenes were collected in 2013. The average annual precipitation is 940 mm and the mean temperature is $17.2^{\circ} \mathrm{C}$. Achenes were collected from randomly selected plants and bulked to obtain experimental samples. Achenes collected at site 1 and 2 in 2013 were used to evaluate achenes response to dry afterripening and cold stratification. The rest of the experiments were performed using achenes collected in Olavarría in 2015 and 2016. For this set of experiments achenes were cleaned and immediately stored at $-18^{\circ} \mathrm{C}$ to maintain their initial dormancy level (Benech-Arnold et al., 2006) until used in the experiments.

General procedures for germination tests

Achenes were placed in 9-cm-diam petri dishes over two pieces of filter paper wetted with 7 ml of distilled water or the corresponding treatment solution. Germination tests were performed in darkness. Previous experiments showed that the stimuli of alternating temperatures is enough to the breakage of achenes dormancy (e.g. Huarte 2006). Germination was scored daily for 14 days (otherwise stated). Achenes with visible radicle protrusion were considered as germinated and
removed. Dishes were wrapped in a double layer of aluminium foil to prevent achenes from exposure to light.

Imbibition

To evaluate achene coat permeability to water, forty-five achenes collected at site 1 during 2015 were individually weighed with an electronic balance A200S (Sartorius, Gottingen, Germany) and placed in a 2 cm plastic box on two filter paper discs moistened with 2 ml of distilled water. Individually identified achenes were incubated throughout 10 d in darkness at 15 and $20 / 10^{\circ} \mathrm{C}$. Each individual achene was blotted dry and weighed once a day, so measures of moisture content over time were made on the same individual achene. Water content (WC) was determined as the actual increase based on achene initial air-dry mass (Baskin et al., 2002) according to the following equation:

$$
\mathrm{WC}=(\mathrm{Wn}-\mathrm{W} 1) / \mathrm{W} 1(1) .
$$

Where Wn is the weight after n days of imbibition and W 1 is the weight before imbibition started.

Effect of scarification on germination at constant temperatures.

To determine the role of the pericarp on achene germination, achenes collected at site 1 during 2015 were scarified using a $98 \%(\mathrm{w} / \mathrm{w})$ concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Cicarelli, Argentina) and mechanical abrasion. Achenes were acid scarified for $0,5,15$ or 45 min in a $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Mechanical scarification was done by scrapping the pericarp using sandpaper Doble A No 200 (Abrasivos Argentinos, Argentina) covering the cotyledon area (i.e. the pericarp at the opposite side of the embryo) to avoid any damage to the embryonic axis. After the different treatments achenes were
incubated in water at constant $15^{\circ} \mathrm{C}$. Germination was also tested at alternating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ and this value was considered as a positive control.

Effect of oxidants and nitrogenous compounds on germination at constant temperatures.

To determine the effect of (A) hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ (Cicarelli, Argentina), (B) Sodium hypochlorite (i.e. commercial bleach, 36.8 gr NaClO per L) and (C) KNO_{3} (Cicarelli, Argentina) on germination, achenes collected at site 1 during 2015 were: (A) incubated at constant $15^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions at concentrations of $0,0.4,0.8$ and 1.2 M , (B) soaked for $0,1,5,10,15$, and 30 min in a sodium hypochlorite solution and then incubated at constant $15^{\circ} \mathrm{C}$ in water and (C) incubated at constant $15^{\circ} \mathrm{C}$ in the presence of $0.2 \% \mathrm{KNO}_{3}$. Germination was also tested at alternating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ in distilled water and this value was considered as a positive control.

Effect of time and storage temperature on achene dormancy alleviation.

To determine the effect of time and temperature on achene dormancy alleviation (i.e. a reduction of alternating temperatures requirement for germination), achenes collected in Olavarría and Abasto in 2013 were stored under moist conditions at $6^{\circ} \mathrm{C}$ (stratification) and under dry conditions at 6,15 and $25^{\circ} \mathrm{C}$ (dry-afterripening) for 75 and 40 days, respectively. Before storage (0 days), and after 15,30 , 45,60 and 75 days (Olavarría population), and 10, 20, 30 and 40 days (Abasto population) of storage achenes were incubated in water at 15 and $20 / 10^{\circ} \mathrm{C}$ in darkness for 20 d .

Effect of temperature and osmotic stress on germination of non-dormant achenes.

To determine the effect of temperature on C. cardunculus non-dormant achenes germination, dry afterripened $\left(75 \mathrm{~d}\right.$ at $\left.15^{\circ} \mathrm{C}\right)$ achenes collected in Olavarría in 2015 were incubated at alternating
temperatures $(12 / 12 \mathrm{~h})$ of $20 / 10,25 / 15$ and $20 / 30^{\circ} \mathrm{C}$ and at constant temperatures of $10,15,20,25$, 30 and $35^{\circ} \mathrm{C}$ (these temperatures reflect typical seasonal variation temperature regimes and the average high and low temperatures in Buenos Aires Province, Argentina). The effect of moisture stress on achenes germination were assessed by incubating achenes at $15^{\circ} \mathrm{C}$ in solutions with osmotic potentials of $0,-0.2,-0.4,-0.6,-0.8,-1$ and -1.2 MPa . Solutions with different osmotic potentials were prepared by dissolving polyethylene glycol 8000 in distilled water according to Michel (1983). Achenes incubated in water or PEG solutions were transferred to fresh solutions after the first 24 h and then after 6 d , to maintain a constant osmotic potential during the experiment.

Effect of simulated agronomic practices and flooding duration on seedling emergence

The effect of burial depth was tested by sowing achenes collected in Olavarría in 2016 at soil depths of $0,1,2,3,4,6$ and 8 cm . The effect of crop residues on seedling emergence was tested sowing achenes collected in Olavarría at 1 cm depth and spreading oat pasture stubble on soil surface at rates equivalent to $0,1,2,3,4$, and $6 \mathrm{t} \mathrm{ha}^{-1}$. The treatments $1,2,3,4$, and 6 t ha correspond to approximate oat pasture cover heights of $0.4,0.6,1,1.4$ and 1.80 cm , respectively. To determine flooding tolerance, achenes collected in Olavarría in 2016 were sowed 1 cm deep in soil contained in Styrofoam cups. Flooding durations were $0,4,7,14$, and 21 d . To simulate flooding, water was maintained 2 cm above the soil surface for the mentioned periods. After exposure to a given period of flooding, surface water was drained by poking holes at the side of the cups to drain the excess water. The three experiments were performed in a greenhouse $\left(17 \pm 2^{\circ} \mathrm{C}\right.$ during the day and $10 \pm$ $2^{\circ} \mathrm{C}$ at night) and ten dry afterripened achenes (after 75 days at $15{ }^{\circ} \mathrm{C}$) were sown in each experimental unit (9 cm diameter pots and 12 cm high and 9.5 cm diameter Styrofoam cups). Soil (31% sand, 37% silt, 32% clay, $\mathrm{pH} 6.5,5.4 \%$ organic matter) used for the experiments was collected from an experimental plot at Facultad de Ciencias Agrarias (National University of Lomas de Zamora, Buenos Aires Province, Argentina) free from C. cardunculus plants. During the experiments pots were kept close to field capacity by regular watering and in the flooding
experiment soil was kept close to field capacity after the flooding treatments ended. Emerged seedlings were counted at two days intervals from 3 d to 45 d after sowing in all experiments. Seedling emergence was defined as the appearance of the cotyledons, and emerged seedlings were counted and then removed. Seedling emergence was expressed as a percentage of the achenes sown.

Data analysis.

All experiments were conducted in a completely randomized design. Each experiment was conducted twice, and treatments of each experiment were replicated three times. Germination was expressed as final percentage of total achenes except for the imbibition experiment where cumulative percentages are shown. Each germination value is the mean $\pm \mathrm{SE}$ of three replicates of 25 achenes each. Because data analysis showed non-significant interaction between treatment effect and each experimental run, data of both experiments were combined for the analysis. The effect of scarification and KNO_{3} and $\mathrm{H}_{2} \mathrm{O}_{2}$ on germination were subjected to analysis of variance, and means were separated by Tukey's and Krustal-Wallis's test at $\mathrm{P}=0.05$ using InfoStat (Balzarini et al., 2008). The rest of treatments (i.e. immersion in $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaClO , osmotic potential, depth of burial, forage cover and flooding duration on germination and seedling emergence) were analysed by means of regression analysis using Graph Pad Prism 7.0 (GraphPad Software, La Jolla California USA) and CurveExpert Basic 2.1.0 (Hyams Development). The goodness of fit of the models was assessed by R^{2} or R^{2} and SE .

Results

Imbibition

Water uptake of achenes incubated at alternating and constant temperatures increased in a similar manner from the start of imbibition up to day 4 (Fig. 1A). Thereafter, achenes incubated at alternating temperatures took up water because of the start of germination (Fig. 1B). In contrast, achenes exposed to constant temperatures, under which very few achenes germinated (Fig. 1B), did not show a subsequent increase in WC till the end of the experiment. Germination started by day 5 after imbibition at alternating temperatures, reaching its maximum value by day 9. Final germination percentages were $81 \pm 10 \%$ and $6 \pm 1 \%$ for alternating and constant temperatures treatments, respectively (Fig. 1B).

Effect of scarification on germination at constant temperatures.

Total germination at different times of soaking in $\mathrm{H}_{2} \mathrm{SO}_{4}$ was fitted by an exponential plus linear model. An enhancement of germination until the extent to that observed at $20 / 10^{\circ} \mathrm{C}$ in water (right panel) (i.e. the positive control) was scored for 5 and 15 min concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$-treated achenes. However, germination of $45 \mathrm{~min} \mathrm{H}_{2} \mathrm{SO}_{4}$-treated achenes was similar to that scored at $15^{\circ} \mathrm{C}$ in water. On the other hand, germination of mechanical scarified-treated achenes reached an intermediate value among control treatments ($\mathrm{P}<0.05$) (Fig. 2B).

Effect of oxidants and nitrogenous compounds on germination at constant temperatures.

The presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ at doses higher than 0.4 M increased achenes germination at constant temperatures (Fig. 3A). Achenes incubated at $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ showed a threefold increase in
germination in relation to that observed at constant $15^{\circ} \mathrm{C}$ in water. Germination of achenes soaked in NaClO from 1 to 15 min showed an increase in germination in relation to non-soaked achenes incubated in water. However, this increase did not reach germination values of achenes incubated at alternating temperatures in water (Fig. 3B). Finally, achene germination in the presence of 0.2% KNO_{3} reached an intermediate value to those scored in positive and negative control treatments (Fig. 3C).

Effect of time and temperature of storage on achene dormancy alleviation.

Total germination of fresh achenes (i.e. recently dispersed) collected in Olavarría (site 1) was $11.6 \pm$ $6.01 \%($ mean $\pm \mathrm{SE})$ and $70 \pm 2.89 \%$ for constant $\left(15^{\circ} \mathrm{C}\right)$ and alternating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$, respectively (Fig. 4). These results evidence both, a high level of dormancy of the fresh achenes, and the efficacy of alternating temperatures to break C. cardunculus dormancy. Achene exposure to cold stratification for 15 d reduced achene population dormancy level (Fig. 4). Indeed, after 15 days of cold stratification germination at $15^{\circ} \mathrm{C}(61.6 \pm 7.26 \%)$ was similar to that observed for fresh achenes incubated at alternating temperatures $(71.6 \pm 8.82 \%)$. However, extended cold stratification ($>30 \mathrm{~d}$) induced achenes into secondary dormancy, showing a level of dormancy higher than that observed at dispersal. In these cases, alternating temperatures were not able to promote germination, showing similar values to that observed at constant temperatures. Dry storage was effective to alleviate dormancy. This fact was proved by the progressive increase in germination at constant temperature in darkness with storage time (i.e. loss of the alternating temperatures requirement for germination). Likewise, dormancy alleviation was faster as storage temperatures increased from 6 to $25^{\circ} \mathrm{C}$. Indeed, achenes stored at $6^{\circ} \mathrm{C}$ showed just a partial alleviation from dormancy, presenting germination percentages at constant temperatures below 50% during the entire storage period. On the other hand, achenes stored at $15^{\circ} \mathrm{C}$ incubated at constant temperatures showed similar values to those observed for achenes incubated under alternating from 45 d onwards, while achenes stored at
$25^{\circ} \mathrm{C}$ showed no difference in germination between constant and alternating temperatures (i.e. dormancy alleviation) just after 15 days of storage. A reduction in germination at constant temperatures was observed after 75d of storage for achenes incubated at this temperature.

Germination of fresh achenes collected in Abasto (site 2) was $56.67 \pm 7.26 \%$ and $86.7 \pm 4.41 \%$ for constant temperature $\left(15^{\circ} \mathrm{C}\right)$ and alternating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$, respectively (Fig. 5). These results indicate a less dormant achene population to that collected in Olavarría (Fig. 4). In the Abasto population, both cold stratification (from 20d onwards) and 10 days of dry afterripening at 15 and $25^{\circ} \mathrm{C}$ were effective to reduce the initial level of dormancy (Fig. 5). On the contrary, dry storage at $6^{\circ} \mathrm{C}$ did not allow achene dormancy release (defined here as the requirement of alternating temperature to germinate).

Effect of temperature and osmotic stress on germination of nondormant achenes

Germination of achenes (i.e. storage at $15^{\circ} \mathrm{C}$ by 75 d) was affected by tested incubation temperature regimes ($\mathrm{P}<0.0001$) (Fig. 6A). Higher germination percentages were scored at constant 10, 15 and $20^{\circ} \mathrm{C}$ and at $20 / 10^{\circ} \mathrm{C}$. An increase of temperatures till $25^{\circ} \mathrm{C}$ significantly reduced germination, while germination was almost null at constant 30 and $35^{\circ} \mathrm{C}$. In addition, alternating temperatures regimes of $25 / 15^{\circ} \mathrm{C}$ and $20 / 30^{\circ} \mathrm{C}$ were not effective to stimulate germination, showing germination values lower than 25%. To evaluate the effect of simulated water stress on germination, a sigmoidal dose-response regression model was fitted (Fig. 6B). Germination was greatest at $0,-0.2$ and 0.4 MPa , while a gradual decrease of total germination occurred from - 0.6 MPa to -1.2 MPa .

Effect of burial depth, crop residues and flooding duration on seedling emergence.

A plateau followed by one phase decay regression model was fitted to seedling emergence from 0 to 8 cm burial depth. Burial depths ranging from 0 to 4 cm showed similar emergence values (Fig.

7A), while achenes buried at a depth of 6 cm showed a reduction in seedling emergence. This fact was corroborated at a burial depth of 8 cm , where no seedling emergence was scored (Fig. 6A). Seedling emergence of C. cardunculus was not significantly reduced by the addition of stubble on the soil surface (Fig. 7B). In this case, a linear regression model was used where a non-significative effect of forage cover on seedling emergence was observed. Total emergence ranged from $63.3 \pm$ 6.15% (bare soil) to $53.3 \pm 12.28 \%$ beneath a dry forage cover equivalent to $6 \mathrm{t} \mathrm{ha}^{-1}$. Seedling emergence decreased with increasing flooding durations. A linear model was fitted to assess germination of achenes exposed to different flooding durations. Achenes subjected to flooding conditions for periods longer than 14 days showed a significant decrease in emergence percentage, showing values close to 3% (Fig. 7C).

Discussion

C. cardunculus achenes are usually dormant at dispersal and this primary dormancy state can be broken by exposure of achenes to cycles of alternating temperatures (Huarte \& Benech-Arnold, 2010; Raccuia et al., 2016). Seed dormancy can be imposed by different seed or fruit tissues. For example, physiological dormancy, which is the most frequent type of dormancy in temperate species, can be associated with properties of the embryo covering layers, such as endosperm and/or pericarp, and/or by the embryo itself (Finch-Savage \& Leubner-Metzger, 2006). Results presented here, show that the covering layer seems to play a crucial role in C. cardunculus achene dormancy (Fig. 2). Nasreem et al. (2002) stated that covering layers may reduce germination by interfering with water and/or oxygen uptake or by exerting a mechanical resistance to embryo growth. Results obtained in the present work from the imbibition experiment pointed out that a reduction of water uptake is not the prevalent mechanism through which the covering layers block germination in C. cardunculus. Indeed, achenes exposed to constant or alternating temperatures exhibit a common dynamic of water uptake until the beginning of germination (Fig. 1A and B). To understand the role of covering layers in imposing C. cardunculus fruit dormancy we evaluated the efficacy of treatments described to modify covers characteristic (e.g. hardness) and to increase oxygen availability. Soaking achenes with $\mathrm{H}_{2} \mathrm{SO}_{4}$ by 5 and 15 min effectively promoted germination up to similar values to those scored at alternating temperatures in water (Fig. 2A). Sulphuric acid treatments are associated with a disruption of covering layers (Aliero, 2004) and are frequently used to increase germination of legumes seeds. On the other hand, only an intermediate increase in germination was scored for mechanical scarified-treated achenes (Fig. 2B). Kimura and Islam (2012) stated that the response to scarification treatments are based on an enhancement of water and/or oxygen uptake. Considering that results showed that alternating temperatures did not affect water uptake (Fig. 1A), it can be proposed that scarification may increase germination by an enhancement of oxygen diffusion to the embryo. Moreover, this is further supported by the fact that
the presence of $\mathrm{H}_{2} \mathrm{O}_{2}(1.2 \mathrm{M}), \mathrm{KNO}_{3}$ and the immersion of achenes in NaClO were also effective to enhance germination (Fig. 3A-C). Hydrogen peroxide and NaClO are oxidants compounds known to increase oxygen availability. These results show that those treatments able to increase oxygen availability, such as oxidants compounds, and mechanical scarification, allowed a higher dormancy breakage, suggesting that a reduction in the oxygen diffusion to the embryo could be one of the mechanisms involved in the dormancy exerted by the covering layers in C. cardunculus.

Dry after-ripening was effective in alleviating dormancy of C. cardunculus achenes (Fig. 4 and 5). These results agree with that observed in some other Asteraceae species (Schütz et al., 2002) and winter annual weeds (Iglesias-Fernández \& Matilla, 2009). As dry afterripening progressed, C cardunculus achenes lost their requirement of alternating temperatures to germinate and were progressively able to germinate at constant temperatures. This is consistent with Finch-Savage and Leubner-Metzger (2006), who stated that dry after-ripening involves a widening of the environmental conditions allowing seed germination. However, the different level of primary dormancy exhibited by both populations determined an apparent different response to dry afterripening temperature. For the most dormant population (i.e. Olavarría, site 1) the increase of storage temperature hastens the rate of dormancy release. This is consistent with the behavior observed in Lollium rigidum (Steadman et al., 2003) and some other winter annual weed species (Baskin \& Baskin, 1986). Indeed, achenes stored at $25^{\circ} \mathrm{C}$ required 15 days to lost the requirement of alternating temperatures for germination, while those stored at $15^{\circ} \mathrm{C}$ required longer storage (45 days). In contrast, primary dormancy level of the Abasto population, (site 2) was lower than that observed in the Olavarría population (this fact was evidenced by the extent of fresh achenes able to germinate at constant temperatures). This lower primary dormancy level determined an almost entire dormancy loss after just 10 days of storage at 15 and $25^{\circ} \mathrm{C}$, precluding the possibility of detecting differences in the dormancy release rate between these storage temperatures. In addition, both populations did not show significant dormancy release when stored dry at $6^{\circ} \mathrm{C}$. This result agrees with data reported by Bazin et al. (2011), who determined that storage temperatures below
$8.17^{\circ} \mathrm{C}$ prevent dormancy loss due to dry afterripening in another Asteraceae, sunflower (Helianthus annus, L.). Differences among tested populations were also evidenced by their response to cold stratification (humid $6^{\circ} \mathrm{C}$) (Fig 4 and 5). Indeed, in the most dormant population cold stratification for longer than 15 days provoked an induction into secondary dormancy in such an extent that exposure to alternating temperatures was totally ineffective to promote achene germination. At the opposite, a similar treatment duration allowed for the lesser dormant population a full exit from dormancy, without induction into secondary dormancy with extended storage. Differences among Cynara cardunculus populations were already described for many attributes (Ben Ammar et al., 2014). For instance, tolerances to abiotic stress (Raccuia et al., 2004) and chemical profiles (Portis et al., 2005). Here, differences between populations were evidenced for the first-time on their response to temperature-dependent dormancy release.

Temperature experiments performed on dry afterripened (i.e. nondormant) achenes allowed to characterize the thermal range permissive for C. cardunculus germination. Achenes had high germination percentages at constant temperatures from 10 to $20^{\circ} \mathrm{C}$ and at an alternating temperature regime of $20 / 10^{\circ} \mathrm{C}$, while germination was progressively inhibited by constant $25^{\circ} \mathrm{C}$ onwards. Likewise, alternating temperatures of $20 / 30{ }^{\circ} \mathrm{C}$ and $25 / 15^{\circ} \mathrm{C}$ did not stimulate germination (Fig. 6A). These results show that C. cardunculus nondormant achenes exhibit a narrow thermal range permissive for germination, in which germination is prevented at temperatures higher than $20^{\circ} \mathrm{C}$. Altogether these results indicate that C. cardunculus behaves as a typical winter annual weed, in which achenes come out from dormancy through dry-afterripening when exposed to the "high" summer temperatures and go to into secondary dormancy when exposed to low winter temperatures (although this can differ between populations). Under field conditions, this temperature-dependent regulation of achene dormancy level may establish a non-dormant seed-bank population from midsummer to late autumn. However, the impossibility of C. cardunculus non-dormant achenes to germinate at "high" temperatures prevent emergence during summer and sets the emergence window throughout autumn months, in which lower temperatures allow achenes germination (10-20
${ }^{\circ} \mathrm{C}$). This information can be used to design alternative practices to manage C. cardunculus populations. For instance, by a shift to an earlier sowing date of cool-season forages crop. Thus, crop seedling emergence may occur before a reduction of soil temperatures allowing germination and seedling emergence of C. cardunculus. This may be useful in forage crops such as lucerne, tall fescue, wheatgrass due to germination of these species occurring at a high percentage at alternating $\left(20 / 30^{\circ} \mathrm{C}\right)$ and constant $\left(25^{\circ} \mathrm{C}\right)$ temperatures (I.S.T.A, 1983). All these forage crops are of meaningful importance for biomass production in temperate grassland of Argentina and some other countries. Likewise, a similar thermal behaviour was described by Basnizki and Mayer (1985) for Cynara syriaca achenes; Thanos et al (1989) for Glaucium flavum seeds and Doussi and Thanos (2002) for four species of the Muscari genus. All these species originated in the Mediterranean basin have low germination at temperatures close to $20^{\circ} \mathrm{C}$. These authors stated that this is a characteristic of Mediterranean species to fit germination to the humid condition prevailing in autumn and winter.

Final germination was reduced at osmotic potentials from -0.6 MPa onwards (Fig. 6B). This reduction was stronger when achenes were incubated at -0.8 MPa and -1 MPa ; in these treatments germination decreased to 30% and 10%, respectively. Our results agree with those shown by Raccuia et al. (2004). These authors reported germination values ranging from 32 to 46% at 0.6 MPa , and values close to 20% at -0.9 MPa , for eight C cardunculus achenes populations collected at Catania (Italy). Bewley (1997) proposed that inhibition of germination under low soil water availability constitutes an important survival mechanism until sufficient water is available for successful seedling emergence.

Deep burial through soil tillage and the presence of cover on the soil surface are agronomic practices that can be applied to reduce seedling emergence of many weeds (e.g. Amini et al., 2017). Emergence of C cardunculus was limited to 36% of their maximum percentage by a burial depth of 6 cm (Fig. 7A). However, the full prevention of seedling emergence was reached when achenes were placed at 8 cm deep. Since buried achenes may maintain the capacity to germinate for 5-7 years
(Fernandez \& Curt, 2005), burial may be useful to reduce emergence before seting long term pastures such as the mentioned above. The similar values of seedling emergence observed from the soil surface up to 4 cm of burial is consistent with the large size of Cynara achenes (1000 achenes weight close to 37 g). The possibility of large seeds germinating deep in the soil was described for seeds of weed and cultivated species. This trait is based on the extent of energy reserves able to support seedling growth (e.g. Benvevuti et al., 2001). Even though the current study does not evaluate the reason/s that reduce/s C. cardunculus seedlings emergence, the main factors acting in the reduction of weed seedling emergence, with an increasing depth, have been already summarized by Benvenuti et al. (2001). These authors proposed factors such as, the lack of enough seed reserves to reach the soil surface, hypoxia, presence of CO_{2} and low rates of gaseous diffusion at increasing depths that may induce secondary dormancy. The increment in the amount of stubble on soil surface did not significantly reduce C. cardunculus seedling emergence (Fig. 7B). Some of the reasons proposed by the reduction of seedling emergence by this practice are a prevention of light reaching the seeds, physical obstruction provided by crop residue and allelopathy (e.g. Liebman \& Davis, 2000). The ability of C. cardunculus achenes to germinate in the dark can explain the lack of response to the presence of stubble on the soil surface. Anyway, this would be impractical in forage crops production systems, in which crop cover is used to feed livestock. These results suggest that the presence of crop residues on the soil surface or shallow burial depths are not effective to reduce C. cardunculus seedling emergence. So, the main factors affecting the number of seedlings emerged from natural soil seed bank would be those controlling germination, such as soil temperature and soil water availability.

Flooding for 21d drastically reduced the emergence of C. cardunculus (Fig. 7C). Thus, this species is sensitive to prolonged flooding and may not be able to persist in areas that remain waterlogged for long periods. This may be the main reason for explaining why C. cardunculus is most frequent in drained than flooded soils (CABI, 2017). The capacity to tolerate flooding is a highly speciesspecific trait and C. cardunculus shows less tolerance than some species such as Ipomea purpurea
(Singh et al., 2012) and Agrostis stolonifera (Zapiola \& Mallory-Smith, 2010). For instance, the latter keeps its capacity to germinate during a seventeen-weeks period long.

In conclusion, C. cardunculus achenes are dormant at dispersal and this state is effectively broken by exposure to alternating temperatures. This dormant state (evaluated in relation to the requirement of alternating temperature to germinate) can be broken by exposing the achenes to compounds able to increase oxygen availability. C. cardunculus behave as many other winter annual species, in which dormancy is alleviated through dry afterripening (the higher the temperature the higher the dormancy release rates), while cold temperatures may provoke entrance into secondary dormancy: although this response differ among C. cardunculus achenes populations. In addition, germination of after-ripened achenes is inhibited at high temperatures $\left(>20^{\circ} \mathrm{C}\right)$, which may be instrumental for avoiding germination of non-dormant achenes during the summer, delaying germination to the autumn months. In parallel, germination is also affected by the reduction of water potential to -0.6 MPa. onwards. This may be another adaptation able to delay germination till autumn, when temperatures together with the soil water availability are compatible with Cynara requirements for germination. As part of an integrated control method, before the sowing of long term pastures, C. cardunculus seedling emergence can be reduced by burying achenes deeper than 6 cm . In contrast, the presence of cover has not reduced the emergence of C. cardunculus seedling emergence along of pasture production cycle. C. cardunculus did not show a great tolerance to flooding.

Acknowledgements

This study was supported by LOMASCyT (FCA- 034), PIP 0738/2014 from CONICET, and PICT 2015-3087 from ANPCyT, Argentina.

References

ALIERO BL (2004) Effects of sulphuric acid, mechanical scarification and wet heat treatments on germination of seeds of African locust bean tree, Parkia biglobosa. African Journal of Biotechnology 3, 179-181.

AMINI R, GHOLAMI F \& GHANEPOUR S (2017) Effects of environmental factors and burial depth on seed germination and emergence of two populations of Caucalis platycarpos. Weed Research 57, 247-256.

BALZARINI MG, GONZALEZ L, TABLADA M, CASANOVES F, DI RIENZO JA \& ROBLEDO CW (2008) Infostat, Manual del Usuario, Editorial Brujas, Córdoba, Argentina. BASKIN CC, ZACKRISSON O \& BASKIN JM (2002) Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany 89, 486-493.

BASKIN JM \& BASKIN CC (1986) Temperature requirements for after \square ripening in seeds of nine winter annuals. Weed Research 26, 375-380.

BASNIZKI Y \& MAYER AM (1985) Germination of Cynara seeds; effect of light and temperature and function of the endosperm. Agronomie 5, 529-532.

BAZIN J, BATLLA D, DUSSERT S, EL-MAAROUF-BOUTEAU H, \& BAILLY C (2010) Role of relative humidity, temperature, and water status in dormancy alleviation of sunflower seeds during dry after-ripening. Journal of Experimental Botany 62, 627-640.

BEN AMMAR I, HARZALLAH-SKHIRI F, \& AL MOHANDES DRIDI B (2014) Morphological variability of Wild Cardoon (Cynara cardunculus L. var. sylvestris) Populations in North of Tunisia. ISRN Agronomy, Article ID 656937

BENECH-ARNOLD RL, SÁNCHEZ RA, FORCELLA F, KRUK BC, \& GHERSA CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67, 105122.

BENECH-ARNOLD RL, GUALANO N, LEYMARIE J, CÔME D \& CORBINEAU F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryo of dormant barley grains. Journal of Experimental Botany 57, 1423-1430.

BENVENUTI S, MACCHIA M \& MIELE S (2001) Quantitative analysis of emergence of seedlings from buried seed weeds with increasing soil depth. Weed Science 49, 528-535.

BEWLEY JD (1997) Seed germination and dormancy. The Plant Cell 9, 1055.
BUSSO CA, BENTIVEGNA DJ \& FERNÁNDEZ OA (2013) A review on invasive plants in rangelands of Argentina. Interciencia 38, 95-103.

CABI (2017) Cynara cardunculus (cardoon). In: Invasive Species Compendium. Wallingford, UK: CAB International Available at/www.cabi.org/isc/datasheet/17584 (last accesed 26 December 2017)

DOUSSI MA \& THANOS CA (2002) Ecophysiology of seed germination in Mediterranean geophytes. 1. Muscari spp. Seed Science Research 12, 193-201.

FERNÁNDEZ J \& CURT MD (2005) State-of-the-art of Cynara cardunculus as an energy crop. In 2005 Proceedings of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection. p. 10-14.

FINCH-SAVAGE WE \& LEUBNER-METZGER G (2006) Seed dormancy and the control of germination. The New phytologist 171, .501-523.

GATTO A, DE PAOLA D, BAGNOLI F, VENDRAMIN GG. \& SONNANTE G (2013) Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon. Annals of botany 112, 855-865.

HUARTE HR, LUNA V, PAGANO EA, ZAVALA JA, \& BENECH-ARNOLD RL (2014) Fluctuating temperatures terminate dormancy in Cynara cardunculus seeds by turning off ABA synthesis and reducing ABA signalling, but not stimulating GA synthesis or signalling. Seed Science Research 24, 79-89.

HUARTE HR \& BENECH-ARNOLD RL (2010) Hormonal nature of seed responses to fluctuating
temperatures in Cynara cardunculus (L.). Seed Science Research 20, 39-45.
HUARTE HR (2006) Hydrotime analysis of the effect of fluctuating temperatures on seed germination in several non-cultivated species. Seed Science and Technology 34, 533-547.

HUARTE HR \& BENECH-ARNOLD RL (2005) Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Science Research 15, 89-99.

IERNA A, RESTUCCIA A. \& MAUROMICALE G (2004) Effects of seed osmopriming on germination of Cynara cardunculus under low, optimal and high temperatures. Acta Horticulturae 660, 333-338.

IGLESIAS-FERNÁNDEZ R \& MATILLA A (2009) After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. Journal of Experimental Botany 60, 1645-1661.

KELLY M \& PEPPER A, (1996) Controlling Cynara cardunculus (Artichoke thistle, cardoon etc.). California Exotic Pest Plant Council, 1996 Symposium Proceedings.

KIMURA E \& ISLAM M (2012) Seed scarification methods and their use in forage legumes. Research Journal of Seed Science 5, 38-50.

MARZOCCA A (1994) Guía descriptiva de malezas del Cono Sur. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.

MAUROMICALE G, SORTINO O, PESCE GR, AGNELLO M, \& MAURO RP (2014) Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Industrial Crops and Products 57, 82-89.

NÉE G, XIANG Y, \& SOPPE WJ (2017) The release of dormancy, a wake-up call for seeds to germinate. Current opinion in plant biology 35, 8-14.

PARSONS WT, \& CUTHBERTSON EG (2001) Noxious weeds of Australia. CSIRO publishing. POTTS DL, HARPOLE WS, GOULDEN ML \& SUDING KN (2008) The impact of invasion and subsequent removal of an exotic thistle, Cynara cardunculus, on CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ vapor exchange in a coastal California grassland. Biological invasions 10, 1073-1084.

PORTIS E, ACQUADRO A, COMINO C, MAUROMICALE G, SABA E, \& LANTERI S. (2005). Genetic structure of island populations of wild cardoon [Cynara cardunculus L. var. sylvestris (Lamk) Fiori] detected by AFLPs and SSRs. Plant Science 169, 199-210.

RACCUIA SA, PUGLIA G, PAPPALARDO H, ARGENTO S, LEONARDI C, CALDERARO P, \& MELILLI MG (2016) Dormancy-related genes isolation in Cynara cardunculus var. sylvestris. In 2015 IX International Symposium on Artichoke, Cardoon and Their Wild Relatives 1147 (eds. SM GARCIA \& VP CRAVERO). (29 September, La Plata, Argentina). 315-322. International Society for Horticultural Science, Leuven, Belgium.

RACCUIA SA, CAVALLARO V \& MELILLI MG (2004) Intraspecific variability in Cynara cardunculus L. var. sylvestris Lam. Sicilian populations: seed germination under salt and moisture stresses. Journal of Arid Environments 56, 107-116.

RAMIREZ AHM, JHALA AJ \& SINGH M (2014) Factors affecting germination of citron melon (Citrullus lanatus var. citroides). Weed science 62, 45-50.

SCHÜTZ W, MILBERG P \& LAMONT BB (2002) Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Annals of Botany 90, 707714.

SINGH M, RAMIREZ AH, SHARMA SD \& JHALA AJ (2012) Factors affecting the germination of tall morninglory (Ipomoea purpurea). Weed science 60, 64-68.

SONNANTE G, PIGNONE D \& HAMMER K (2007) The domestication of artichoke and cardoon: from Roman times to the genomic age. Annals of Botany 100, 1095-100.

SOUMAYA K, CHAOUACHI F, KSOURI R \& EL GAZZAH M (2013) Polyphenolic composition in different organs of Tunisia populations of Cynara cardunculus. L and their antioxidant activity. Journal of Food and Nutrition Research 1, 1-6.

STEADMAN KJ., CRAWFORD AD \& GALLAGHER RS (2003) Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Functional Plant Biology 30, 345-352.

THANOS CA, GEORGHIOU K, \& PASSAM HC (1989) Osmoconditioning and ageing of pepper
seeds during storage. Annals of Botany 63, 65-70.
WHITE VA \& HOLT JS (2005) Competition of artichoke thistle (Cynara cardunculus) with native and exotic grassland species. Weed Science 53, .826-833.

ZAPIOLA ML \& MALLORY-SMITH CA (2010) Soaking time and water temperature impact on creeping bentgrass Seed germination. Weed Science 58, .223-228.

Figure legends

Fig. 1 (A) Imbibition of Cynara cardunculus achenes incubated at fluctuating temperatures (20/10 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$ thermoperiod) (solid symbols) and constant temperatures $\left(15^{\circ} \mathrm{C}\right)$ (empty symbols) in relation to incubation time (d). (B) Cumulative germination time courses of Cynara cardunculus achenes incubated at fluctuating $\left(20 / 10^{\circ} \mathrm{C}, 12 \mathrm{~h}\right.$ thermoperiod) (closed symbols) and constant temperatures (15C) (open symbols). Data are means of triplicates \pm SE. When observed, vertical bars are \pm SE.

Fig. 2 (A) Final germination of Cynara cardunculus achenes incubated in water at constant $15^{\circ} \mathrm{C}$ after different $\mathrm{H}_{2} \mathrm{SO}_{4}$ soaking times and incubated in water at fluctuating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ (black column). Data obtained at $15^{\circ} \mathrm{C}$ were fitted using an exponential plus linear regression model $\left(\mathrm{R}^{2}=1\right)$, (B) Final germination of Cynara cardunculus scarified achenes incubated in water at constant $15^{\circ} \mathrm{C}$ (white column) and non-scarified achenes incubated in water at constant $15^{\circ} \mathrm{C}$ (white column) and at fluctuating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ (black column). T bars indicate SE. Different letters at the top of each bar indicate significant differences according Tukey's Test $\langle\alpha=0.05$).

Fig. 3 (A) Germination of Cynara cardunculus achenes incubated at constant $15{ }^{\circ} \mathrm{C}$ in different $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations and in water at fluctuating temperatures $\left(20 / 10{ }^{\circ} \mathrm{C}\right.$) (black column). (B) Germination of Cynara cardunculus achenes incubated in water at constant 15 C after different NaClO soaking times and in water at fluctuating temperatures $\left(20 / 10{ }^{\circ} \mathrm{C}\right)$ (black column). Data obtained at $15^{\circ} \mathrm{C}$ were fitted by an exponential plus lineal model $\left(\mathrm{a}+\mathrm{b}^{*} \mathrm{r}^{\wedge} \mathrm{x}+\mathrm{c}^{*} \mathrm{x}\right)$ with the following parameters: $a=6.32, b=-3.34, c=-1.02$ and $r=1.87$ with $a R^{2}=0.99 ; S E=19$. (C) Germination of Cynara cardunculus achenes incubated at constant $15^{\circ} \mathrm{C}$ in a KNO_{3} solution (white column) and in water, at constant 15 C (white column) and at fluctuating temperatures $\left(20 / 10{ }^{\circ} \mathrm{C}\right)$ (black column). T bars indicate the SE. Different letters at the top of each bar indicate significant
differences according multiple comparisons Krustal-Wallis's Test (A) and Tukey's test (C) $\langle\alpha=$ $0.05)$.

Fig. 4 Germination of Cynara cardunculus achenes collected at Olavarría in 2013 incubated in water at fluctuating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ (black column) and at constant $15^{\circ} \mathrm{C}$ (white column). Figure in the first column indicate germination of fresh achenes. Second and subsequent columns represent germination throughout different durations of achenes storage ($15,30,45,60$ and 75 days) whilst rows represent different storage conditions $\left(6^{\circ} \mathrm{C}\right.$ humid and dry, $\left.15,25^{\circ} \mathrm{C}\right)$. Bars indicate the SE.

Fig. 5 Germination of Cynara cardunculus achenes collected at Abasto in 2013 incubated in water at fluctuating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$ (black column) and at constant $15^{\circ} \mathrm{C}$ (white column). Figure in the first column indicate germination of fresh achenes. Second and subsequent columns represent germination throughout different durations of achenes storage (10, 20, 30 and 40 days) whilst rows represent different storage conditions $\left(6^{\circ} \mathrm{C}\right.$ humid and dry, $\left.15,25^{\circ} \mathrm{C}\right)$ tested during storage. Bars indicate the SE .

Fig. 6 (A) Final germination of achenes incubated in water at a range of constant and fluctuating temperatures. T bars indicate the SE. Different letters at the top of each bar indicate significant differences according Tukey's Test $\langle\alpha=0.05$). (B) Germination dynamics at a range of water potential (-MPa.). T bars indicate the SE. Data were fitted using a sigmoidal dose-response (variable slope $)$ model $\left(\mathrm{Y}=\right.$ Bottom $+($ Top-Bottom $\left.) / 1+10^{\operatorname{LogEC} 50-\mathrm{X}}\right)$ with the following parameters: Bottom $=$ $-68.23, \mathrm{Top}=118.8, \operatorname{LogEC} 50=0.91, \mathrm{EC} 50=8.29$ with a $\mathrm{R}^{2}=0.95$.

Fig. 7 (A) Effect of depth of burial on Cynara cardunculus seedlings emergence. T bars indicate the SE. Data were fitted using an exponential (plateau followed one phase decay) model ($\mathrm{Y}=\mathrm{IF}$ ($\mathrm{X}<\mathrm{X} 0$, Y 0 , Plateau $\left.+(\mathrm{Y} 0-\mathrm{Plateau}) * \exp \left(-\mathrm{K}^{*}(\mathrm{X}-\mathrm{X} 0)\right)\right)$ with the following parameters: $\mathrm{X} 0=1, \mathrm{Y}=59.37$, Plateau $=-179.2, \mathrm{~K}=0.037$ with a $\mathrm{R}^{2}=0.58$ and a SE 7.71 . (B) Effect of different cover amounts on Cynara cardunculus seedling emergence. T bars indicate the SE. Data were fitted using a lineal model (slope $=1.44$, Y-intercept $=57.7$ and X intercept $=-39.86 .(\mathrm{C})$ Effect of different flooding durations on Cynara cardunculus seedling emergence. T bars indicate the SE. Data were fitted using a lineal model with a $\mathrm{R}^{2}=0.97$ (slope $=-3.03, \mathrm{Y}$-intercept $=63.64$ and X -intercept $=20.98$).

Figure 2

A

B

Figure 3

Figure 4
Treatments duration

$30 d$	$45 d$	$60 d$
	Cold stratification at $6{ }^{\circ} \mathrm{C}$	

Dry afterripenning at $25^{\circ} \mathrm{C}$

Figure 5
10 d
Treatments duration 20 d 30 d 40 d

Cold stratification at $6^{\circ} \mathrm{C}$

Fresh seeds

Dry afterripenning at $25^{\circ} \mathrm{C}$
alternating temperatures (20/10 $\left.{ }^{\circ} \mathrm{C}\right) / /$constant temperatures ($\left.15{ }^{\circ} \mathrm{C}\right)$

Figure 6

A

Temperature (${ }^{\circ} \mathrm{C}$)

Figure 1

B

\square Constant temperature $\left(15^{\circ} \mathrm{C}\right)$
Fluctuating temperatures $\left(20 / 10^{\circ} \mathrm{C}\right)$

C

