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SUMMARY

We have uncovered a role for Jumonji inhibitors in overcoming radioresistance through KDM5B 

inhibition. Pharmacological blockade of Jumonji demethy-lases with JIB-04 leads to specific 

accumulation of H3K4me3 at sites marked by γH2AX and impaired recruitment of DNA repair 

factors, preventing resolution of damage and resulting in robust sensitization to radiation therapy. 

In DNA-repair-proficient cancer cells, knockdown of the H3K4me3 demethylase KDM5B, but not 

other Jumonji enzymes, mimics pharmacological inhibition, and KDM5B overexpression rescues 

this phenotype and increases radioresistance. The H3K4me3 demethylase inhibitor PBIT also 

sensitizes cancer cells to radiation, while an H3K27me3 demethylase inhibitor does not. In vivo 
co-administration of radiation with JIB-04 significantly prolongs the survival of mice with tumors 

even long after cessation of treatment. In human patients, lung squamous cell carcinomas highly 

ex-pressing KDM5B respond poorly to radiation. Thus, we propose the use of Jumonji KDM 

inhibitors as potent radiosensitizers.
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Radioresistance is an obstacle to lung cancer cures. Bayo et al. reveal that JARID1B removes 

H3K4me3 marks at sites of DNA damage. Genetic or pharmacological inhibition of JARID1B 

robustly radiosensitizes cancers in vitro and in vivo through defects in DNA repair, providing a 

therapeutic option for radioresistant tumors.

Graphical Abstract

INTRODUCTION

Toxicity from and resistance to radiation therapy constitutes a major obstacle to curative 

treatments for non-small cell lung cancer (NSCLC) and other solid malignancies. Current 

regimens for radiation therapy employ radiation alone or concurrent with cycles of standard 

chemotherapy (Das et al., 2010; Song et al., 2014). This is often limited by toxicity to 

normal tissues and is complicated by the development of resistance (Anscher, 2010; Crinó et 

al., 2010; Eberhardt et al., 2006; Falkson et al., 2017; Howington et al., 2013). Although the 

use of targeted therapies to radiosensitize is not yet current practice, DNA repair inhibitors, 

for example, have been tested in preclinical models and show efficacy (Gil del Alcazar et al., 

2014, 2016; Provencio and Sa´ nchez, 2014; Tofilon and Camphausen, 2009).

Ionizing radiation (IR) results in a wide variety of chromosomal DNA damage, with double-

strand DNA breaks (DSBs) being the main lesion involved in mitotic failure and cell death 

(Ward, 1988). As a response to DSBs, a highly regulated signaling pathway is activated to 

initiate repair mechanisms including homologous recombination (HR) or non-homologous 

end joining (NHEJ), de-pending on cell-cycle phase and cellular state (Chapman et al., 2012; 

Jeggo et al., 2011). One of the earliest events in this cascade is the phosphorylation by the 

serine/threonine kinase ataxia telangiectasia mutated (ATM) of a histone variant, H2AX, 

which marks sites of damage and triggers the recruitment of the repair machinery (Firsanov 

et al., 2011; Karagiannis and ElOsta, 2007; Kinner et al., 2008). 53BP1 is subsequently 

recruited, and its Tudor domain is thought to function in reading the methylation state of the 
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chromatin at damage sites (Mallette et al., 2012). Other histone modifiers, especially 

methylation readers and erasers, directly or indirectly also mediate aspects of DSB repair 

(Fnu et al., 2011; Hunt et al., 2013; Watanabe et al., 2013). In active euchromatic regions, 

for instance, it has been reported that transcription is halted upon DNA damage, and this is 

mediated at least in part by the recruitment of repressive complexes, including PRC1, and by 

ubiquitination of H2A (Ui et al., 2015; Wu et al., 2013). Heterochromatin regions marked by 

H3K9me3 are more refractory to DSB repair (Goodarzi et al., 2008; Janssen et al., 2016; 

Tsouroula et al., 2016), and thus, for example, the Jumonji histone demethylases KDM4B 

and KDM4D appear to be recruited to DSB sites early on to reduce H3K9me3/H3K9me2 

local levels (Young et al., 2013). A further example is given by a recent report that 

uncovered a role of JMJD5 or KDM8 in the late stages of HR via regulation of H3K36me2 

marks (Amendola et al., 2017).

We have identified and characterized an inhibitor of Jumonji enzymes, JIB-04, that 

selectively targets lung cancer cells versus normal cells (Bayo et al., 2015; Dalvi et al., 2017; 

Wang et al., 2013). In the present study, we demonstrate that JIB-04 and inhibitors of 

H3K4me3 demethylases, but not of H3K27me3 demethylases, sensitize radioresistant 

NSCLC to radiation, impairing both NHEJ and HR. JIB-04 causes the retention of 

H3K4me3 marks near DSBs and impairs recruitment of repair factors. Overexpression of the 

H3K4me3 demethylase KDM5B, a target of JIB-04 inhibition, rescues the DNA repair 

defects induced by JIB-04. Increasing the levels of KDM5B also abolishes the 

radiosensitization action of JIB-04 and promotes radiation resistance. In vivo, Jumonji 

inhibition robustly enhances the effects of radiation treatment and prolongs survival. 

Analysis of cancer patient data uncovered a correlation between high expression of KDM5B 

and radiation resistance in human lung tumors. This work suggests that KDM5B plays an 

essential role in the repair of DSB at transcriptionally active loci and has implications for the 

treatment of radiation resistant cancers and for achieving enhanced response to radiation 

therapy in patients. Thus, we provide proof-of-principle studies in support of the use of 

Jumonji or KDM5 inhibitors to overcome radiation resistance.

RESULTS

Inhibitionof Jumonji Enzymes withJIB-04 Enhances the Response of Cancer Cells to 
Radiation

We first evaluated whether inhibition of Jumonji histone demethylases, which should 

increase histone methylation, would alter the response to radiation due to the underlying 

known connections between histone methylation and DNA repair. To this end, we treated 

radioresistant NSCLC lines H1299 or A549 with our pan-selective Jumonji inhibitor JIB-04 

(Dalvi et al., 2017; Martinez and Gazdar, 2016; Wang et al., 2013) or vehicle, and then 

exposed the cells to increasing levels of IR. Colony-formation IC50 doses of JIB-04 were 

calculated to be in the nano-molar range (Figure S1A) and were used in combination with 

radiotherapy in standard colony-formation assays. Treatment with JIB-04 4 hr prior to IR 

exposure robustly increased the intrinsic radiosensitivity of these radioresistant cell lines 

(Figures 1A and 1B) and markedly decreased the surviving fraction at 2 Gy radiation (SF2) 

(Table S1). Only the active E-isomer of JIB-04 had this radiosensitizing effect, which was 
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not observed with the inactive Z-isomer (Wang et al., 2013). Sensitization to radiation and 

decreased SF2 were also seen for multiple other strongly or moderately radioresistant 

NSCLC lines tested, as well as for other tumor types (Table S1; Figures S1B and S1C). 

These changes in SF2 values are more robust than what has been reported, such as for 

PARP1 inhibitors in various cancer types (Lesueur et al., 2017). Interestingly, the dose 

enhancement ratio at 25% cell kill, DER25 (the radiation dose required to reduce the 

survival fraction to 25% in the absence or presence of JIB-04) was higher for cells that were 

more radioresistant and consequently had high SF2 values than for cells with intrinsically 

lower SF2 values (Table S1). Additionally, the radiosensitization caused by JIB-04, as 

measured by decreasing SF2 values, was dose dependent (Figures 1C and 1D).

To evaluate the optimal timing of Jumonji inhibition for enhancing the response to radiation, 

we compared the effects of administering JIB-04 prior to versus after IR in NSCLC lines 

(Figure S1D). Sensitization was observed under both conditions but was significantly more 

robust when administering JIB-04 4 hr prior to IR (Figure S1E). Thus, the radiosensitization 

action of JIB-04 is most effective before DNA repair begins in response to radiation damage. 

Taken together, these data suggest the Jumonji inhibitor may act upstream of or impact DNA 

repair.

γH2AX and 53BP1 Foci Resolution after IR Is Delayed by JIB-04, but Not GSK-J4, 
Treatment

To determine whether JIB-04 radiosensitizes cells by affecting DNA repair, repair-proficient 

NSCLC cells (H1299 and A549) were pretreated for 4 hr with colony-formation IC50 doses 

of this pan-Jumonji inhibitor (Figure S1A) and then exposed to IR in the continuous 

presence of the drug. In JIB-04-treated cells, ATM signaling was activated in response to IR 

similar to the vehicle control (Figure S2A) and calculated to be in theH2AX foci formation 

was also intact (Figures 2A and 2B, 15 min, red channel). However, the time-dependent 

decrease in γH2AX foci corresponding to damage resolution was significantly impaired in 

the presence of JIB-04 (Figures 2A and 2B, red channel and upper bar graphs) with >30% of 

foci remaining unresolved even at late time points. Similarly, 53BP1 foci resolution was 

defective in cells treated with IR plus JIB-04 compared to IR alone, and foci accumulation 

re-mained (Figures 2A and 2B, green channel and lower bar graph). The same was true in 

other radioresistant NSCLC lines (Table S2). Importantly, JIB-04 on its own did not cause 

DNA damage (Figure S2B). JIB-04 also prevented resolution of DNA damage in prostate 

cancer LNCaP cells (Figure S2C). Furthermore, the defects in DNA repair dynamics 

induced by JIB-04 were not the result of altered distribution of cells through the cell cycle or 

of preventing the signature G2/M arrest caused by IR (Figures S3A and S3B).

We then evaluated the effects of another Jumonji inhibitor, GSK-J4, on the DNA repair 

process. In contrast to the pan-inhibition of Jumonji enzymes seen with JIB-04 (Dalvi et al., 

2017; Wang et al., 2013), GSK-J4 has been reported to more specifically target Jumonji 

H3K27 demethylases at low or moderate doses (Kruidenier et al., 2012). We have previously 

confirmed that in NSCLC cells, including H1299, GSK-J4 only affects H3K27me3 

demethylation and not H3K4me3 or H3K9me3 de-methylation and that this specificity is 

maintained in vivo (Dalvi et al., 2017; see Figure 6F in Dalvi et al., 2017). Here, we first 
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established GSK-J4’s potency against H1299 and A549 NSCLCs in colony-formation assays 

(Figure S3C) and then exposed cells to IC50 doses in the presence of radiation, as done with 

JIB-04. In contrast to JIB-04, however, GSK-J4 failed to sensitize radioresistant NSCLC 

cells (Figure S3D). Consistent with this result, GSK-J4 had no impact on the resolution of 

IR-induced damage as measured by γH2AX or 53BP1 foci resolution in H1299 (Figure 

S4A) or A549 cells (Figure S4B). This indicated that targets specific to JIB-04, but not 

GSK-J4, under the tested conditions (likely H3K4me3 and/or H3K9me3 demethylases) (see 

Dalvi et al., 2017, Figures 6F and 6G) play a role in DNA repair dynamics and radiation 

sensitivity in NSCLC.

Inhibition of Jumonji Enzymes Does Not Radiosensitize or Affect the DNA Repair 
Dynamics of Normal Cells

We have previously established that JIB-04 specifically inhibits the viability of cancer cells, 

but not normal cells, and selectively alters cancer cell transcription (Dalvi et al., 2017; Wang 

et al., 2013). To determine whether the effect of JIB-04 on DNA repair dynamics described 

above was also cancer-selective, we evaluated the response to radiation of two different 

normal human bronchial epithelial cell (HBEC) lines derived from two distinct patients and 

immortalized for culture, HBEC3KT and HBEC30KT, which remain non-tumorigenic (Sato 

et al., 2006, 2013). IC50 doses of JIB-04 in colony-formation assays (Figure 3A) were used 

to pretreat cells 4 hr prior to radiation, and then survival was measured as before. 

Remarkably, JIB-04 did not radiosensitize these normal cells (Figure 3B). In agreement with 

these findings, in normal cells treated with inhibitor, no defects were found in γH2AX foci 

formation in response to IR in foci resolution over a time course (Figure 3C), or in DNA 

damage signaling (Figure S3E). These data indicate that the DNA repair deficiency and 

consequent radiosensitization triggered by JIB-04 are cancer specific.

JIB-04 Lowers the Efficiency of Both NHEJ and HR

To understand the mechanism for the delayed resolution of IR-induced damage seen in 

cancer cells in the presence of JIB-04, we measured the efficiency of repair by NHEJ and 

HR, the two main pathways of cellular DSB repair. Established plasmid-based reporter 

systems were used for this purpose (Seluanov et al., 2010). H1299 cells containing the stably 

integrated NHEJ or HR constructs depicted in Figure 4A were transfected with an I-Sce1 

expression vector to induce DNA breaks and with an mCherry plasmid to control for 

transfection efficiency. Transfected cells treated with JIB-04 or vehicle were then assayed by 

fluorescence-activated cell sorting (FACS) for GFP expression as a measure of repair. As 

demonstrated in Figures 4B and S5A, both NHEJ and HR were significantly inhibited in the 

presence of JIB-04 to 50% or less of normal levels. These results were confirmed in other 

tumor types, which gave highly similar results (Figures S5B–S5D). In addition, NSCLC 

cells endogenously deficient in DNA repair and thus highly sensitive to IR were not further 

sensitized by JIB-04 (Figure S5E). Taken together, these findings point to a common 

upstream defect in the repair of DSBs caused by JIB-04, affecting both NHEJ and HR and 

leading to radiosensitization in DNA-repair-proficient cells. Thus, we next measured the 

recruitment of repair factors to sites of damage.

Bayo et al. Page 5

Cell Rep. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



JIB-04 Blocks the Recruitment of DNA-PKcs and RAD51 to Sites of Damage and Inhibits 
Foci Resolution

The DNA-dependent protein kinase DNA-PKcs acts at sites of damage to mediate repair by 

NHEJ. Since we observed decreased efficiency of DNA repair by NHEJ after IR in cells 

treated with JIB-04, we measured the dynamics of active DNAPKcs foci formation and 

resolution. H1299 cells treated with IR readily formed DNA-PKcs pT2609 foci by 1 hr, and 

these foci were largely resolved by 24 hr (Figures 4C and 4D, white bars). In contrast, cells 

treated with JIB-04 plus IR exhibited a clear deficiency in forming active DNA-PKcs foci 

with delayed foci formation post-IR. In addition, the majority of DNA-PKcs pT2609 foci 

remained unresolved even 24 hr post-irradiation in the presence of the inhibitor (Figures 4C 

and 4D, black bars). Thus, JIB-04 both impaired the timely recruitment of active DNA-PKcs 

to sites of damage and blocked their resolution.

To determine whether JIB-04 was also impairing proper recruitment of HR factors to sites of 

damage, we measured RAD51 foci formation and resolution over a time course. 

Accumulation of RAD51 near DSBs was not seen at 3 hr but was readily detected by 6 hr in 

H1299 cells, consistent with the slower timing of HR compared to NHEJ (Figures 4E and 

4F, white bars). JIB-04 treatment significantly diminished RAD51 recruitment and 

additionally impaired foci resolution, with a large percentage of foci remaining at late time 

points (Figures 4E and 4F, black bars). A similar behavior was observed in A549 cells 

(Figure S5F). Collectively, these data confirm that JIB-04 affects an aspect of DSB repair 

common to both NHEJ and HR.

Jumonji Inhibition by JIB-04 Results in H3K4me3, but Not H3K9me3, Enrichment at DSBs

Heterochromatin marked by H3K9me3 is more refractory to DNA repair than euchromatin 

(Chiolo et al., 2013). In euchromatin, H3K4me3 at transcriptionally active genes must likely 

be demethylated upon DNA damage in order to stop transcription until the DNA is repaired 

(Aymard et al., 2014; Iacovoni et al., 2010; Seiler et al., 2011; Solovjeva et al., 2007; Ui et 

al., 2015). Since inhibition of Jumonji histone demethylase enzymes with JIB-04 can result 

in increased histone methylation levels, we hypothesized that H3K4me3 or H3K9me3 marks 

may be accumulating around DSBs in drug-treated cells, contributing to defective repair 

factor recruitment and defective resolution of damage. To test this possibility, we 

immunoprecipitated global DNA fragments digested to single nucleosome size associated 

with γH2AX and then measured H3K4me3 or H3K9me3 levels at these sites of damage in 

cells treated with IR alone or with IR plus JIB-04 or DMSO vehicle. Surprisingly, there were 

no changes in H3K9me3 levels induced by JIB-04 at nucleosomes marked by γH2AX 

(Figures 5A and 5B, right panels). However, JIB-04 markedly increased H3K4me3 at these 

sites (Figures 5A and 5B, left panels). Consistent with this result, we found that the total 

enzy-matic activity of H3K4me3 Jumonji demethylasess (Figure 5C),but not that of 

H3K9me3 demethylases (Figure 5D), could be increased upon IR exposure and that just 4 hr 

of pretreatment with JIB-04 blocked this IR-induced increase in enzyme activity (Figures 5C 

and 5D). Under these experimental conditions, we again observed accumulation of γH2AX 

but no measurable changes in global histone marks (Figures S6A–S6C). While JIB04 

treatment resulted in H3K4me3 accumulation at γH2AX-positive nucleosomes (Figures 5A 

and 5B, left panels), we did not see significant defects in Ku70 recruitment or protein levels 
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after inhibition in NSCLC (Figures S6D and S6E), in contrast to the defects seen in DNA-

PKcs and RAD51 above. To confirm that H3K4me3 levels were accumulating at DSBs, we 

performed chromatin immunoprecipitation (ChIP)/re-precipitation (re-ChIP) experiments in 

H1299 cells harboring an engineered I-Sce1 cut site. Chromatin immunoprecipitation of 

DNA associated with γH2AX followed by re-ChIP with H3K4me3 antibodies revealed 

enrichment of DNA fragments at and adjacent to the site of DSB in JIB-04 treated cells, as 

revealed by qPCR (Figure 5E). This enrichment was not seen in a control genomic region 

(Figure 5E). Together, these results indicate that an H3K4me3 Jumonji demethylase 

enzyme(s) may be inhibited by JIB-04 during the response to IR, leading to the specific 

accumulation of its trimethylated histone substrate at transcriptionally active regions 

harboring DNA damage.

Jumonji KDM Enzyme Knockdown Phenocopies the JIB-04 Repair Defect, and 
Overexpression of KDM5B Rescues It

To directly address whether JIB-04 was targeting a specific Jumonji demethylase after IR, 

we evaluated whether genetic downregulation of Jumonji demethylases would phenocopy 

the effects of JIB-04, resulting in defects in DSB repair. Knockdown of KDM5B or 

KDM4B, but not of other H3K4me3 or H3K9me3 Jumonji demethylases screened, resulted 

in accumulation of unresolved γH2AX and 53BP foci (Figures S7A–S7D, 6A, and 6B). To 

define which of these enzymes might be the target of JIB-04 in NSCLC leading to the drug-

induced defect in DSB repair, we performed rescue experiments. KDM5B, but not KDM4B, 

overexpression rescued the JIB-04-induced accumulation of unresolved γH2AX and 53BP 

foci (Figures 6C, 6D, S7E, and S7F). The accumulation of unresolved DSBs seen in 

KDM4B knockdown NSCLC cells (Figures 6A and 6B) is likely due to further DNA 

damage, as has been reported to occur in other cancer cell types upon KDM4B depletion 

(Chen et al., 2014; Young et al., 2013; Zheng et al., 2014). Thus, among H3K4me3 and 

H3K9me3 demethylases, KDM5B plays an important role in the DNA damage response, 

and its genetic or pharmacological inhibition triggers a defect in DSB repair that can be 

exploited therapeutically to enhance radiation sensitivity. This is in line with the higher 

sensitivity to JIB-04 of KDM5/JARID enzymes compared to other Jumonji demethylases 

that we have observed in vitro (Wang et al., 2013). In further support of this conclusion, the 

KDM5 inhibitor PBIT (Sayegh et al., 2013) also ra-diosensitized multiple NSCLCs (Figures 

S7G and S7H) similar to JIB-04 and in contrast to the lack of effect of GSK-J4 (Figure S4). 

We used PBIT for this study because of its higher potency in our system compared to the 

other available KDM5 inhibitor, CPI-455 (Vinogradova et al., 2016), as seen in Figures S7G 

and S7H. These results are in agreement with the reported recruitment of KDM5B to sites of 

DSBs seen in another system (Li et al., 2014) and indicate a role for demethylation of 

H3K4me3 at tran-scriptionally active loci harboring DNA damage in NSCLCs.

To gain further mechanistic insights into the role of KDM5B in DSB repair and the 

enhanced response to IR in the presence of JIB-04, we overexpressed KDM5B in NSCLCs 

competent for DNA repair and measured their survival to IR with or without JIB-04. 

Remarkably, in line with the rescue of JIB-04-induced γH2AX and 53BP1 foci 

accumulation (Figures 6C and 6D), KDM5B overexpression also rescued the survival of 

JIB-04treated cells exposed to IR compared to control cells (Figure 6E). Furthermore, 
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KDM5B overexpression blocked JIB-04-mediated radiosensitization and decrease in 

demethylase activity, while control cells retained sensitivity and demethylase inhibition, 

confirming KDM5B is the main cellular target of JIB-04 yielding the radiosensitization 

phenotype (Figures 6F and S7I–S7J).

JIB-04 Blocks H3K4me3 Demethylation In vivo, Radiosensitizes Tumors, and Prolongs the 
Survival of Tumor-Bearing Mice

To determine whether Jumonji inhibition results in radiosensitization and tumor regression 

in vivo, we generated subcutaneous tumors of H1299 cells. Tumors were established to a 

volume of 200 mm3 before initiating treatment with JIB-04, IR, or JIB-04 plus IR as 

described in detail in STAR Methods. JIB-04 was used as the inhibitor of choice because of 

its known activity in mice (Dalvi et al., 2017; Wang et al., 2013) compared to other KDM5 

inhibitors. Treatment of tumor-bearing mice with the combination of JIB-04 plus IR gave 

robust synergistic inhibition of tumor growth compared to either treatment alone (Figure 7A, 

left panel). Indeed, tumors treated with the combined therapy grew significantly slower than 

those treated with vehicle or either single agent. This was seen, for example, by a large dose 

enhancement factor of 6.5 for time to reach a volume of 500 mm3. Whereas it took 5–8 days 

on average for tumors treated with vehicle, JIB-04 alone, or IR to reach this volume, tumors 

in animals receiving JIB-04 with IR took 22 days to reach this size.

We also evaluated whether the radiosensitizing effects of JIB04 translated into longer 

survival of tumor-bearing animals after treatment. As can be seen in Figure 7A (right panel), 

mice treated with JIB-04 and IR survived significantly longer than mice treated with either 

agent alone or vehicle. This was a sustained effect, maintained even weeks after the end of 

treatment, giving the animals a median survival of 55 days compared to 14 days in the 

vehicle-treated cohort, 16 days with JIB-04 alone, or 36 days in the IR group. Thus, there 

was strong synergy between JIB04 and IR in vivo as shown by both robust reduction in 

tumor growth rate and increased median survival, even after cessation of treatment. Strong 

synergy between JIB-04 and IR in vivo and robust increase in survival was also seen in 

A549 xenograft tumors (Figure 7B), fully confirming these results in a second model. 

Furthermore, lysates of tumors harvested from each treatment group at the time of sacrifice 

showed a significant increase in H3K4me3 demethylase activity after IR and an inhibition of 

this increase by JIB-04 (Figures 7C and 7D), consistent with our earlier observations in cells 

(Figure 5C), suggesting that the KDM5B pathway is also relevant in vivo. No overt toxicities 

were observed in the combination treatments (Figure S8). Finally, we queried lung cancer 

The Cancer Genome Atlas (TCGA) data to determine whether levels of KDM5B correlate 

with the clinical response to radiation therapy in human patients. We found that high levels 

of KDM5B correlate with radioresistance among patients with lung squamous cell 

carcinomas, while no significant correlation was seen with the other members of the KDM5 

or KDM4 subfamilies (Table S3).

DISCUSSION

Jumonji enzymes have been reported to play roles in DNA repair pathways. It has been 

suggested, for example, that chromatin dissociation of the H3K36me2 demethylase KDM2A 
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in response to ATM phosphorylation is critical for the NHEJ process (Cao et al., 2016; Fnu 

et al., 2011). Likewise, KDM4A degradation is required at sites of DNA damage, since it 

competes with 53BP1 for binding to H4K20me through its Tudor domain (Mallette et al., 

2012). In this study, we have uncovered a role for KDM5B in demethylation of H3K4me3 at 

and near sites of DNA damage and an IR-induced increase in H3K4me3 demethylase 

activity in lung cancer cells and in tumors in vivo. We show that the catalytic activity of 

KDM5B is required to mediate full and efficient repair of DSBs. Importantly, we have 

identified a pharmacological preclinical strategy to impair this activity in vivo leading to 

radiosensitization of tumors by the Jumonji inhibitor JIB-04. Mechanistically, inhibition of 

KDM5B activity results in defective recruitment of repair factors, lower efficacy of repair by 

both HR and NHEJ, and consequently radiosensitization of lung cancer cells and tumors. 

Knockdown of KDM5B, in turn, phenocopies the effects of pharmacological inhibition of 

this enzyme on DNA repair, consistent with the radiosensitizing effects of silencing KDM5B 

in oral carcinomas (Lin et al., 2015). Overexpression of KDM5B reverts both the DNA 

repair defects and the radiosensitization induced by JIB-04 treatment, indicating KDM5B is 

the main target of JIB-04 inhibition under conditions of IR damage in DNA-repair-proficient 

cells. Other actions of JIB-04 in addition to KDM5B inhibition may possibly further 

enhance the radiosensitization phenotype.

Our overall findings are in agreement with the reported importance of KDM5B in 

maintaining genome stability (Li et al., 2014) and support the idea that H3K4me3 

demethylation and partial chromatin condensation may be required for efficient recruitment 

of repair factors at active chromatin (Burgess et al., 2014; Li et al., 2014; Seiler et al., 2011). 

The enhanced response to radiation triggered by inhibition of KDM5B activity appears to be 

the result of inefficient DNA repair. Upon Jumonji inhibition, repair factor recruitment and 

resolution of DSB are defective due to the accumulation of H3K4me3 marks at 

transcriptionally active regions harboring damage. Specifically, we observe delayed 

phospho-DNA-PKcs and RAD51 recruitment and defects in resolution under conditions that 

accumulate H3K4me3 near DSB, in conceptual agreement with the reported defect in Ku70 

and BRCA1 binding at DBS after KDM5B knockout in osteosarcoma cells (Li et al., 2014). 

In NSCLCs, however, we do not observe measurable changes in Ku70 at sites of DSBs 

induced by IR. Based on this, we propose that the DNA damage response superactivates 

KDM5B to demethylate H3K4me3 at transcriptionally active genomic regions harboring 

DNA DSBs. This action of KDM5B would halter transcription at these open chromatin sites 

until repair is finalized, consistent with the suggestion that there is active demethylation of 

H3K4me3 at sites of DSB (Seiler et al., 2011). This model complements the existing view 

that ATM activation leads to the phosphorylation of the ENL transcriptional elongation 

factor, the recruitment of the PRC1 complex, and the ubiquitination of H2A at 

transcriptionally active sites harboring DNA damage to silence transcription (Ui et al., 

2015). Our data suggest that in addition, the active demethylation of H3K4me3 at these sites 

by KDM5B is a likely necessary parallel step that allows the haltering of transcription and 

efficient repair factor binding at and near DSB (Li et al., 2014).

The engagement of KDM5B in the cellular response to DSBs induced by IR defines a 

therapeutic opportunity. As we show here, pharmacological inhibition of its demethylase 

activity with JIB-04 or PBIT results in tumor cell radiosensitization. The in vivo synergy we 
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observe between IR and JIB-04 treatment, together with the robust extension of lifespan and 

increased survival even weeks post treatment, points to a clear clinical potential for this type 

of approach. Our finding that lung cancer patients whose squamous cell tumors express high 

levels of KDM5B are more refractory to radiation therapy highlights the clinical relevance of 

our observations. Our study suggests this radioresistance may be overcome by 

pharmacological inhibition of KDM5 enzyme activity, establishing a paradigm where 

histone methylation at DSBs can be safely targeted to modulate the response to IR.

STAR★METHODS

KEY RESOURCES TABLE
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti–phospho-Histone γH2AX (Ser139) Millipore Cat#05–636; RRID: AB_309864

Anti–tri-methyl-histone H3K9 Millipore Cat#07-442; RRID: AB_310620

Anti-tri-methyl-histone H3K4 Millipore Cat#07-473; RRID: AB_1977252

Anti-53BP1 Cell Signaling Technology Cat#4937; RRID: AB_106954558

Anti-KDM5B Cell Signaling Technology Cat#3273; RRID: AB_1264191

Anti-KDM4B Cell Signaling Technology Cat#D7E6; RRID: AB_11140642

Anti-mouse IgG-HRP linked Cell Signaling Technology Cat#7076; RRID: AB_330924

Anti–Rad51 Abcam Cat#ab-213; RRID: AB_302856

Anti-DNA-PKcs p-T2609 Abcam Cat#ab-18356; RRID: AB_444447

Anti-H3 Abcam Cat#ab-12079; RRID: AB_298834

Anti-HA (3F10) Roche Cat#11867423001; RRID: AB_10094468

Anti-Flag (M2) Sigma-Aldrich Cat#F1804; RRID: AB_262044

Anti-tubulin Sigma-Aldrich Cat#T5168; RRID: AB_477579

Anti-KDM5A Bethyl Cat#A300-897A: RRID: AB_2234038

Anti-KDM4A Bethyl Cat#A300-861A; RRID: AB_069461

Anti-KDM5C Novus Biological Cat#NB100-55328; RRID n/a

Anti-Ku70 Santa Cruz Cat#sc-1487; RRID: AB_632614

Anti-goat IgG HRP conjugated Santa Cruz Cat#sc-2020; RRID: AB_631728

Anti-GAPDH GeneTex Cat#GTX100118; RRID: AB_1080976

Alexa Fluor 488–conjugated goat anti-
Rabbit

Thermo Fisher Cat#A-11034; RRID: AB_2576217

Alexa Fluor 555–conjugated goat anti-
mouse

Thermo Fisher Cat#A32727; RRID: AB_2633276

Rhodamine red–conjugated goat anti-
mouse

Thermo Fisher Cat#R-6393; RRID: AB_2556550

IRDye 680RD –conjugated goat anti-
mouse

LI-COR Biosciences Cat#925-68070; RRID: AB_2651128

IRDye 800 CW –conjugated goat anti-
rabbit

LI-COR Biosciences Cat#925-32211; RRID: AB_2651127

Chemicals, Peptides, and Recombinant Proteins

JIB-04 Synthesized in-house (Wang 
et al., 2013)

N/A

GSK-J4 Tocris Bioscience Cat#4594

GSK-J5 Tocris Bioscience Cat#4689

PBIT Sigma-Aldrich Cat#PH009215

I-SceI enzyme New England Bio Labs Cat#R0694L

Critical Commercial Assays

Ingenio Electroporation kit Mirus Bio LLC Cat#MIR 50115

H3K4me3 demethylation kit Epigentek Cat#P-3083

H3K9me3 demethylation kit Epigentek Cat#P-3081
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REAGENT or RESOURCE SOURCE IDENTIFIER

EZ Magna ChIP A/G Chromatin 
Immunoprecipitation Kit

Millipore Cat#17-100086

Experimental Models: Cell Lines

U-2 OS Dr. Sandeep Burma N/A

LNCaP Dr. Phil Thorpe N/A

H1299 Dr. John D. Minna N/A

A549 Dr. John D. Minna N/A

HCC95 Dr. John D. Minna N/A

HCC1195 Dr. John D. Minna N/A

HCC2279 Dr. John D. Minna N/A

HCC1719 Dr. John D. Minna N/A

HBEC30KT Dr. John D. Minna N/A

HBEC3KT Dr. John D. Minna N/A

Experimental Models: Organisms/Strains

Female athymic nude mice (nu/nu, 5–6 
weeks old)

The Jackson Laboratory Stock #: 002019

Oligonucleotides

siRNA for Knock Down experiments See Table S5 N/A

Oligonucleotides for RealTime 
Quantitative PCR

See Table S6 N/A

Recombinant DNA

NHEJ-I reporter construct Seluanov et al. (2010) N/A

HR reporter construct Seluanov et al. (2010) N/A

Flag-KDM5B construct Dr. Ralf Janknecht N/A

HA-KDM5A construct Addgene plasmid #14799

HA-KDM4B construct Addgene plasmid #24181

HA-KDM4A construct Dr. Yang Shi N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/download.html

CellProfiler Broad Institute http://cellprofiler.org/releases/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Elisabeth D. Martinez 

(elisabeth.martinez@utsouthwestern.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—Human NSCLCs cell lines and immortalized non-cancerous human bronchial 

epithelial cells were kindly provided by Dr. John D. Minna. H1299 (male), A549 (male), 

HCC1719 (male), HCC95 (male), HCC1195 (male), HCC2270 (female) cancer cell lines 

were maintained in RPMI media with 5% fetal bovine serum. HBEC30KT (female) and 
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HBEC3KT (female) human bronchial epithelial cells were cultured in KSFM media with 

EGF and pituitary extract (KSFM supplements from GIBCO) in a humidified 37C incubator 

with 5% CO2. U-2 OS (female) cells were kindly provided by Dr. S. Burma and maintained 

in DMEM media with 10% of FBS. LNCaP (male) cells, a gift of the late Phil Thorpe, were 

cultured in RPMI media supplemented with 10% FBS and penicillin-streptomycin. All cell 

lines were verified by DNA fingerprinting with the Promega Fusion system (Cat# DC2408) 

which consists of 24 short tandem repeat (STR) markers. These loci collectively provide a 

genetic profile with a random match probability of 6 3 1029. Fingerprints were compared 

against our database of more than 2000 reference fingerprints which were collected from 

ATCC, DSMZ, JCRB, and RIKEN (Capes-Davis et al., 2013) and from our own resources 

(Gazdar et al., 2010). A match is called between two fingerprints when at least 80% of the 

alleles are identical according to the shared allele match algorithm defined by ICLAC. 

Mycoplasma contamination was tested periodically using e-Myco Mycoplasma PCR 

dectection kit (iNtRON Biotechnology, 25235).

Mice—Athymic nude mice female mice between 5 to 6 weeks were maintained with normal 

diet under standard animal housing condition. Animal experiments were carried out under 

approved IACUC protocols and followed UTSW animal care procedures (protocol number: 

APN2017–102260). NSCLC cells were injected subcutaneously (5 3 106 cells in 100 mL 

PBS H1299, 2 3 106 in 100 mL PBS A549 cells) into the right posterior leg of mice. 

Treatment was initiated when the subcutaneous tumors reached an average size of 150 to 

200 mm3. Mice were treated with JIB-04 (50 mg/kg/day) by oral gavage or with vehicle 

(12.5% Cremophor EL, 12.5% DMSO as an aqueous suspension); radiation was 

administered 4 hours after treatment. The treatment regimen consisted of a total of 12 doses 

of drug and/or IR given every other day. Tumor growth delay and the dose enhancement 

factor (DEF) were then determined. Body weight and general health were monitored every 

other day. Standard survival criteria was applied including severe lethargy, 20% weight loss, 

tumor burden > 2,000 mm3 and/or difficulty breathing. Survival data was analyzed using 

GraphPad Prism software. All differences between treatment groups were analyzed by two-

way ANOVA. For demethylase assays, animals were sacrificed 16 h after the last dose of 

treatment and tumors harvested and frozen.

METHOD DETAILS

Colony formation assays—Clonogenic cell survival of cells treated with IR alone or in 

combination with Jumonji inhibitors JIB-04, GSKJ-4, or PBIT, was analyzed by standard 

colony formation assays. JIB-04 Z-isomer, GSK-J5 and DMSO were used as controls. Cells 

were serially diluted to appropriate concentrations as shown in Table S4 and plated into 60-

mm dishes in triplicate and allowed to attach for 4 h. Then cells were treated with the 

indicated drugs and irradiated 4 h later with graded doses of radiation for concurrent 

treatment (all experiments except Figure S1C), or irradiated first and 4 h later drugs added 

for post-treatment for comparison (Figure S1C). All cells were irradiated at room 

temperature in ambient air using a 137 Cs source (Mark 1–68 irradiator, JL Shepherd & 

Associated). Surviving colonies were stained with crystal violet 10 to 14 days later and 

colonies larger than approximately 50 cells were counted. The surviving clonogenic fraction 

of irradiated cells was normalized to the plating efficiency of un-irradiated controls. The data 

Bayo et al. Page 13

Cell Rep. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are presented as the mean ± SD. The curve S = e (aD + bD2) was fitted to the experimental 

data using a least square fit algorithm with Sigma Plot 11.0 (Systat Software, Inc.). Inhibitor 

alone treatments were used to set the surviving fraction at 1.

Immunofluorescence staining—NSCLCs were seeded onto Lab-Tek II Chamber Slides 

(Thermo Fisher) and 24 hours later pretreated with JIB-04 or DMSO for 4 h. Then cells 

were exposed to a total dose of 2 Gy (γH2AX and 53BP1) or 10 Gy (RAD51 and DNAPKcs 

p-T2609) radiation. Cells were fixed in 4% formaldehyde/PBS for 15 min, permeabilized 

with 0.5% Triton X-100 for 15 min on ice, and blocked with 5% bovine serum albumin in 

PBS for 1 h. The slides were incubated with an antibody against phospho-Histone γH2AX 

(1:1000, 3 h at room temperature), 53BP1 (1:500, 3 h at room temperature), Rad-51 (1:500, 

48 h 4C) or DNAPKcs p-T2609 (1:500, 48 h 4C). Alexa Fluor 488–conjugated goat anti-

Rabbit, Alexa Fluor 555–conjugated goat anti-mouse or rhodamine red–conjugated goat 

anti-mouse secondary antibodies were used (1:1000, 1h at room temperature). Slides were 

mounted in a Vectashield mounting medium containing 40,6-diamidino-2-phenylindole 

(DAPI). Cells were imaged on a Zeiss upright fluorescent microscope. Foci counting was 

performed on the resulting images using the CellProfiler (CellProfiler.org) open-source cell 

image analysis software (algorithm available upon request) in a blinded fashion. 

Quantification was validated in several cases manually with ImageJ in a blinded fashion by 

two independent investigators.

Knockdown and overexpression studies—3 × 106 cells were transfected by 

electroporation using the Amaxa Nucleofector (program X-005) and the Ingenio 

Electroporation kit. For knock down experiments, cells were transfected with siRNA 

duplexes targeting the corresponding Jumonji enzyme or scrambled siRNA mixes with 250 

nM final concentration. Knock down siRNA were from Sigma-Aldrich or QIAGEN and are 

summarized in Table S5. Knock-down cells were cultured for 48h before quantification of 

expression or further assays. For overexpression experiments, cells were transfected with 

pCMVHA-KDM4A, pCMVHA-KDM4B, pCMVHA-KDM5A, pCMVHA-KDM5B, or 

pcDNA3 plasmids (3mg), then allowed to recover in culture for 24h before proceeding with 

measurements of expression or further assays.

Western blot analysis—H1299 cells were transfected with siRNA or expression 

plasmids as above, harvested in RIPA buffer containing PhosSTOP 1× (Roche) and 

proteinase inhibitor cOmplete ULTRA Tablets, (Roche), the debris was pelleted (20,000 

RCF x 15 min), protein quantified and equal amounts of protein run on SDS acrylamide 

gels. Protein was transferred to nitrocellulose or PVDF membranes and blotted using the 

indicated antibodies. Gels were imaged using using Odyssey infrared imaging or Li-Cor 

Odyssey Fc systems.

Quantitative RT-PCR—RNA of H1299 cells transfected with siRNA or expressing 

plasmids was extracted with RNeasy technology (QIAGEN). RNA was quantified, DNase 

treated and reverse transcribed. The cDNA was then amplified with Sybr green chemistry in 

real time quantitative PCR assays (Applied Biosystems) using validated primers specific for 

the human genes of interest. Reactions were performed on an ABI Prism 7900HT, with an 
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initial 2 min pre-incubation at 50C, followed by 10 min at 95C and then 40 cycles of 95C for 

15 s and 60C for 1 min. 18S ribosomal RNA and cyclophilin were used as reference genes 

as before (Wang et al., 2013). Data were analyzed using the DDCt method (Bookout et al., 

2006). Gene expression levels were then expressed as fold-induction over untransfected 

control cells. Reactions were run in triplicate and error bars represent experimental error, 

unless otherwise specified. Several distinct biological replicates were analyzed with 

equivalent results. Primer sequences are given in Table S6.

NHEJ and HR assays—The green fluorescent protein repair assay was performed as 

described by Seluanov et al. (2010). To generate reporter cell lines, 2 million H1299 cells 

were transfected with 0.5 mg of linearized NHEJ-I, or HR reporter constructs using the 

Amaxa Nucleofector program X-005. G418, at 1mg/ml, was added to the media 1 day post-

transfection and stably transfected populations used two weeks post selection. Then transient 

expression of the I-SceI endonuclease was used to generate a DNA DSB at the integrated 

GFP gene sequences. Briefly, H1299 cells containing the NHEJ or the HR constructs treated 

for 4 h with JIB-04 or DMSO were transfected with the pCMV3×nls-I-SceI (5 mg, 

functional endonuclease) and a pN1-mCherry plasmid (0.05 mg) as transfection control as 

previously stated. To measure NHEJ and HR, cells were harvested, resuspended in 1 mL 

1×PBS, put on ice, and analyzed on a BD FACScan instrument for GFP and mCherry 

expression. GFP and mCherry fluorescence was quantified using FlowJo software. DNA 

repair efficiency was calculated from the number of GFP-positive cells divided by the 

number of mCherry-positive cells. For the extrachromosomal assay in U-2 OS cells, NHEJ-I 

and HR plasmids were in vitro linearized by digestion with the I-SceI enzyme (NEB). Then, 

1 million U-2 OS cells were transfected with 0.25 mg and 0.5 mg respectively of the 

linearized plasmids and the pN1-mCherry plasmid (0.025 mg) using the Amaxa 

Nucleofector program X-001. Cells were seeded in the presence of 800 nM JIB-04. Finally, 

12 h and 24 h after seeding, DNA repair was analyzed as described above for H1299 stably 

transfected cells.

Cell cycle analysis—250,000 NSCLCs were seeded in 6 wells plates, 24 h latter cells 

were pretreated with JIB-04 as indicated or DMSO for 4 h and exposed to a total dose of 2 

Gy. Then cells were collected 15min, 6 h or 12 h post IR and fixed using 75% ethanol at 

20C for a minimum of 24 hours. The fixed cells were resuspended in PBS and incubated 

with 20 mL 1 mg/ml RNase A (Sigma) and 25 mg ml/ml propidium iodide (Sigma) for 30 

min at room temperature. Experiments were done in triplicate. 20,000 cells were counted 

and the proportion of cells in different cell cycle phases was analyzed using the software 

Flowjo.

Histone demethylase activity assay—For histone demethylase activity determination 

in cells, 2×106 H1299 cells were seeded in P150 plates. After 24 h, cells were pretreated 

with indicated dose of JIB-04 or DMSO for 4h, irradiated with 8 Gy of radiation in a single 

dose. Note that the cell number/ density and amount of IR used was higher for demethylase 

assays than for radiation response curves which are based on low density colony formation 

assays or for foci resolution slides. Enzyme activity was not detectable at the lower cell 

numbers and thus both cell number and IR dose were increased to obtain similar levels of 

Bayo et al. Page 15

Cell Rep. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA damage per cell area. Cells were harvested 15 min after IR and pellets resuspended in 

cold PBS containing PhosSTOP 1× (Roche), cOmplete ULTRA Tablets, EDTA-free, 1× 

(Roche) and 1 mM Wortmannin (Sigma-Aldrich). Cell suspensions were sonicated (3× 4 s, 

Ultrasonic Processor XL Sonicator), debris pelleted (15 min at 20,000 rcf.). For tumor 

extract preparation, tissues were collected 16 h after last dose of radiation and frozen. 

Twenty to 50 mg of frozen tumor tissue was dissociated in cold PBS supplemented as above 

with 2× EDTA-free protease inhibitors and 10 mM Wortmannin then then homologized by 

ultra-sonication using a TissueLyserII (QIAGEN, 2× 1min at 0.03/sec frequency). 

Supernatants after centrifugation (18,000 g for 10 min) were snap-freezed in liquid nitrogen 

until analysis. Protein in lysates were quantified, and equal amounts of protein (2.5 mg for 

cell extracts or 8.0 mg for tumor extracts) were incubated with a histone H3K4me3 or 

H3K9me3 substrate in a reaction buffer containing 50 mM HEPES pH 7.5, 0.01% Tween 

20, 5 mM (NH4)2Fe(SO4)2 for cell extracts only, 1 mM a-ketoglutarate and 2 mM sodium 

L-ascorbate for 1 h at 37C. Specific immune-detection of the H3K4me2 or H3K9me2 

product was measured using the Epigentek kit P-3083 for H3K4me3 demethylation or 

P-3081 for H3K9me3 demethylation. Background readings were given by heat inactivated 

extracts.

Immunoprecipitation—For γH2AX immunoprecipitation 1 3 107 H1299 cells were 

seeded in P150 plates. Next day cells were preincubated with 300 nM JIB04 for 4 h and then 

irradiated with 20 Gy. Due to the higher density of cells needed to obtain sufficient material 

to immunoprecipitate, we increased both JIB-04 dose and IR dose to obtain similar level of 

damage and KDM inhibition in the dense culture. Media was removed from cells, cells 

washed with PBS and fixed with 3% w/v PFA, 2% w/v sucrose in PBS for 1 min. Then cells 

were washed, scraped into media, pelleted by centrifugation (at 500×g for 2 min) and 

washed with cold PBS containing PhosSTOP 1× (Roche), cOmplete ULTRA Tablets, 

EDTA-free, 1× (Roche) and 1 mM Wortmannin (WM, Sigma-Aldrich). Cell pellets were re-

suspended in 2.5 3 the packed cell volume of Nucleosome Preparation Buffer (NPB, 10mM 

HEPES [pH 7.9], 10 mMKCl, 1.0 mM CaCl2, 1.5 mM MgCl2, 0.34 M sucrose, 10% 

glycerol, 1mMDTT, 0.1% Triton X-100) containing PhosSTOP 1× (Roche), cOmplete 

ULTRA Tablets, EDTA-free, 1× (Roche), 1 mM Wortmannin (WM, Sigma-Aldrich) and 100 

U ml1 micrococcal nuclease (MNase), and incubated at 37C for 45 min (note: WM is 

required to block in vitro DNA-PK/ATM activation by MNase-produced DSBs). An equal 

volume of Nucleosome Solubilization Buffer (NSB = NPB + 2% [v/v] NP-40, 2% [v/v] 

Triton X-100, 600 mMNaCl) was then added. Samples were vortexed, sonicated briefly and 

centrifuged at 10,000 rpm for 10 min. Protein levels were quantified, and 2 mg of the 

resulting supernatants were incubated with 2 ml of anti-γH2AX monoclonal antibody 

overnight at 4C with rotation. Immunocomplexes were pulled down by adding 45 ml of 

protein G-Sepharose for 3 h at 4C, washed three times with wash buffer (1× NPB + 1 X 

NSB), resuspended in 2× SDS sample buffer and incubated at 75C for 2 h to reverse cross-

links. Equal amounts of protein run on 4%–12% SDS acrylamide gels. Protein was 

transferred to nitrocellulose membranes and blotted for phospho-Histone γH2AX (Ser139), 

Ku-70, H3K4me3 and H3K9me3. IRDye 680RD and IRDye 800 CW (LI-COR Biosciences) 

or and HRP-conjugated secondary antibodies were used and images captured with the 
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Odyssey infrared imaging system. Quantification was done using ImageJ or Image Studio 

Lite v5.2 software.

Chromatin immunoprecipitation/Re-precipitation—H1299 harboring the NHEJ 

construct were plated at 107 cells/P150 for 17–18 h then treated with DMSO or JIB-04 (300 

nM) for 4 h. Cells were trypsinized and transfected with pCMV3×nls-I-SceI (5 mg plasmid/

3×106 cells/electroporation reaction as stated above). After electroporation, cells were plated 

at 107 cells/P150 with continued treatment to allow for I-SceI expression. 19–20 h later cells 

were collected, fixed, washed and resuspended in NBP as stated for immunoprecipitation of 

γH2AX. Chromatin was generated by adding 17 units of MNase/ mL and incubated at 37C 

for 30 min. The reactions were stopped by EDTA (70 mM final concentration). Nuclei were 

collected by spinning at 16,000 g for 10 minutes at 4C. Buffers used for ChIP, reChIP and 

protein A/G beads came from the EZ Magna ChIP kit (Millipore 17–100086) unless stated. 

Nuclei pellets were dissolved in 2.5 3 the packed cell volume in SDS ChIP lysis buffer 

supplemented with phosphatase and proteinase inhibitors and Wortmanin as above. 

Chromatin solutions were rolled at 4C for 10 min, the insoluble materials were removed by 

spinning at 21,000 g for 10 min. 800 mg of protein was used per ChIP reaction. For ChIP, 15 

uL of 1 mg/mL of γH2AX antibody was used per reaction except in parallel no antibody 

controls. Lysates were incubated with agitation at 4C overnight. Protein A/G beads were 

added and incubated with agitation for 2–3 hours at 4C. Beads were collected and washed 

according to the manufacture’s instruction. ChIP products were eluted from the beads using 

300 mL of ReChIP elution buffer (2% SDS, 15 mM DTT in TE) with agitation at 37C for 1 

h. 150 mL was diluted 21 times in reChIP dilution buffer (30ug/mL BSA in ChIP dilution 

buffer) supplemented as before. The re-ChIP solutions were precleared with protein A/G 

then split into two parts. 8 mL of H3K4me3 antibody or no antibody were added. Both tubes 

were incubated overnight with agitation at 4C and processed as in the ChIP steps. re-ChIP 

products were eluted from the beads using 250 mL of ChIP elution buffer (1% SDS in 100 

mM NaHCO3) twice at room temperature with agitation. re-ChIP inputs and re-ChIP eluates 

were brought up to 500 mL with ChIP elution buffer and uncross-linked at 65C overnight 

with 200 mM NaCl. Samples were treated with DNase free RNase (1 mL of 10 mg/mL for 

30 min at 37C) followed by proteinase K (1 mL of 20 mg/mL at 45C for 1 h) in the presence 

of 10 mM of EDTA and 40 mM Tris, pH6.5. DNA was purified using 

Phenol:Chloroform:Isoamyl alcohol extraction and quantified by qPCR using validated 

primers (see Table S6). The control genomic primer has been previously characterized 

(Aymard et al., 2014).

TCGA Analysis—Clinical information and gene expression (RNA-Seq) data were 

obtained from The Cancer Genome Atlas (TCGA) for lung squamous cell carcinoma 

(LUSC). The gene expression of Jumonji genes from radiated patients with complete 

response (defined as radiosensitive) were compared with radiated patients with radiographic 

progressive disease or partial response (defined as radioresistant) using t tests controlling for 

the equality of variances as described (Peñ a-Llopis et al., 2011).
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QUANTIFICATION AND STATISTICAL ANALYSES

All numerical results are reported as mean ± standard error of the mean (SEM) or as mean + 

standard deviation (SD). Unless otherwise specified, unpaired 2-sided Student’s t test, one-

way analysis of variance followed by post-tests, Kruskal-Wallis or Dunn’s (GraphPad Prism 

Software), were used for statistical analyses, as indicated. Clonogenic survival curves were 

modeled with the linear quadratic equation (S = e[aD + bD2]) for radiation treatment and a 

four-parameter variable slope regression for drug toxicity. Differences with p values lower 

than 0.05 were considered as statistically significant. The exact statistical analyses used, the 

significance value, the sample size (n) and number of biological replicates are indicated in 

each figure or figure legend.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Inhibition of JARID demethylases sensitizes cancers to radiation in vitro and 

in vivo

• Radiotherapy increases JARID enzyme activity, and blocking it prevents DNA 

repair

• H3K4me3 accumulates at and near DSBs and impedes recruitment of DNA 

repair factors

• Human tumors with high levels of JARID1B expression are resistant to 

radiotherapy
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Figure 1. JIB-04 Robustly Sensitizes Radioresistant NSCLC to IR
(A and B) Clonogenic survival of H1299 (A) or A549 (B) cells treated with 16 nM or 25 nM 

JIB-04, respectively, and then irradiated as indicated (0–8 Gy). The survival of cells treated 

with JIB-04 alone was set to 1. Graphs show one of two independent experiments, each done 

in triplicate. Error bars represent SD across triplicates. ***p < 0.001, DMSO or Z-isomer 

versus JIB-04 (A) (2-way ANOVA); ***p < 0.001, DMSO or Z-isomer versus JIB-04 (2 

way ANOVA).

(C and D) Clonogenic survival of H1299 (C) and A549 (D) cells treated with increasing 

doses of JIB04 (0–40 nM) and 2 Gy IR. The number of colonies was normalized to the 

colonies formed by cells treated with the corresponding dose of JIB-04 alone (without IR). 

Graph represents one of two experiments (n = 3). Error bars show SD. *p < 0.05; **p < 0.01 

versus vehicle (0 nM) (Kruskal-Wallis).

See also Figure S1 and Table S1.

Bayo et al. Page 23

Cell Rep. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Defective Resolution of γH2AX and 53BP1 Foci in JIB-04-Treated Cells
(A and B) DNA DSB repair kinetics after IR in H1299 (A) and A549 (B) cells. Cells were 

incubated with DMSO vehicle or JIB-04 for 4 hr (16 nM for H1299 and 25 nM for A549), 

irradiated (2 Gy), fixed at the indicated time points, and then immunostained for γH2AX 

(red) and 53BP1 (green). Scale bars, 10 μm. Foci per nucleus were counted (> 100 nuclei per 

treatment). Representative images are shown in the left panels for 15 min and 12 hr. Repair 

kinetics are plotted as the percentage + SEM of remaining foci against time in the right bar 

graphs for measured time points. ***p < 0.001; **p < 0.01 versus control (ANOVA). 

Representative data from one of three independent experiments are shown. See also Figures 

S2 and S3 and Table S2.
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Figure 3. The Radiosensitizing Effects and DNA Repair Defects Induced by JIB-04 Are Cancer 
Selective
(A) JIB-04 IC50 determined by liquid colony formation in immortalized non-transformed 

human bronchial epithelial cells HBEC3KT and HBEC30KT. Graph represents one 

experiment done in triplicate.

(B) Clonogenic survival of HBEC3KT and HBEC30KT cells treated with 600 nM or 500 

nM JIB-04, respectively, and then irradiated as indicated. Curves werederived as in Figure 

1B. Graph represents one of three experiments done in triplicate. Values represent the 

average survival fraction ± SD of triplicate samples. ns indicates that no significant 

differences in radiosensitization curves across treatments were observed (p ≥ 0.1, 2-way 

ANOVA).

(C) DNA DSB repair kinetics in HBEC30KT cells. Cells were incubated with vehicle or 500 

nM JIB-04 for 4 hr, irradiated (2 Gy), fixed, immunostained for γH2AX, and then quantified 

as in Figure 2. Representative images are shown on the left panel. Scale bars, 10 μm. Repair 

kinetics are plotted in the right bar graphs as percentage + SEM of remaining foci over time. 

ns indicates that no significant differences were observed between vehicle and treatment 

groups at any time point (p > 0.8, ANOVA). Data are from >50 nuclei per treatment for one 

of two experiments.

See also Figure S3.
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Figure 4. JIB-04 Inhibits Both NHEJ and HR Repair
(A) Schematic of the reporter constructs used inHR and NHEJ repair assays.

(B) H1299 cells stably containing the NHEJ or theHR constructs were treated with JIB-04 or 

DMSO for 4 hr and then transfected with the pCMV3×nls-I-SceI (functional endonuclease) 

and a pN1-mCherry plasmid as transfection control in the continuous presence of treatment 

(300 nM JIB-04). Cells were analyzed by flow cytometry for GFP and mCherry expression 

24 hr after transfection. 20,000 cells were analyzed in each sample and NHEJ or HR repair 

frequency calculated (%GFP+ cells/%mCherry+ cells). Average + SEM values of triplicates 

for one of three representative experiments are shown. ***p < 0.001 versus vehicle control 

(Kruskal-Wallis).

(C–F) DNA-PKcs p-T2609 (C and D) and RAD51 (E and F) foci kinetics in H1299 cells. 

Cells were incubated with vehicle or 16 nM JIB-04 for 4 hr, irradiated (10 Gy), fixed, and 

immunostained, and then the number of foci per nucleus in >100 cells was counted for each 

time point. (C) and (E) show representative immunofluorescence images (scale bars, 10 μm), 

and (D) and (F) show foci formation and resolution kinetics obtained by plotting the 

percentage + SEM of cells with more than 5 foci per nucleus over time (***p < 0.001; **p < 

0.01; *p < 0.05 versus DMSO control per time point [ANOVA]). Data are representative of 

one of two independent experiments.

See also Figure S5.
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Figure 5. Jumonji Inhibition by JIB-04 Results in H3K4me3 Enrichment at DSBs
(A) Cells were incubated with vehicle or 300 nM JIB-04 for 4 hr, irradiated (20 Gy), and 

lysed, and nucleosomes were solubilized. γH2AX was immunoprecipitated from 2 mg 

soluble nucleosome extract and immune-precipitates blotted for γH2AX and H3K4me3 

(left) or H3K9me3 (right).

(B) The immunoblot data from three independent experiments were quantified and 

expressed as the average ratio H3K4me3 signal/γH2AX signal or H3K9me3 signal/γH2AX 

signal + SEM. *p < 0.05; ns, not significant (p = 0.74); DMSO versus JIB-04(t test).

(C and D) H1299 cells were pretreated with JIB04 (16 nM) for 4 hr followed by IR (8 Gy) 

and collected at 15 min after radiation. Cellular extracts were prepared and H3K4me3 (C) 

and H3K9me3 (D) activity measured. Values in (C) and (D) are expressed as percentage + 

SEM ofDMSO-treated activity across three independent experiments. *p < 0.05 IR versus 

JIB-04; **p < 0.001 IR versus DMSO; ***p < 0.001 IR versus JIB-04+IR; ns, not 

significant (p > 0.8) (Kruskal-Wallis).

(E) H1299-NHEJ stable cells pretreated with DMSO or 300 nM JIB-04 were transfected 

with I-Sce1 plasmid to induce DSBs, and 20 hr later, ChIP/re-ChIP experiments were carried 

out by immunoprecipitating the product of γH2AX ChIP with H3K4me3 antibodies. Levels 

of associated DNA were measured by qPCR. *p = 0.012 (DMSO versus JIB-04 for primer 

1); *p = 0.011 (DMSO versus JIB-04 for primer 2); ns, p = 0.3 (DMSO versus JIB-04 for 

control region) (onetailed paired t test). n = 2–4 replicates of one experiment; average 

percentage of re-ChIP input relative to DMSO ± SEM is shown.

See also Figure S6.
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Figure 6. Jumonji Enzyme Knockdown Phenocopies the JIB-04 Repair Defect, and 
Overexpression of KDM5B Rescues the JIB-04-Induced DNA Repair Defects and 
Radiosensitization of Cancer Cells
(A and B) DNA DSB repair kinetics in H1299 cells after knockdown of KDM5B or 

KDM4B. Cells were irradiated 48 hr after transfection (2 Gy) and immunostained for 

γH2AX (A) and 53BP1 (B), and then the number of foci per nucleus were counted after 6 hr 

(>100 nuclei). Graphs represent the percent of foci remaining + SEM for one of three 

equivalent independent experiments. ***p < 0.001; **p < 0.01; *p < 0.05 versus controls 

(ANOVA).

(C and D) DNA DSB repair kinetics showing γH2AX (C) or 53BP1 (D) in H1299 cells 

overexpressing FLAG-KDM5B or HA-KDM4B. 24 hr after transfection, cells were 

incubated with 16 nM JIB-04 for 4 hr, irradiated (2 Gy), and processed as above. Graphs 

represent the percent of remaining foci + SEM 6 hr after radiation for one of three 

independent experiments. ***p < 0.001 versus controls; ns, p > 0.4 (ANOVA).

(E and F) Clonogenic survival of H1299 cells transfected with pcDNA3 empty vector or 

overexpressing KDM5B and treated with JIB-04 (E) or KDM5B-overexpressing cells treated 

with DMSO versus JIB-04 (F). **p < 0.01 KDM5B+JIB-04 versus pcDNA3+JIB-04; ns, no 

significant difference (p = 0.5) KDM5B+JIB-04 versus KDM5B+DMSO (2-way ANOVA). 

Inset in (E) shows representative images of colony assays of cells transfected with pcDNA3 

or overexpressing KDM5B treated with JIB-04 and 8 Gy radiation. Inset in (F) is a western 

blot showing the overexpression of KDM5B in cells used for these studies. Data represent 

the average of three to four independent experiments. Error bars represent SD across 

experiments.

See also Figure S7.
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Figure 7. JIB-04 Robustly Radiosensitizes Tumors In vivo and Prolongs the Survival of Tumor-
Bearing Mice
(A) Subcutaneous tumors generated from H1299 cells were allowed to reach a volume 

between 150 to 200 mm3, and then mice were treated every other day with vehicle (n = 9), 

JIB-04 50 mg/kg (n = 8), IR (n = 9), or JIB-04 with IR (2 Gy, given 4 hr after drug 

administration; n = 8) for a total of 12 doses. Graph represents the tumor volume (left) and 

percent survival (right). DEF500 = (days to reach 500 mm3 for JIB-04+IR-treated mice days 

to reach 500 mm3 for JIB-04 treated mice)/(days to reach 500 mm3 for IR-treated mice days 

to reach 500 mm3 for vehicle-treated mice). Error bars represent SEM.

(B) Subcutaneous tumors generated from A549 cells treated as described in (A) with vehicle 

(n = 8), JIB-04 50 mg/kg (n = 8), IR (n = 9), or JIB-04 with IR (n = 10). Graph represents 

the tumor volume (left) and percent survival (right). DEF400 was calculated as above for 

time to 500 mm3.

For (A) and (B), error bars represent SEM. ***p < 0.001 JIB-04+IR versus IR (2-way 

ANOVA for tumor growth in the left panel, and Kaplan-Meier for survival in the right 

panel).

(C and D) Tumor tissues were harvested at time of death (n = 4 for vehicle and JIB-04) or 12 

hr after the last dose of treatment (n = 3 for IR and JIB-04+IR), tumor extracts were 

prepared, and H3K4me3 demethylase activity was measured. *p < 0.05 for IR versus no IR 

(C); *p < 0.05 for vehicle+IR/vehicle versus JIB-04+IR/JIB-04 alone (D) (t test).
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See also Figure S8 and Table S3.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti–phospho-Histone γH2AX (Ser139) Millipore Cat#05–636; RRID: AB_309864

Anti–tri-methyl-histone H3K9 Millipore Cat#07-442; RRID: AB_310620

Anti-tri-methyl-histone H3K4 Millipore Cat#07-473; RRID: AB_1977252

Anti-53BP1 Cell Signaling Technology Cat#4937; RRID: AB_106954558

Anti-KDM5B Cell Signaling Technology Cat#3273; RRID: AB_1264191

Anti-KDM4B Cell Signaling Technology Cat#D7E6; RRID: AB_11140642

Anti-mouse IgG-HRP linked Cell Signaling Technology Cat#7076; RRID: AB_330924

Anti–Rad51 Abcam Cat#ab-213; RRID: AB_302856

Anti-DNA-PKcs p-T2609 Abcam Cat#ab-18356; RRID: AB_444447

Anti-H3 Abcam Cat#ab-12079; RRID: AB_298834

Anti-HA (3F10) Roche Cat#11867423001; RRID: AB_10094468

Anti-Flag (M2) Sigma-Aldrich Cat#F1804; RRID: AB_262044

Anti-tubulin Sigma-Aldrich Cat#T5168; RRID: AB_477579

Anti-KDM5A Bethyl Cat#A300-897A: RRID: AB_2234038

Anti-KDM4A Bethyl Cat#A300-861A; RRID: AB_069461

Anti-KDM5C Novus Biological Cat#NB100-55328; RRID n/a

Anti-Ku70 Santa Cruz Cat#sc-1487; RRID: AB_632614

Anti-goat IgG HRP conjugated Santa Cruz Cat#sc-2020; RRID: AB_631728

Anti-GAPDH GeneTex Cat#GTX100118; RRID: AB_1080976

Alexa Fluor 488–conjugated goat anti-Rabbit Thermo Fisher Cat#A-11034; RRID: AB_2576217

Alexa Fluor 555–conjugated goat anti-mouse Thermo Fisher Cat#A32727; RRID: AB_2633276

Rhodamine red–conjugated goat anti-mouse Thermo Fisher Cat#R-6393; RRID: AB_2556550

IRDye 680RD –conjugated goat anti-mouse LI-COR Biosciences Cat#925-68070; RRID: AB_2651128

IRDye 800 CW –conjugated goat anti-rabbit LI-COR Biosciences Cat#925-32211; RRID: AB_2651127

Chemicals, Peptides, and Recombinant Proteins

JIB-04 Synthesized in-house (Wang et al., 
2013)

N/A

GSK-J4 Tocris Bioscience Cat#4594

GSK-J5 Tocris Bioscience Cat#4689

PBIT Sigma-Aldrich Cat#PH009215

I-SceI enzyme New England Bio Labs Cat#R0694L

Critical Commercial Assays

Ingenio Electroporation kit Mirus Bio LLC Cat#MIR 50115

H3K4me3 demethylation kit Epigentek Cat#P-3083

H3K9me3 demethylation kit Epigentek Cat#P-3081

EZ Magna ChIP A/G Chromatin Immunoprecipitation 
Kit

Millipore Cat#17-100086
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REAGENT or RESOURCE SOURCE IDENTIFIER

U-2 OS Dr. Sandeep Burma N/A

LNCaP Dr. Phil Thorpe N/A

H1299 Dr. John D. Minna N/A

A549 Dr. John D. Minna N/A

HCC95 Dr. John D. Minna N/A

HCC1195 Dr. John D. Minna N/A

HCC2279 Dr. John D. Minna N/A

HCC1719 Dr. John D. Minna N/A

HBEC30KT Dr. John D. Minna N/A

HBEC3KT Dr. John D. Minna N/A

Experimental Models: Organisms/Strains

Female athymic nude mice (nu/nu, 5–6 weeks old) The Jackson Laboratory Stock #: 002019

Oligonucleotides

siRNA for Knock Down experiments See Table S5 N/A

Oligonucleotides for RealTime Quantitative PCR See Table S6 N/A

Recombinant DNA

NHEJ-I reporter construct Seluanov et al. (2010) N/A

HR reporter construct Seluanov et al. (2010) N/A

Flag-KDM5B construct Dr. Ralf Janknecht N/A

HA-KDM5A construct Addgene plasmid #14799

HA-KDM4B construct Addgene plasmid #24181

HA-KDM4A construct Dr. Yang Shi N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/download.html

CellProfiler Broad Institute http://cellprofiler.org/releases/
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