
Dip Coating of Fibers in the Visco-inertial Regime: Numerical
Analysis
Diego M. Campana,†,‡ Sebastiań Ubal,†,‡ María D. Giavedoni,*,† and Fernando A. Saita†
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ABSTRACT: The dip coating of a fiber of small radius is studied via a finite element solution of the Navier−Stokes equations.
The coating speed is selected within the range corresponding to the visco-capillary and visco-inertial regimes. Predictions
obtained within the range of the visco-capillary regime are in very good agreement with the Landau−Levich law and with
published experiments, whereas those obtained within the visco-inertial regimethat is, at coating speeds typical of industrial
applicationsmatch published experimental data.

1. INTRODUCTION

The deposit of liquids on a solid is a common operation in
everyday life as well as in the industry. In particular, a fiber
coating is a usual process in the textile industry to give cohesion
to multiple filaments, wash fibers, or provide them with specific
properties. The process consists in withdrawing the fiber from a
liquid bath in order to coat it with a film of small and uniform
thickness. Coating speeds are usually between 5 to 30 m/s.
The first analysis of a dip coating process was carried out by

Landau and Levich (1942)1 and Deryagin (1943),2 who studied
the case of a plate when it is vertically pulled out of a liquid at
very low velocities. They presented an expression, known as the
Landau−Levich−Deryagin law (LLD for short), for the film
thickness as a function of the capillary number. According to
this theory, the thickness of the film results from the
competition of viscous and capillary forces alone, a
phenomenon that occurs only at very low coating speeds,
when the film deposited is thin enough to neglect gravity
effects. Thus the LLD law is rather restricted, and a
considerable amount of work has been published thereafter
to extend its validity by incorporating the effects of gravity,
inertia forces, Marangoni stresses, etc.
De Ryck and Queŕe ́ (1996)3 determined the thickness of the

film formed when a cylindrical fiber is horizontally pulled out of
the liquid contained inside a tube of 4 mm diameter. In their
experiments, the withdrawal velocities ranged from 150 μm/s
to 180 cm/s, the fiber radius was equal to either 63.5 or 12.5
μm, and the coating liquids were water and five silicon oils with
viscosity equal to or greater than 19 cP. The results show that
when the coating liquid is a silicone oil of high viscosity (i.e.,
when gravity and inertia forces are negligible), measured film
thicknesses are in very good agreement with the correction
proposed by White and Tallmadge4 to extend the validity of the
LLD law to larger capillary numbers. However, a completely
different behavior is found with a low viscosity liquid, namely
water, and coating speeds within the range 30−180 cm/s, that
is, under conditions in which inertia forces are not always
negligible. In this case, the film thickness only matches the LLD
law if the capillary number is smaller than a given value, Ca* ≈
0.01, above which the thickness of the entrained film sharply

increases. By means of dimensional analysis, de Ryck and Queŕe ́
explain the reasons why inertia affects the film thickness, and
they conclude, in agreement with the experiments, that the
divergence between the experiments and the LLD predictions
starts for values of the Webber number (i.e., the ratio between
inertia and capillary forces) close to 1. The flow regime that sets
in when this divergence occurs is called the visco-inertial
regime. If the coating velocity is further increased, a third
regime appears (the boundary-layer regime), in which the film
thickness is limited by the geometry of the reservoir and no
longer depends on surface tension.
More recently, Rebouillat et al.5 presented experiments with

a small fiber pulled out of a water bath. Their main objective
was to quantify the effects of gravity on the film thickness in the
visco-inertial regime. To that end, the tube was replaced by a
“pocket bath” (see Figure 6 of reference 14), a device that
allowed withdrawing the fiber at different angles of inclination.
Also, the storage capacity of the reservoir was large, so that the
impregnation of the fiber was not limited by a lack of liquid or
influenced by the walls as it is likely to occur when the liquid
bath is a drop trapped in a tube. They used a gravimetric
method and a technique based on image analysis to determine
the film thickness. Their results corroborate that gravity may be
neglected when fibers are thin enough (less than 200 μm in
diameter). Also, when the coating fluid is water and the radius
of the fiber is 27 μm, their experiments confirm that the film
thickness follows the LLD law for capillary numbers smaller
than 0.008, and from this point on it sharply increases with the
coating speed. However, they do not observe a thickness
decrease at higher velocities as reported in reference 3 and they
ascribe the discrepancy to the small size of the container used
in that work. The analysis of the images captured show the
evolution of the free surface shape as a function of the coating
speed. These images prove the formation of drops in the
meniscus region in the visco-inertial regime.
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Numerical solutions of the full hydrodynamic problem,
including inertial effects,6 soluble surfactants7,8 and insoluble
surfactants9 have been obtained for planar substrates. However,
it appears that to the authors’ best knowledgeno attempt
has been made to numerically study the case of fiber coating at
large velocities, that is, when the role of inertia cannot be
neglected. Thus, the main goal of this work is to predict the
film thickness formed on a cylindrical fiber pulled out of a
liquid by numerically solving the Navier−Stokes equations; in
particular, we are interested in comparing our predictions in the
visco-inertial regime with some of the experiments already
described.
The paper is organized as follows. In the next section we

present the mathematical formulation of the problem. In
section 3, we outline the numerical technique employed to
solve the equations. In section 4, we discuss the computed
predictions of the film thickness and compare them with
published experiments. Finally, in section 5 we make some final
remarks and delineate future work.

2. MATHEMATICAL FORMULATION
A small cylindrical fiber of radius b is vertically pulled out of a
large liquid bath at constant speed U. The liquid is Newtonian
with viscosity μ and density ρ. The air above it is considered
inviscid and its pressure is arbitrarily set equal to zero. The fiber
contacts the liquid at a distance H below the free surface; the
coating fluid is a pure liquid and the temperature of the system
is uniform; thus the gas−liquid surface tension, σ, is constant.
Therefore, this process (see sketch in Figure 1) is governed by
the Navier−Stokes and continuity equations that in dimension-
less form read,
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The characteristic scales used are U for velocities, b for
lengths, b/U for time, σ/b for pressure, and μU/b for the
components of the stress tensor; in the above expressions, Re =
ρbU/μ is the Reynolds number, Ca = μU/σ is the capillary
number, and Bo = ρgb2/σ is the Bond number that measures
the ratio between gravity and capillary forces. The Bond
number can also be written as Bo = (b/lC)

2, where lC is the
capillary length which, for most of the liquids is of order of 1

mm. Thus, if b is not larger than 100 μm, Bo ≤ 0.01, and gravity
effects can be safely neglected.
The boundary conditions imposed are as follows. On the

surface of the fiber the nonslip condition is enforced; that is,

= = − * ≤ ≤ =u v H z z r1, 0, , 1F (3)

where u and v are the dimensionless components of the velocity
in the z and r directions, respectively, and H* = H/b.
At the bottom boundary, the flow does not change along the

z coordinate. Also, we substitute the pressure by its hydrostatic
value in the normal component of the stress; thus, the following
expression is used
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where T stands for the stress tensor, and L* = L/b.
At the lateral boundary of the domain which is located at a

distance L*, far away from the fiber, the flow is in the radial
direction only. In addition, we assume that the pressure is
mainly hydrostatic; therefore, the traction vector results as
follows
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At the film exit boundary, we assume that the flow is
unidirectional and does not change in the axial direction;
thus, the traction vector is
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To establish the boundary conditions at the free surface, we
presume that the interface is a material surface; therefore, the
kinematic condition applies

· = ̇ ·v n x nFS (7)

In the above expression, xḞS is the velocity of the nodes at the
free surface and n is the outwardly directed unit vector normal
to the interface.
The free surface is Newtonian and inviscid; hence, the

dimensional surface stress tensor, T(S), is T(S) = σ(I − nn), I
being the identity tensor. Since the system is free of surfactant,
surface tension is constant; thus the dimensionless interfacial
balance of stresses results
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where rS is the local free surface radius, and t is the unit vector
tangent to the free surface pointing toward increasing values of
the arc-length s (see Figure 1).
Finally, we specify the tangent vector at both ends of the

interface; that is, t = er at s = sf, and t = -ez at s = 0.
In the next section we summarize the numerical technique

employed to solve the system of governing equations and
boundary conditions eq 1−8.

3. NUMERICAL TECHNIQUE
The system of governing equations and their boundary
conditions is discretized using the Galerkin/Finite Element

Figure 1. Sketch of the flow domain and coordinate system adopted.
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method, along with an ALE (Arbitrary Lagrangian Eulerian)
technique to take into account the changes in the flow domain
as the iteration proceeds. The residuals are built following the
procedure described in previous works.10−12

Since there is a gas/liquid interface with unknown location
and shape, we find it expedient to compute first an approximate
steady-state solution for a particular set of the parameters (Re,
Ca, and Bo) by solving the transient problem, and then to
obtain the exact solution by solving the steady-state problem
using the approximate solution as the initial guess. From this
point on, we trace the space of the parameters with a zero-order
continuation procedure.
When the deformation of the flow domain is large, it is

advantageous to employ an unstructured mesh of triangular
elements. The ALE algorithm implemented is briefly discussed
in what follows.
The starting point is a regular domain (the reference

domain) whose shape is invariant in the reference frame with
coordinates (R, Z). We also consider an irregularly shaped
domain in the physical space with coordinates (r, z). Both

domains are related by the mapping: r = r(R, Z, t), z = z(R, Z,
t).
The mapping is found by solving a partial differential

equation with appropriate boundary conditions for the
coordinates located in the regions where the mesh deforms;
in the Winslow’s algorithm13 implemented in this work, the
PDE used is
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A drawback of ALE methods is that movement of the nodes
can be very large, giving rise to distorted mesh elements with
poor numerical quality and even inverted overlapped elements.
Under these circumstances the numerical algorithm does not
converge to a solution and the zero-order continuation process
stops. If this is the case we proceed as follows

The simulation is stopped.

Figure 2. (a) Definition of the reference domain and its associate boundaries, and (b) physical domain where the flow equations are formulated.
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The last converged spatial configuration (i.e., the last
deformed domain) is detected.
This configuration is saved as the new reference
configuration.
A remeshing of the new reference configuration is
performed.
Once a converged stationary solution is obtained, the
continuation process is restarted.

The computational domain is conveniently divided in the
regions shown in Figure 2. In regions 1 and 2, far away from the
free surface, the mesh is fixed and the Navier−Stokes and
continuity equations have to be solved. In all the other zones
the mesh is adapted; therefore, in addition to Navier−Stokes
and continuity, eq 9 has to be solved there to obtain the spatial
coordinates of the nodes.
The boundary conditions applied are as follows:

Because the free surface is a material boundary, the
kinematic condition (7) is imposed on ΓS; thus, the
interfacial nodes move with the normal component of
the fluid velocity.
On ΓBottom the nodes are fixed.
On ΓRight and ΓWall the nodes are restricted to move in
the z direction.
On ΓFilm (z = zf, 1 < r < h0) the nodes are restricted to
move in the r direction.

We solve the equations described in section 2 with
COMSOL Multiphysics (COMSOL Inc., 1998−2001). The
domain is tessellated using an unstructured mesh of triangles;
radial and axial velocities as well as coordinates are interpolated
by piecewise quadratic Lagrange polynomials, whereas the
pressure is interpolated by linear ones.
COMSOL Multiphysics handles the kinematic eq 7 by means

of the Lagrange’s multipliers technique. The resulting set of
nonlinear algebraic equations is simultaneously solved using a
Newton’s loop. The convergence criterion adopted is that the
norm of the difference between two consecutive approxima-
tions is equal to or smaller than 10−5. When a transient
simulation is carried out, the time derivatives are approximated
using finite differences and a second order adaptive time step
algorithm is used. Moreover, since the expressions of the
governing equations are given on fixed spatial coordinates, node
velocities must be taken into account to correctly evaluate the
time derivatives.
We next describe the main features of the simulations. To

determine an appropriate size for the flow domain, the different
length scales between the film and the bulk must be considered.
Numerical tests carried out show that within the range of the
parameters studied in this work, the order of the film thickness
varies between 10−2b and b, and that the extension of the
dynamic meniscus along the radial and axial directions varies
between 10b and 1000b. These dimensions determine the
lengths H*, L* and zf (see Figure 1) that must be chosen to
fulfill boundary conditions eq 4−6. We find adequate to fix H*
= L* = zf = 1000. Since lengths are measured in units of the
radius of the fiberwhich in this work is set equal to either
12.5 or 63.5 μmthe corresponding dimensional quantities are
equal either to 1.25 cm or 6.35 cm.
Once the size of the computational domain is established, it

is split in various subdomains (see Figure 2) according to the
characteristics presented by the flow. The finite element mesh
is more refined along and in the vicinity of the free surface,
especially in the meniscus and film regions, and the size of the

elements gradually increases as one moves away from the free
surface. In the dynamic meniscus region as well as in the area
where the film region begins, the size of the elements is 4−5
times smaller than the film thickness. The characteristics of the
flow domain strongly depend on the magnitude of inertia
forces; the number of elements of the finite element meshes
used to compute the solutions presented in this work ranges
from 250 000 to 300 000, which results in 2 100 000 and
2 500 000 degrees of freedom, respectively.
In the simulations carried out with “iso 5” oil (see next

section), the domain configuration and the mesh adopted for
Ca = 0.01 were satisfactorily adapted by the ALE method and
Winslow algorithm when Ca ≤ 0.135. At this value of the
capillary number, a new reference domain was defined and
remeshed. This domain allowed us to compute solutions up to
the largest value of Ca considered in this paper.
When water is the coating fluid (see next section), the size of

the domain and the mesh adopted for Ca = 0.001 are
appropriate up to Ca = 0.015. At this value of the capillary
number, we adopted a new reference domain which was
conveniently remeshed and allowed us to compute solutions for
values of Ca ≤ 0.0202.
The largest values of Ca for which we were able to compute

solutions for the two liquids considered in this work are near
the region where the visco-inertial regime merges into the
boundary layer regime. The lack of convergence of the
numerical method might be due to either this fact or to the
nonexistence of steady state solutions as it is discussed in the
next section.
It is worthy to mention that the remeshing process produces

variations in the film thickness not larger than 0.5%; also,
changes in the interfacial shape are negligible.
Finally, to validate the computer code, we solved the

problem for Re = 0 and within the range of Ca where the
Landau−Levich law accurately predicts the film thickness.
Results are presented in the next section.

4. RESULTS AND DISCUSSION
4.1. The Evolution of the Film Thickness. When the

fiber is small (i.e., its radius is much smaller than the capillary
length, lC) and the withdrawal velocity is low, the effects of
gravity and inertia are both negligible and the process depends
on the competition between viscous and capillary forces. In this

Figure 3. Dimensionless film thickness entrained by a fiber of radius b
= 63.5 μm withdrawn from pure water as a function of the capillary
number.
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case the film thickness can be accurately estimated using the
LLD expression; that is,

=h Ca1.340
2/3

(10)

When the capillary number approaches 1 and the liquid
viscosity is large enough so that inertia forces are still negligible,
the film thickness can be of the same order as the radius of the
fiber; consequently, the assumption that the thickness of the
deposited film is much smaller than the radius of the fiber is not
accomplished and eq 10 is not longer valid. White and
Tallmadge4 proposed a simple correction that consists in
replacing the dimensionless radius of the fiber (that is, 1) by the
dimensionless radius of the free surface (i.e., 1 + h0) in eq 10;
thus, the resulting expression for the film thickness is

=
−

h
Ca

Ca
1.34

1 1.340

2/3

2/3 (11)

As we have already mentioned in the Introduction, the main
goal of the present work is to numerically analyze the
impregnation of a fiber in the visco-inertial regime. To that
end we made computations in the range of parameters
corresponding to the experiments performed by de Ryck &
Queŕe ́3 and Rebouillat et al;5 therefore, the liquids considered

were water (μ = 1.0 × 10−3 Pa s, ρ = 998.21 kg/m3, and σ =
7.28 × 10−2 N/m) and “iso 5” oil (μ = 6.5 × 10−3 Pa s, ρ = 822
kg/m3, and σ = 2.46 × 10−2 N/m), the radius of the fiber was
set equal to 63.5 μm, the value of the nickel wire used by de
Ryck and Queŕe,́ and to 27 μm, which corresponds to the nylon
filament used by Rebouillat et al. In our numerical experiments
the coating speed was varied within the experimental range.
Since both the Reynolds and the capillary number simulta-
neously change with U, the ratio m = Re/Ca = ρσb/μ2 (usually
known as the Laplace number) was kept constant in the
simulations.
Figure 3 illustrates the thickness of the film formed on a 63.5

μm fiber as a function of the capillary number when the coating
liquid is water. Reported values correspond to measurements
by de Ryck & Queŕe,́ to numerical solutions of eqs 1 to 8, and
to the evaluation of the following expression:

β
=

+
−

h
h Ca

W h
1.34(1 )

1 ( )0
0

2/3

0 (12)

The above formula is an approximate solution to the evolution
equation of the film thickness published by Koulago et al.
(1995);15 it was obtained by Queŕe ́ and de Ryck (1998)16

assuming that the thickness of the free surface is limited by the
radius of the tube used as reservoir. In eq 12, W = ρU2b(1 +
h0)/σ is a Weber number (i.e., the ratio between the dynamic
and the capillary pressures), and β is a logarithmic function of
the ratio between the film thickness and the tube radius.
Predictions of eq 11 are also depicted in the figure.
It is easy to see that the threshold Ca = Ca*, i.e. the capillary

value above which the film sharply thickens as the coating
speed further increases is well predicted by both the numerical
solution and eq 12. In their paper, de Ryck & Queŕe ́3 argued
that the transition from the visco-capillary to the visco-inertial
regime takes place when inertia and surface forces are
comparable in magnitude, that is, when the Weber number
defined as We = ρU2b/σ is approximately on the order of 1. A
simple calculation shows that for the fiber and liquid
considered, the velocity at the threshold is U* ≈ 1 m/s, and
thus Ca* ≈ 0.014 which is a value close to that measured or
predicted (Ca* ≈ 0.01).
The curves illustrated in Figure 3 also show good agreement

between the film thickness calculated with eq 12 and the
experimental data, within the whole range of Ca. Considering
that eq 12 is an approximate solution of a 1D model, the match
is indeed surprising. On the other hand, the numerical
predictions depicted in Figure 3 were obtained with the
mathematical model already described in section 2. That model
accounts for gravity effects and represents the withdrawal of the
fiber from a large liquid reservoir; instead in the experiments
the fiber is pulled out from a horizontal tube of small radius (2
mm). Our numerical predictions fit the experiments only if the
Ccapillary number is smaller than approximately 0.01; for larger
values they are substantially thicker than the experimental ones.
Obviously, gravity cannot be responsible for the difference
between experiments and calculations because it tends to limit
the thickness of the film; moreover, in the region where
experiments and the LLD law diverge, both the Bond number
(Bo = b2/lC

2) and the reciprocal of the Froude number (Fr =
U2/2gb) are much smaller than one indicating that gravity has
no influence at all. Hence we might assume that at large coating
speeds the tube wall limits the amount of liquid entrained by
the fiber; actually, for the case shown in Figure 3, we will see in

Figure 4. Film thickness predictions as a function of the capillary
number for (a) m equal to 0 and 12.92 (Oil ISO 5), and (b) m equal
to 1962.08 (water).
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the next section that the height and the radial extent of the
meniscus increase with the coating speed and consequently it
might interact with the walls of a small reservoir such as the one
used in the experiments reported by de Ryck and Queŕe ́ at
capillary values as low as 0.01 or even lower. Nonetheless, to
shed some light into the hypothesis that the tube wall restricts
liquid flow, we carried out numerical computations under the
conditions of the experiments implemented by Rebouillat et al.5

In Figure 4, numerical predictions of the film thickness and
measurements reported by Rebouillat et al. are plotted as a
function of Ca when the coating liquid is either water or the iso
5 oil; also, numerical solutions for m = 0 and values resulting
from expression (11) are drawn for reference. The experiments
were carried out with a nylon fiber of b = 27 μm.

When inertia forces are neglected, (i.e., m = 0), the results of
eq 11 agree with our numerical predictions until Ca ≈ 0.2
although slight deviations are noticed for Ca > 0.1. If inertia
forces are considered (Re = mCa), a similar behavior to that
reported in Figure 3 occurs, the main difference being that now
the predictions are in good agreement with the experiments
even above the threshold Ca at which the film thickness
diverges from LLD law. This is particularly noticeable in the
case of the oil, where we were able to compute solutions up to
the beginning of what appears to be a transition region between
visco-inertial and boundary layer regimes (cf. de Ryck and
Queŕe,́ 1996).
The excellent agreement between the pocket bath experi-

ments and the numerical predictions, as well as the trend
followed by the results illustrated in Figures 3 and 4, support
the hypothesis that the tube wall opposes the thickening of the
film in the visco-inertial regime.
For a given fiber radius (27 μm for the results shown in

Figure 4), the threshold capillary number (Ca*) at which the
departure from the LLD law occurs depends on the fluid, as
expected. It is approximately equal to 0.01 for water (m =
1962.08) and to 0.1 for the iso 5 oil (m = 12.92). As we have
mentioned above, the visco-inertial regime takes place when the
Webber number is of order one. Simple calculations show that
U* is 1.05 m/s for the oil and 1.64 m/s for water, and therefore
Ca* will be roughly larger than 0.02 and 0.27 for water and oil,
respectively; these values are fairly close to those reported in
Figure 4.
We were not able to compute solutions with any of the

liquids near the transition between the visco-inertial and the
boundary layer regimes; in fact, the largest coating speed
numerically explored was 167.4 cm/s (Ca = 0.023) for water
and 84.7 cm/s (Ca = 0.224) for the oil. One possible reason for
the lack of convergence could be an inappropriate size of the
computational domain or an unsuitable mesh to follow the
modifications undergone by the flow domain in that region. To
check these hypotheses we should have to enlarge the domain

Figure 5. Free surface shapes for selected values of Ca. The fiber (b = 27 μm) is withdrawn from a large reservoir of iso 5 oil (m = 12.92).

Figure 6. Pressure distribution along the free surface for the cases
shown in Figure 5.
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and/or refine the mesh, but unfortunately that is not possible
with our present computational resources. Another explanation
can be related to the following experimental finding that
suggests a time-periodic behavior of the system above a given
capillary number: Rebouillat et al.5 observed a cyclic evolution
of the meniscus shape (see Figure 8 of ref 5) that involves the
formation and drag of a water drop when Ca ≈ 0.02 suggesting
that above a certain (m-dependent) capillary number steady
state solutions do not exist or are not stable. The reason why
the transition from steady state to a cyclic evolution is detected
at a capillary number smaller than the maximum value we
attained (Ca = 0.023), might be due to perturbations induced
by experimental features −such as a small amplitude vibration
of the fiber. In addition, we performed several computations of
the transient flow problem in the vicinity of Ca = 0.02; all of
them led to the corresponding steady state solution hinting that
larger perturbations than those brought forth during a transient
computation are required to destabilize the system.
4.2. The Evolution of the Meniscus Shape. For capillary

numbers well below Ca* the film thickness results from the
competition between viscous and capillary forces and the film
thickness is well predicted by LLD law. Above the threshold
Ca* the strength of inertia becomes noticeable and reinforces
the action of viscous forces: they both weaken the capillary
suction effect in the dynamic meniscus, which tends to limit the
fluid entrained by the fiber; therefore, a larger amount of liquid
is dragged by the solid as the coating speed increases. The
shapes illustrated in Figure 5 for the iso 5 oil (m = 12.92) show
that the size of the meniscus strongly depends on the coating
speed. In fact, both its height and its radial extent increase with
U; for Ca = 0.18, it is almost as wide as the computational
domain (2.7 cm) and the film is formed at a distance larger
than 430b above z = 0.
Figure 6 illustrates the pressure as a function of the arc length

for the same five cases portrayed in Figure 5; the arc length is
measured from the film toward the liquid bath. As expected, the
pressure is equal to zero far away from the fiber and it becomes
equal to the capillary pressure [1/(1 + h0)] in the film. Since

the film thickens as the coating speed increases, the capillary
pressure diminishes: it is almost three times smaller for Ca =
0.18 than for Ca = 0.01. Also, the curves depicted in the figure
show that the pressure jump decreases as the coating speed is
augmented while the region where the pressure transition
occurs moves toward the end of the computational domain (z =
zf, s = 0) and becomes larger.
The effects of inertia forces are more evident in Figure 7,

where the meniscus of water (m = 1962.08) is depicted for
selected values of the capillary number. The meniscus is now
similar to a cylinder whose height increases with the coating
speed, being as large as 900b when Ca = 0.02 (i.e., U ≈ 1.45 m/
s). It is interesting to note the similarity between the
configurations shown in this figure and some of the images
reported by Rebouillat et al. (see Figure 8 of ref 5)
corresponding to their experiments with water. However, we
have to remark once again that those images exhibit a cyclic
change of the meniscus at Ca ≈ 0.02: first the meniscus adopts
a cylindrical shape similar to those illustrated in Figure 7, and
then drops are formed and dragged by the fiber.
At low speeds, Figure 7 shows another interesting result: r =

100 represents a distance of 2.7 mm from the fiber wall; as the
figure shows, this location begins to be reached by the
interfacial meniscus for capillary values even smaller than 0.01.
This means that a wall located at such a distance from the fiber
must have influence on the amount of liquid being drawn.
Apparently, this is what happens in the experiments performed
by de Ryck and Queŕe,́3 in which they withdraw a fiber from the
coating liquid contained in a tube of 2 mm radius. In Figure 3
we can see that our numerical predictions start to depart from
their results when Ca ≈ 0.008.

5. CONCLUSION

In this work we present numerical solutions of dip coating of
thin fibers being withdrawn from liquid pools at least 3 orders
of magnitude larger than the fiber radius. The model was
validated by comparing its predictions with the LLD theory and
it was used to reproduce already published experiments carried

Figure 7. Free surface shapes for selected values of Ca. The fiber (b = 27 μm) is withdrawn from a large reservoir of water (m = 1962.08).
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out in the visco-inertial regime. In the region where the visco-
inertial regime starts to prevail, our numerical predictions agree
surprisingly well with the experiments performed by Rebouillat
et al. (2002); however, they differ substantially from the
experiments published by de Ryck and Queŕe ́ (1996), in which
they used a tube of 4 mm diameter to contain the liquid to be
coated. We give evidence that the discrepancies are due to the
solid walls of the tube that restrain the liquid motion.
The experiments of Rebouillat et al. indicate that at a certain

coating speed the visco-inertial regime appears to make a
transition to another regime, a change that is evidenced by a
change in the slope of the curve of film thickness versus Ca.
Our computation fails to make that transition and the
numerical code does not converge just at the end of the
visco-inertial regime. The lack of convergence might be caused
by an unsuitable mesh that cannot cope with the large
modifications that the flow domain is suffering in that region, or
it might be because the flow becomes transient at that point.
This second possibility is supported by the cyclic evolutions of
the meniscus shape that Rebouillat et al. observed shortly
before the end of the vico-inertial regime. New analyses are
being undertaken to shed light on the probable cause of the
failure.
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