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Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune 
response and have been used since decades to treat various inflammatory and autoim-
mune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in 
the search for novel therapeutic strategies aimed to reduce pathological signaling and 
restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are 
studies suggesting that under certain conditions GCs may also exert pro-inflammatory 
responses. For these reasons the understanding of the GR basic mechanisms of action 
on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutro-
phils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a 
continuous matter of interest and may reveal novel therapeutic targets for the treatment 
of immune and inflammatory response.
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iNTRODUCTiON

Living organisms must sustain a dynamic equilibrium in order to maintain homeostasis and survival 
which is constantly challenged by internal or external stressors. In order to appropriately cope with 
stressful stimuli, they have developed a highly conserved regulatory system. This neuroendocrine 
system consists mainly of the hypothalamic–pituitary–adrenal (HPA) axis and the autonomic nerv-
ous system. Glucocorticoids (GCs), are the end-product of the HPA axis, and play an important role 
in the maintenance of both resting and stress-related responses. If the stress response is dysregu-
lated, homeostasis is altered and probably a wide range of adverse effects may appear on many vital 
physiological functions, such as growth, development, metabolism, reproduction, immune response, 
cognition, and behavior.

GCs act on almost all types of cells and in particular in the immune cells they have been shown 
to have powerful immunosuppressive and anti-inflammatory activities (1–5). As a result of their 
anti-inflammatory properties, GCs are widely used to help treat many different conditions, such as 
allergic, autoimmune, inflammatory, and hematological alterations. Interestingly, an accumulating 
body of evidence now strongly suggests that GCs can have both pro- and anti-inflammatory roles 
under specific conditions. The pro-inflammatory activity of GCs is most apparent in the central 
nervous system (CNS). These opposite effects work together in order to resolve cellular responses to 
inflammatory stimuli and also as a protective mechanism “priming” the immune cells to efficiently 
respond to the noxa or stressor and then restore homeostasis (6).
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Upon peripheral or cerebral immune stimulation, the HPA axis 
is activated. When the immunogenic stress occurs in the brain, 
local inflammatory components activate the HPA axis. However, 
if the challenge takes place outside the brain, multiple pathways 
bring together stimulatory signals from the periphery to the HPA 
axis. Mounting evidence suggests that cytokine signals access to 
the brain through different pathways. These pathways mainly 
include: cytokines passing across the blood–brain barrier; by 
specific saturable transport molecules on the brain endothelium; 
activation of endothelial cells of brain capillaries that release 
second messengers within the brain parenchyma; transmission 
of cytokine signals via afferent nerve fibers and finally by periph-
erally activated monocytes that can enter into the brain (7–11). 
The induction of these different mechanisms modulates cytokine 
activity in the brain (12–14).

The accurate regulation of the HPA axis activity is critical, 
since GC imbalances can result in many different pathological 
conditions (13, 15). Long-term treatment with GCs may result 
in a plethora of harmful undesired side effects, such as diabetes, 
hypertension, growth retardation, dyslipidemia, osteoporosis, 
glaucoma, muscle atrophy, and is also related to many important 
behavioral alterations, among others (16, 17). Chronic exposure 
to GCs can also be associated with GC insensitivity, reducing the 
efficacy of the therapy (18). Also, alterations or deficits in the HPA 
axis response are tightly associated with a wide range of autoim-
mune and inflammatory diseases (19–24).

In this review, we will discuss the role of GCs on the immune 
and inflammatory cells in the periphery and also the physiologi-
cal importance and mechanisms implicated in the apparent para-
doxical functions of GCs in the brain in order to appropriately 
maintain a coordinated homeostatic response.

THe GLUCOCORTiCOiD ReCePTOR (GR)

As a small lipophilic hormone, GCs can rapidly diffuse into cells 
and exert their main actions. These actions are elicited by the 
binding of GCs to their intracellular receptor, the GR. The GR is 
a hormone-activated transcription factor (TF) that belongs to the 
superfamily of nuclear hormone receptors (25). GR is a modular 
protein composed of three distinct regions with different func-
tions (Figure  1A). The N-terminal domain (NTD) contains a 
transactivation domain called activation function 1 (AF1) that 
is responsible for the transcriptional activation and is implicated 
in the association with coregulators and the basal transcription 
machinery. The DNA-binding domain (DBD) is composed of 
two zinc fingers that have been shown to be important for GR 
homodimerization and DNA-binding specificity. The hinge 
region, which separates the DBD from the ligand binding domain 
(LBD), is a flexible linker structure which is implicated in allow-
ing proper DNA binding, dimerization, and nuclear translocation 
of the receptor (26). The C-terminal LBD, contains the ligand 
binding site and a second transactivation domain (AF2) regulated 
by hormone binding (27). The AF2 transactivation domain is 
important for the interaction with co-chaperones, coregulators, 
and other TFs (28). The LBD also encompasses a dimer interface 
which is critical for GR function and the binding of the heat 
shock protein (Hsp) 90 (29). The DBD and LBD both contain 

nuclear localization signals, which are important for GR nuclear 
translocation. The DBD also contains the nuclear export signal 
sequence (NES) which targets it for export from the cell nucleus 
to the cytoplasm through the nuclear pore complex.

Some degree in the heterogeneity in GR proteins may result 
from alternative splicing (30) (Figure  1B). The specificity and 
sensitivity of different target tissues to GCs has been reported 
to be related to GR isoforms (30). The GRα is the predominant 
isoform, and it is the one that transduces GCs signaling in the 
cell (31). There are other four additional splice variants identified: 
GRβ, GRγ, GR-A, and GR-P. GRβ differs from GRα in the carboxy 
terminal sequence, rendering GRβ non-responsive to GCs (32, 
33), with no transcription of target genes. Therefore, GRβ can be 
described as a dominant negative inhibitor of GRα activity. GRβ 
does not bind GC agonists, however, it does bind to the GR antag-
onist RU-486 (34). GRβ can inhibit GRα transcriptional activity 
by different molecular mechanisms including competition for 
glucocorticoid response elements (GRE), interference with the 
activity of coregulators, and formation of inactive dimers (35, 36). 
In most tissues, GRβ is expressed at very low levels. However, 
abundant GRβ expression has been described especially in some 
inflammatory cells, such as lymphocytes and macrophages, and 
have been related to GCs resistance in diseases such as asthma 
(37), rheumatoid arthritis (38), ulcerative colitis (39), systemic 
lupus erythematosus (40), and acute lymphoblastic leukemia and 
chronic lymphocytic leukemia (41, 42). Considering that GRβ 
can inhibit GRα activity, the modulation of GRα/GRβ expression 
ratios may be an interesting approach to regulate GC sensitiv-
ity (42, 43). In addition, eight alternative translation initiation 
sites increase the repertory of GR proteins to almost 40 distinct 
isoforms of GR protein (44) (Figure 1B).

At the cellular level, GC availability is also modulated by 
enzymes of the 11β-hydroxysteroid dehydrogenase (11β-HSD) 
family, mainly 11β-HSD1 and 11β-HSD2 which regulate the 
conversion of active cortisol into inactive cortisone. 11β-HSD1 
favors the conversion of cortisol from cortisone, increasing local 
GC activity (45). In contrast, 11β-HSD2 catalyzes cortisol to 
cortisone, thereby reducing GC availability. Thus, the balance 
in the expression of these two enzymes in a given tissue or cell, 
regulates GC-mediated responses. In addition, some studies 
show that inflammatory cytokine signaling modulates the relative 
expression of 11β-HSD genes, favoring 11β-HSD1 and inhibiting 
11β-HSD2 (46, 47), adding another level of regulation of GC 
activity.

Another important level for fine-tuning the cellular response 
to GCs in different environmental situations is the modulation 
of GR activity by posttranslational modifications (PTMs). These 
PTMs include phosphorylation, acetylation, ubiquitination, 
and sumoylation, which may accurately regulate GR activity 
in response to diverse external stimuli (48) (Figure  1A). In 
particular, SUMO conjugation has been extensively described 
to modulate GR transcriptional activity (49–52). GR contains 
three consensus sumoylation sites. Two sumoylation sites located 
at the NTD have been demonstrated to be part of the synergy 
control (SC) motif sequence (50). The SC motifs consist of 
short regulatory sequences which are important for inhibiting 
the synergistic transactivation. SUMO conjugation to the two 
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FiGURe 1 | The glucocorticoid receptor (GR) structure, isoforms, and mechanisms of transcriptional regulation. (A) Full human GRα protein has an N-terminal 
domain (NTD), a DNA-binding domain (DBD), a ligand binding domain (LBD) and a hinge region (H) between DBD and LBD. They have different associated 
functions, e.g., transactivation, dimerization, nuclear localization, DNA binding, and heat-shock protein 90 binding. The receptor can be post-translationally modified 
by phosphorylation (P), ubiquitination (U), acetylation (A) and sumoylation (S). Regions associated with transactivation (activation function 1 and 2: AF1 and AF2) are 
shown. (B) The GR has various isoforms which result from alternative splicing and multiple transcriptional start sites at exon 2. The colors indicate NTD (red, exon 2), 
DBD (green, exons 3–4), H (light blue, exon 5) and LBD (dark blue, exon 5–9). The 5′ and 3′-untranslated regions are colored in gray. There are five patterns of 
alternative splicing that result in GR isoforms α, β, P, γ, A. Each of them has eight translational variants (A, B, C1, C2, C3, D1, D2, D3) depending on the 
transcriptional start site (“*” denotes an alternative splice donor site in the intron between exons 3 and 4). (C) The GR, carrying GC ligand, translocates to the 
nucleus and regulates gene expression. GR can directly activate/inactivate gene expression by interacting with GREs/nGREs, it can bind to GREs and modulate 
gene transcription by interacting with neighboring DNA-bound transcription factors (TFs) (composite mechanism) and it can act by attaching itself to DNA-bound 
TFs (tethering mechanism). Abbreviations: TF, transcription factor; GRE, glucocorticoid response element; nGRE, negative glucocorticoid response element; TFRE, 
transcription factor response element.
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NTD sumoylation sites is responsible for the functional effect 
of the SC motifs and thereby they inhibit GR activity (50, 53) 
(Figure 1A). It has also been demonstrated that in the presence 
of the sumoylation enhancer, RSUME (54), a SUMO peptide is 
conjugated to the third sumoylation site located in the LBD of 
the GR. Sumoylation in the LBD may be important for inducing 
GR-mediated transcriptional regulation during stress adaptation 
(55) (Figure  1A). A genome-wide analysis of GR sumoylation 
impact on gene expression, showed that genes differentially 
regulated by this PTM are mostly related to proliferation and 
apoptosis pathways and also strongly suggests that sumoylation 
can regulate genome-wide chromatin occupancy of the GR (56). 
Also, GR SUMO conjugation is influenced by other PTMs such as 
phosphorylation in order to fine-tune GR transcriptional activity 
in a target gene-specific manner (57). Important coregulators of 
the GR are also modified by SUMO conjugation, such as Hsp90, 
GRIP1, and also FKBP51, further regulating GR activity (58–62). 
Therefore, PTMs that impact on the GR but also on key molecules 
that fine-tune its activity, helps to understand the complexity of 
GR-mediated regulation of its target gene expression (2, 48).

GCs ANTi-iNFLAMMATORY ACTiONS

The GR forms complex with chaperone molecules, such as Hsp90 
and 70, and immunophilins, such as FKBP51, FKBP52, Cyp44, 
and PP5 (63). FKBP51 binds to the unbound GR and reduces 
GR activity mainly by reducing GR hormone binding and its 
nuclear translocation. Therefore, FKBP51 is considered as an 
inhibitor of GR transcriptional activity. Upon ligand binding, 
the GR exchanges FKBP51 for FKBP52, which is able to interact 
with the dynein motor protein, facilitating GR translocation to 
the nucleus (64). Interestingly, FKBP51 overexpression has been 
associated with GC resistance in autoimmune diseases. FKBP51 
expression was found to be enhanced in sputum samples from 
patients with chronic obstructive pulmonary disease (65). 
Moreover, in a genome-wide profiling focused on the iden-
tification of epithelial gene markers of asthmatic patients and 
response to corticosteroids, GC treatment was found to induce 
FKBP51 expression, which in turn was associated with a poor 
response to corticosteroids, suggesting a role of FKBP51 in GC 
resistance (66, 67). Also, enhanced expression of FKBP51 has 
been found in bone marrow cells in patients with rheumatoid 
arthritis (68). Evidence also suggests that FKBP51 modulates 
NFĸB-dependent gene expression, with possible implications 
for various inflammatory and immune pathways (69–73). 
Considering that GR is a key modulator of immune and inflam-
matory responses, FKBP51 dysregulation may provide the basis 
for a role of FKBP51 in these processes (66). Moreover, FKBP51 
has recently been shown to be a target of SUMO conjugation and 
that sumoylation of FKBP51 is necessary for its association to 
Hsp90 and modulates FKBP51-mediated inhibition of GR activ-
ity in neuronal cells (58). In the brain, FKBP51 has been shown 
to be important for the development of psychiatric diseases 
and the response to antidepressant treatment, suggesting that 
regulation of FKBP51 activity might be an interesting approach 
for modulating GR outcome in the stress response and also in 
the inflammatory context (74–76).

Once in the nucleus, the activated GR can regulate gene 
expression by different mechanisms known as genomic effects 
(Figure  1C) (27). The genomic mechanism involves changes 
in the levels of specific genes: binding of GR to GREs in the 
promoters of its target genes and activation of transcription 
(transactivation); DNA binding of the GR with other TFs to 
“composite” elements which contain a GRE and an overlapping 
response element of another TF (binding can lead to gene activa-
tion or repression); or binding of the GR to a TF (e.g., NFĸB; or 
AP1) by means of a “tethering” mechanism without contacting 
DNA, to influence the activity of the TF (this mechanism is 
considered to be the prevailing mechanism for transrepression) 
(2, 77, 78). Furthermore, GR-mediated transcriptional repression 
can be exerted via GR binding to a negative GRE (nGRE) (79). 
Binding to these nGRE prevent receptor dimerization through 
a strong negative cooperativity and alters the conformation of 
GR residues that are critical for transcriptional activation so that 
negative regulation is accomplished (80). A growing body of 
evidence shows that GC can also mediate non-genomic actions 
that do not require protein synthesis and are implicated in rapid 
cellular responses. For example, in the cytoplasm the activated 
GR can acutely interact with signaling pathways, such as PI3K, 
JNK, 14-3-3 proteins, and components of the T  cell receptor 
signaling complex (81), modulating pro-inflammatory gene 
expression. In thymocytes, the activated GR can translocate to 
mitochondria and induce a rapid apoptotic response (82). In 
addition, membrane-bound GR on monocytes was reported to 
mediate non-genomic effects (82). On the other hand, binding of 
GCs to GR can modify the recruitment of different factors such 
as the multiprotein chaperone complex that participate in many 
signaling pathways, modifying secondary signaling cascades and, 
therefore, may further regulate the immune response (78, 83). 
GCs may also exert anti-inflammatory responses by direct nega-
tive interaction with components of the MAPK pathway, such as 
ERK, c-Jun NH2-terminal kinases (JNK), and p38 isoforms 
(p38) regulating their activity (84). Further studies are required 
to clarify the implications of non-genomic GC-mediated activity 
in the immune and inflammatory context.

It has been shown that several of the undesirable metabolic side 
effects associated with chronic GC treatment are mediated via 
transactivation. However the anti-inflammatory effects of GCs 
are mainly mediated via the transrepression elicited by a mono-
meric GR with the activity of TFs, such as NFĸB and AP1 (1–3, 
85). These TFs are involved in the activation of pro-inflammatory 
and immunoregulatory genes, such as inflammatory cytokines, 
cytokine receptors, adhesion molecules, and chemotactic pro-
teins that play a key role for the coordination of the inflamma-
tory response (1, 86–88). The first example of the transrepressive 
mechanism was the inhibitory interaction described between GR 
and AP1 (89), which results in the inhibition of IL2 expression 
(90). NFĸB is present in almost all immune cells and regulates 
the expression of inflammatory cytokines. Thus, inhibition of 
NFĸB activity is an important feature for GR-mediated anti-
inflammatory activity (85, 91). It also inhibits NFAT-dependent 
IL2 transcription (92). The main mechanism of the GR action 
over these TFs is via transrepression: the activated GR acts by 
binding proximal to the NFĸB or AP1-binding site and interacts 
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with these TFs inhibiting gene expression (93). The transrepres-
sion mechanism is not restricted to these TFs, but has expanded 
including among others, CREB, STAT, and T-bet (1–3, 94).

Alterations in chromatin structure have been reported to be 
important for regulating GC actions. The GR can differentially 
interact with proteins that have histone acetyltransferase (HAT) 
activity, but also with histone deacetylases and kinases that can 
influence the chromatin environment modifying chromatin 
accessibility and further regulating immune and inflammatory 
gene expression (3). In addition, chromatin accessibility has been 
reported to pre-determine GR binding patterns and, therefore, 
is critical for cell-specific outcome, providing new molecular 
basis for the tissue selectivity (95, 96). By all these different 
mechanisms, GCs regulate important functions, not only in the 
periphery but also in the brain.

Synthetic analogs of GC are often employed in the clinic in 
the therapy of allergic, inflammatory, and autoimmune disorders 
(97–99). It is generally accepted that GR-mediated transrepres-
sion holds the beneficial anti-inflammatory action, whereas their 
side effects are due mainly to the direct binding of GR to GREs 
as depicted before (98–100). However, transactivation is also 
necessary for the induction of several anti-inflammatory genes, 
such as MAP kinase phosphatase 1 (101), glucocorticoid-induced 
leucine zipper (102), and inhibitor kappa B-alpha (IĸBα) (85). 
Therefore, the ideal GC analogs should be those that have high 
repressive activity against inflammatory mediators, but low 
transactivation activity, causing minimal side effects. Several 
steroidal and nonsteroidal ligands have been reported to have this 
dissociated function between transactivation and transrepressive 
mechanisms (97–99, 103). These compounds were shown to 
repress the activity of key inflammatory and immune TFs in vivo 
(104–107). However, GCs can induce gene expression not only 
by binding to GRE, but also in combination with other TFs and 
also by binding to promoter regions in a mechanism that does 
not involve GR dimerization or DNA interaction; therefore, 
unexpected secondary side effects might appear (78).

GCs may exert acute anti-inflammatory effects through the 
release of annexin-A1 (ANXA1) (108). Originally, this protein 
was suggested to have anti-inflammatory actions because it was 
described to inhibit phospholipase A2 (109). However, ANXA1 
has been reported to regulate different cellular processes, such as 
migration, growth, differentiation, apoptosis, membrane fusion 
during exocytosis, lipid metabolism, and cytokine expression. 
Importantly, in the HPA axis, ANXA1 has been reported to play 
a critical role in the negative feedback exerted by GCs, therefore, 
affecting hypothalamic-releasing hormones secretion possibly 
via non-genomic mechanisms (110).

GCs ACTiviTY ON PeRiPHeRAL iMMUNe 
CeLLS

GCs mediate immunosuppressive functions by acting on almost 
all types of immune cells (Figure 2). GCs can regulate the phe-
notype, survival, and functions of monocytes and macrophages 
which have crucial roles in tissue homeostasis and innate immu-
nity. GCs exhibit anti-apoptotic effects promoting the survival of 

anti-inflammatory macrophages (111). The intrinsic molecular 
mechanism involves a prolonged induction of the extracellular 
signal-regulated kinase/MAPK (ERK/MAPK) pathway resulting 
in inhibition of caspase activities and expression of anti-apoptotic 
genes (111). GCs can also improve the phagocytic activity of these 
cells and stimulate the clearance of harmful elements, such as 
neutrophil clearance (112–114). GCs also suppress immunostim-
ulatory functions of these cells and inhibit the release of various 
pro-inflammatory mediators, such as cytokines, chemokines, 
and reactive oxygen through different mechanisms (115, 116). 
Functional clustering of GC-regulated genes by human anti-
inflammatory macrophages by microarray technology indicated 
induction of phagocytosis and motility as well as repression of 
adhesion, apoptosis, and oxidative burst (117, 118).

GCs can regulate the maturation, survival, and migration 
toward the lymph nodes and motility of dendritic cells (DCs), 
and also inhibit their immunogenic functions (Figure  2). GCs 
were shown to reduce the ability of DCs to stimulate T cells by 
inhibiting the upregulation of co-stimulatory molecules and 
cytokines, such as IL6, IL12, and TNFα and by inducing the 
tolerance-inducing transcription factor GILZ (119–125). The 
distinct actions exerted by GCs in immature and mature DCs are 
due to differential expression of GR translational isoforms (126).

GCs are important modulators of neutrophilia (Figure  2). 
Leukocyte extravasation is the movement of leukocytes out of 
the circulation and toward the site of tissue damage or infection. 
Rolling, adhesion, activation, and transmigration are necessary 
to arrive to the damaged tissue. GCs can modulate each of these 
steps. Rolling and adhesion is mediated by the interaction of the 
leukocyte integrins with the endothelial counterparts, which are 
inhibited by GCs (127–129). Also, GCs increase the number of 
circulating neutrophils in the blood stream by favoring their 
egress from the bone marrow and also inhibiting their migration 
to inflammatory sites by hindering the expression of adhesion 
molecules (32, 129, 130).

GCs exert distinct immunomodulatory actions on T  cells 
(Figure  2). GCs decrease the number of circulating T  cells by 
favoring their migration back to the bone marrow and second-
ary lymphoid tissues or through the induction of chemokine 
receptors, adhesion molecules, and matrix metalloproteinases 
(131, 132). The steroid hormone also favors T  cells apoptosis. 
GC-induced apoptosis of T cells requires the dimerization of the 
GR (133) and is mediated via the induction of Puma and Bim 
expression (134–137). The relative expression of distinct GR 
isoforms increases the susceptibility of T cells to GC-induced cell 
death (138). Helper T (Th) cells are important players of the adap-
tive immunity (1). Upon antigen stimulation, naive Th cells can 
differentiate into different subsets: Th1, Th2, Th17, or regulatory 
T (Tregs) cells among others, each with specific effector functions. 
Th1 cells express the lineage-specific TF T-bet and STAT4 and 
release pro-inflammatory cytokines, such as IFNγ and IL2 (139). 
Th1 cells help in the activation of effector T cells, natural killer 
(NK)  cells, and macrophages at the site of infection, promote 
effective immune responses against intracellular pathogens and 
are also implicated in autoimmune pathologies. Th2 lymphocytes 
selectively express the TF GATA3 and are characterized by the 
expression of IL5, IL4, IL10, and IL13 and are important for the 
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FiGURe 2 | Glucocorticoid (GC) activity on periphery immune cells. GCs act upon almost every immune cell type. GCs promote an anti-inflammatory state on both 
monocytes and macrophages. GCs prevent monocytes into entering apoptosis and inhibit the liberation of pro-inflammatory mediators by both types of cells. 
Particularly in macrophages, GCs promote phagocytosis and motility, while they inhibit adhesion, apoptosis and oxidative burst. They also act upon neutrophils 
function by inhibiting rolling, adhesion and activation. GCs act toward dendritic cells by promoting their maturation, survival, migration and motility, and at the same 
time GCs inhibit their ability to activate T cells by suppressing the production of pro-inflammatory molecules. A naïve helper T (Th) cell can differentiate into different 
Th lineages and GCs exert different actions. They act upon Th1 by decreasing T-bet transcriptional activity and suppressing the production of pro-inflammatory 
molecules such as IL-2 and IFNγ. They also suppress GATA3 activity in Th2 cells inhibiting the expression of IL-4 and IL-5. The action of GCs toward Th17 and 
regulatory T cells is not yet well understood.
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proper eradication of extracellular pathogens (140). Also, Th2 
cells activate B cells to produce antibodies and play a triggering 
role in the activation/recruitment of eosinophils and mast cells in 
allergic responses. IL17-producing Th17 cells selectively express 
RORγt and also RORα (141, 142). Th17 cells play an important 
role in autoimmune diseases and in host defense against infec-
tion. Treg cells mainly express the TF Foxp3 and inhibit effector 
T-cell differentiation and proliferation and suppress autoimmune 
and allergic responses (143). GCs inhibit the expression of many 
T cell cytokines (1) and can produce a shift from Th1-mediated 
cellular immunity to mediating humoral Th2 responses at physi-
ological doses or chronic treatment (144). Upon acute treatment 
with GCs, they inhibit the synthesis of Th1 cytokines like IL2 
and IFNγ and reduce STAT4 activity (145) and also reduce 
Th2 cytokines expression (146). The molecular mechanism by 
which GCs inhibit Th1 responses involves the reduction of T-bet 
transcriptional activity by the inhibitory interaction between GR 
and T-bet that results in diminished binding of T-bet to DNA 

(94) (Figure  2). Also GCs where shown to reduce mRNA and 
protein levels of T-bet (94). The activity of the Th2-specific TF 
GATA3 is also suppressed by GCs via two main mechanisms: 
first by GR-mediated inhibition of GATA3 translocation into 
the nucleus and second by the inhibition of GATA3 phospho-
rylation by GC-induced MKP1 expression (147, 148) (Figure 2). 
Furthermore, STAT6 activity also involved in Th2 differentiation 
is inhibited by GCs (149). How GCs modulate Th17-mediated 
responses has not been extensively studied, and the importance 
of Th17 modulation by GCs for the suppression of allergic or 
autoimmune diseases remains unclear (150). In rheumatoid 
arthritis, GC treatment diminished IL17 levels (151). In addition, 
in rat lymphocytes methylprednisolone inhibited IL17 expres-
sion due to the inhibition of RORγt expression (152) (Figure 2). 
However, several studies strongly suggest that GC resistance is 
associated with a pathogenic inflammatory Th17 phenotype that 
is refractory to GCs (150, 153, 154). Recently, a gene-expression 
profiling to characterize the steroid-resistant phenotype showed 
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FiGURe 3 | Glucocorticoids (GCs) actions in the brain. Acute stressors 
promote an inflammatory phenotype in the brain. (A) In the microglia, GCs 
bind to the glucocorticoid receptor (GR) which then promotes the translation 
of the toll-like receptor 2 (TLR2) by interacting with STAT5 and NFƙB 
response elements. TLR2 then exerts a pro-inflammatory response by 
promoting the production of inflammatory cytokines. (B) In macrophages, 
GCs promote the expression of the purinergic receptor P2Y2R which then 
produces IL-6 in response to ATP. Moreover, GCs enhance the expression of 
NLRP3 which in turn promotes the production of pro-inflammatory 
cytokines.
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that Th17  cells have restricted genome-wide responses to GCs 
and that they are refractory to GC inhibition at this level. In addi-
tion, Th17 cells were sensitive to suppression with the calcineurin 
inhibitor, cyclosporine A, suggesting that the clinical efficacy of 
cyclosporine A in the treatment of steroid resistance may be due 
to its selective inhibition of Th17 cells (155). Another interesting 
study has shown that Th17 cells are insensitive to GC-induced 
apoptosis and had high levels of BCL-2, knockdown of which sen-
sitized Th17 cells to GC-induced cell death (156). Also, lung Th17 
development in the murine severe asthma model was enhanced 
by GCs, supporting a role of Th17 cells in GC-refractory inflam-
matory conditions such as asthma (157).

In contrast to the inhibitory effect of GCs on pro-inflamma-
tory effector T  cells, it has been shown that Treg cells, which 
are key suppressors of T cell-dependent immune responses, are 
enhanced upon dexamethasone treatment by being more resist-
ant to GC-induced cell death (158) (Figure 2). Also, GCs where 
shown to amplify IL2-dependent expansion of Treg cells and 
to enhance their capacity to reduce experimental autoimmune 
encephalomyelitis (EAE) in mice (159). In addition, GCs increase 
the percentage of Treg cells that express Foxp3 in patients with 
multiple sclerosis (160). In vivo, T cell-specific targeted GR dele-
tion in pregnant animals undergoing EAE, resulted in a reduction 
of Treg population and a loss of pregnancy-induced protection, 
suggesting that steroid hormones can shift the immunological 
balance in favor of Tregs via differential engagement of the GR 
in T cells (161). However, others have found that GC treatment 
suppresses the expression of Foxp3 Tregs in an EAE model (162) 
and also in lungs of allergic mice (163).

In addition to their well-studied anti-inflammatory and 
immunosuppressive activity, an increasing body of evidence has 
revealed situations in which GCs have the opposite effect. This has 
been shown to depend on the dose, timing, duration of exposure, 
and cell population or tissue analyzed (164). The paradoxical pro-
inflammatory role of GCs is mostly evident in the brain, where 
accumulating evidence show that GCs elicit different immune 
responses depending on the affected brain regions.

GCs ACTiONS iN THe BRAiN

There is a significant body of evidence indicating that GCs can 
suppress the innate immunity in the brain after a peripheral or 
cerebral challenge (23). In this way, in adrenalectomized mice, 
there is an induction in the levels of pro-inflammatory cytokines 
in the brain following LPS injection (165–168). Studies also dem-
onstrated that GCs inhibit the release of pro-inflammatory media-
tors in microglial cells treated with LPS (169, 170). Experiments 
performed in vivo support these findings by revealing that dexa-
methasone causes a strong reduction in LPS induction of NFĸB 
expression in the brain (171). In addition, COX inhibitors were 
demonstrated to increase the expression of pro-inflammatory 
genes in the brain during systemic inflammation by reducing 
the activation of the HPA axis and the release of GCs (172, 173). 
This same effect took place when the GR antagonist RU486 was 
administrated (172, 173). Also, systemic inflammation, through 
the increase in circulating GCs, has been reported to have the 
ability to prevent the cerebral innate immune response induced 

by intraparenchymal endotoxin injection (174). Mice treated with 
the GR antagonist RU486 before intracerebral LPS administration 
showed an increase in the pro-inflammatory response, which in 
turn induced neuronal death. These findings suggest that GCs are 
important for protecting the brain during innate immunity (175, 
176). Interestingly, when mice lacking GR in microglia were chal-
lenged with an intracerebral administration of LPS, the activation 
of the toll-like receptor 4 signaling pathway induced cellular 
lesion, and also neuronal and axonal damage (177). In addition, 
microglial cell cultures have reduced motility and increased 
amoeboid morphology in the absence of GR expression. This 
study strongly suggests that microglial GR is the principal media-
tor preventing neuronal degeneration triggered by LPS and that it 
also contributes to the protection of other cell types (177), having 
an important role in promoting neuronal survival.

The majority of GC pro-inflammatory activity has been 
described in animal models of acute or chronic stress which 
occurred previous to peripheral or cerebral immune challenges. 
For instance, acute stressors were reported to induce the expres-
sion of pro-inflammatory cytokines in specific brain regions, 
such as the hippocampus, following LPS peripheral challenge 
(178–180). GCs were also found to upregulate microglial activa-
tion markers including the toll-like receptor 2 pro-inflammatory 
pathway (178, 181) (Figure 3A). It was also shown that chronic 
unpredictable stress was able to potentiate LPS-mediated activa-
tion of NFĸB activity in the frontal cortex and hippocampus via 
GC production (182). Also, chronically stressed animals that were 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


8

Liberman et al. GC-Mediated Immune Regulation

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 235

injected with LPS in the prefrontal cortex or the hippocampus, 
exhibited microglia activation, an increase in pro-inflammatory 
mediators and loss of astroglia and neurons. These effects were 
reduced with RU486 administration (183, 184). The prefrontal 
cortex is important in many brain functions and is a target for 
neurodegenerative diseases. It has been reported that in this 
brain region, TNFα expression and activation of MAPK signal-
ing pathway is upregulated by chronic stress after intracortical 
LPS injection in a GR-dependent manner suggesting a syner-
gistic effect between inflammation and stress. This fact could 
ultimately explain the relationship described between stress 
and some neurodegenerative pathologies (183, 184). In order to 
investigate if stress-induced GCs is responsible for the response 
of brain immune cells to pro-inflammatory stimuli, animals 
were acutely stressed and 24 h later hippocampal microglia were 
challenged with LPS ex vivo. Treatment in vivo with RU486 and 
adrenalectomized inhibited the microglial pro-inflammatory 
response, indicating that stress-induced GCs are able to sensitize 
the microglial pro-inflammatory function (185, 186). Therefore, 
stress may act “priming” central innate immunity to a subse-
quent immune challenge by making the neuroimmune context 
more responsive to inflammation, also favoring GC insensitivity 
or reducing the HPA response (187). In addition, acute restraint 
stress, inescapable tail shock and other stressors induce many 
inflammatory mediators, reduce immunoregulatory proteins 
and trigger microglia activation and proliferation (188–193). 
In addition, GCs have been reported to increase the expression 
of the purinergic receptor P2Y2R (Figure 3B) which promotes 
the secretion of inflammatory mediators in response to ATP 
(194). Recent data also indicate that GCs induce the expression 
of NLRP3 (NLRP3: nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing 3) in macrophages, 
which is a critical component of the inflammasome (Figure 3B). 
The GC-dependent induction of NLRP3 sensitizes the cells to 
extracellular ATP and significantly enhances the ATP-mediated 
release of pro-inflammatory molecules. This effect was specific 
for GCs and dependent on the GR and suggests that GCs sen-
sitize the initial inflammatory response in the context of acute 
cellular damage or death (32). In addition, GCs and TNFα were 
shown to coregulate immune gene expression when combined 
(195). These results suggest that the final outcome of GCs pro- or 
anti-inflammatory activity depends on the activation state and 
signaling context. GCs are also able to modulate the inflamma-
tory response to LPS in different ways according to the brain 
region (180, 182). For example, GR activation during chronic 
stress increases LPS-induced NFκB activation and TNFα, IL1β, 
and iNOS expression in the hippocampus and frontal cortex, 

but exhibits contrary effects in the hypothalamus (182). It is 
important to keep in mind that a pro-inflammatory context 
does not necessarily mean that damage will take place. Timing 
is a key parameter that will determine the final outcome of the 
inflammatory response. While exaggerated inflammation can 
favor neuronal dysfunction and cell death, pro-inflammatory 
mediators may at first induce the removal of the pathogen, the 
recruitment of immune cells and initiate tissue remodeling in 
order to appropriately cope with the pathogen and therefore, 
restoring homeostasis.

CONCLUSiON

GCs are widely used in the clinic to control not only peripheral, 
but also CNS inflammatory response. However, the prolonged 
administration of this steroid hormone is often ineffective and 
can even worsen the outcome of the disease. Considering the 
known undesirable metabolic side effect, the induction of pro-
inflammatory responses and the existence of GC resistance, GCs 
should be used carefully. Future research should be focused not 
only in understanding the molecular basis of GCs side effects 
and resistance, but also in dissecting how GCs induce pro-
inflammatory responses in order to avoid serious detrimental 
consequences, particularly in the brain. In the future, a combi-
nation of different therapeutic approaches may lead to a more 
effective treatment and may help to lower the doses or duration 
of GC treatment thus minimizing the risk of toxicity and drug 
resistance (196). Finally, taking into account inter-individual 
differences in patient responsiveness to GC treatment, where 
different molecular mechanisms might be implicated, future 
directions should be in support of a customized and personal-
ized treatment to meet individual patient needs.
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