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Abstract—This paper investigates, from information theoretic
grounds, a learning problem based on the principle that any
regularity in a given dataset can be exploited to extract compact
features from data, i.e., using fewer bits than needed to fully
describe the data itself, in order to build meaningful representa-
tions of a relevant content (multiple labels). We begin studying
a multi-task learning (MTL) problem from the average (over the
tasks) of miss-classification probability point of view and linking
it with the popular cross-entropy criterion. Our approach allows
an information theoretic formulation of a MTL problem as a
supervised learning framework in which the prediction models
for several related tasks are learned jointly from common rep-
resentations to achieve better generalization performance. More
precisely, our formulation of the MTL problem can be interpreted
as an information bottleneck problem with side information at
the decoder. Based on that, we present an iterative algorithm for
computing the optimal trade-offs and and some of its convergence
properties are studied. An important feature of this algorithm
is to provide a natural safeguard against overfitting, because it
minimizes the average risk taking into account a penalization
induced by the model complexity. Remarkably, empirical results
illustrate that there exists an optimal information rate minimizing
the excess risk which depends on the nature and the amount of
available training data. Applications to hierarchical text catego-
rization and distributional word clusters are also investigated,
extending previous works.

Index Terms—Multi-task learning, Information bottleneck,
Regularization, Arimoto-Blahut algorithm, Side information.

I. INTRODUCTION

The data deluge of the recent decades leads to new ex-
pectations for scientific discoveries from massive data in
biology, particle physics, social media, safety and e-commerce.
While mankind is drowning in data, a significant part of
it is unstructured; hence it is difficult to discover relevant
information. A common denominator in these novel scenarios
is the challenge of representation learning: how to extract
salient features or statistical relationships from data in order
to build meaningful representations of the relevant content.

Statistical models are used to acquire knowledge from
data by identifying relationships between variables that allows
making predictions and assessing their accuracy. An essential
feature of learning is the generalization capability, i.e., its
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ability to successfully apply rules extracted from previously
seen data to characterize unseen data [1]. It is known that
complex models tend to produce overfitting, i.e., represent
the training data too accurately, therefore diminishing their
ability to handle unseen data. To palliate this inconvenient,
regularization methods include parameter penalization, noise
injection, and averaging over multiple models trained with
different sample sets. Nevertheless, it is not clear how to op-
timally control model complexity and therefore, this problem
is an active research topic.

The information bottleneck (IB) method was introduced by
Tishby [2] with the goal of extracting the relevant information
that some signal provides about another one that is of interest.
The IB can be formulated in terms of a noisy source coding
problem [3]] with a log-loss fidelity criterion. The information-
theoretic characterization of the corresponding rate-distortion
function follows from the noisy source coding problem. This
quantity, which has a paramount importance in its own, has
also found applications in the field of statistical learning
[1l, where the log-loss fidelity criterion is a common and
popular cost function. The rate-distortion function is also
related to a similarity measure in unsupervised learning/cluster
analysis and has already demonstrated substantial performance
improvement over standard supervised and unsupervised learn-
ing methods in a variety of important applications including
compression, estimation, pattern recognition and classification,
and statistical regression (see [4] and references therein).

This paper is concerned with an iterative algorithm for com-
puting the rate-distortion function (or more precisely the rate-
relevance function) for an IB problem with side information,
and its relationship with multi-task learning (MTL).

A. Related work

Witsenhausen and Wyner [5]] were the first who studied an
information-theoretic problem equivalent to IB and obtained
an interesting characterization of its solution and several
applications to source coding. Whereas the IB method, in the
same way as it will be studied presented below, was introduced
in [2]] as a rate-distortion problem with a log-loss fidelity
measure. Since then, it was applied to derive several clustering
algorithms for a wide variety of applications such as: text
classification [6f], galaxy spectra classification [7], speaker
recognition [[§], among others. Further information-theoretic
extensions of the IB were recently considered in [9]—[13].

The algorithm for the computation of the classical rate-
distortion problem was developed independently by Ari-
moto [14]] and Blahut [15] and it is widely known as the
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Blahut-Arimoto (BA) algorithm. An extension of this algo-
rithm to the rate-distortion function with side information at
the decoder was reported in [16]. Although this algorithm can
be applied for optimizing the IB criterion [2f], we emphasize
that conventional algorithms [14], [15] are only expected to
converge to a local minimum since IB leads to a non-convex
problem due to the presence of the soft-encoder in the fidelity
measure which depends on the optimizing distribution of the
descriptions. Chechik et al. [17] adapts a BA algorithm to a
restricted form of side information without further study of
the involved optimization algorithm. In a different but related
optimization problem, Kumar and Thangaraj [18] adapt the
BA algorithm and analysis techniques provided in [[19] to a
non-convex problem while Yasui and Matsushima [20]] extend
this work for computing rate regions.

In this paper, we present a novel algorithm for MTL based
on the IB paradigm with side information at the decoder.
MTL is an approach to inductive transfer that improves
generalization by using the domain information contained
in the training signals of related tasks as an inductive bias
[21]]. This is accomplished by learning tasks in parallel while
using a shared data representation, as described in Fig.
What is learned for each task can help other tasks to be
learned better and thus can result in improved efficiency and
prediction accuracy when compared to training the models
separately [22]. MTL has received a great deal of attention
in the recent years [23]]. Application examples of MTL are
e-mail classification (language recognition, topic recognition,
spam or not), audio classification (speech recognition, speaker
recognition, age verification), hierarchical text categorization
(e.g. see Section [[V-C), among others.

There are basically two ways of improving generalization
via MTL. One approach imposes a structural condition on
the learned parameters for all related tasks, e.g., by assuming
some low-rank structure [24] or by modelling explicitly the
links between tasks [25]]. The other approach is through
learning of common features for all desired tasks [26] via
a common encoder (or feature selector) followed by a task-
specific predictor, e.g., using a different decoder for each task.
The later is the one we investigate in this paper. However,
our setup differs from previous works in that we focus on
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Fig. 2. MTL as the noisy source coding problem with log-loss fidelity and
side information Z (index task variable) at the decoder, referred to as the 1B
with side information.

an information-theoretic formulation of the MTL problem.
We should also mention that we restrict our setup to MTL
scenarios where the inputs are common to all tasks. Although
this can be mathematically equivalent to the problem of multi-
label learning (MLL), there are some important differences
(see [27] for further details).

B. Our contribution

We introduce an information-theoretic paradigm which pro-
vides the fundamental trade-off between the log-loss (average
risk) and the information rate of the features (statistical model
complexity). We begin motivating our information theoretic
approach to the MTL problem starting from the ultimate goal
in a classification learning problem which is the misclassifica-
tion probability and its relation with the cross-entropy risk. It
worth to mention that our formulation, as the optimization
of a rate-distortion function for a particular noisy source
coding problem with side information at the decoder, provides
an information-theoretic perspective for the MTL problem,
which yields an intriguing connection between the fields of
machine learning and information theory. Then, we derive an
iterative Arimoto-Blahut like algorithm to address the non-
convex optimization problem of the IB method in presence
of side information available only at the decoder [9], [28], as
described in Fig. [2] and consider several of its convergence
properties. This approach provides a natural safeguard against
overfitting by minimizing an average risk penalized by the
model complexity. Remarkably, empirical results illustrate that
there exists an optimal information rate minimizing the excess
risk which depends on the nature and the amount of available
training data. We further evaluate the performance of this
algorithm on hierarchical text categorization of documents
and numerical results demonstrates the merits of the proposed
MTL algorithm in terms of the classification performance.

The rest of the paper is organized as follows. In Section [II}
we introduce the problem and present our iterative algorithm.
The algorithm’s properties are analyzed in Section [[II] while in
Section [[V] we show numerical evidence for some selected ap-
plications. Section [V| provides concluding remarks and major
mathematical details are relegated to Appendices.

II. PROBLEM DEFINITION AND MAIN RESULT
A. Notation and conventions

We use upper-case letters to denote random variables and
lower-case letters to denote realizations of random variables



(RVs). Superscripts are used to denote the length of the
vectors and subscripts denote the index of the components of
a vector. All RVs live in finite alphabets. The probability mass
function (pmf) of random variable X is denoted by Px(x),
x € X, where X is the alphabet of the random variable.
When clear from the context we will simply refer to the
pmf of X as Px. Ep,[] denotes the expectation and |A
indicates the cardinality of a set A. A = B —e- C indicates
a Markov chain, i.e., Pyjpc = P p- The support of a pmf
Py is denoted by supp(Px ). The information measures to be
used are [29]: the entropy H(X) := Ep, [—log Px(X)], the
conditional entropy H(X|Y) = Ep, , [— log PX‘Y(X\Y)]
and the relative entropy or Kullback Leibler divergence:

Px(X)
EPX |:10g QX(X)
400

where we use Py < Qx to denote that the probability
measure Py is absolutely continuous w.r.t. (Q x, and the mutual
information: I(X;Y) = D(Pxy|PxPy). When referring
to an empirical distribution computed using data samples we
will use notation Py . Functionals computed with an empirical
distribution will be also denoted similarly, e.g., the entropy of
X computed by using Py is denoted as: H(X). All logarithms
are assumed to be base 2.

] if Px < Qx 1)

otherwise,

D(Px||Qx) =

B. Multi-Task Learning and Information Bottleneck

Consider a multi-task supervised classification problem. Let
(X,Y1,---,Y|z|) be arbitrary RVs. Soft-encoder Py x is
used to extract from X information about a collection of
labels Y, with z € Z = {1,---,|Z|} (task index) and the
corresponding soft-decoder Py, ;; seeks to recover the label
for each task z, as shown in Fig. In other words, the
encoder aims to extracting relevant (common) information
U from a data set X about the hidden labels Y, for each
z € Z. This common information is used for solving the
collection of classification tasks z € Z at the decoder side.
The misclassification probability for each task is defined as:

P(Y, #Y.) = 1= Epygy. [PYZ‘U(YZ\U)} G

The MTL goal is to achieve low misclassification probability
for all tasks. But is clear that depending on the application
some task might be more relevant than others. It is reasonable
to define an artificial random variable Z, whose pmf Py(z)
represents the relative importance of each task z € Z. The
problem, is then shown in Fig. 2] where the variable Y is
defined such that Px y|z(z,y|z) = Px,y,(z,y) and the soft-
decoder can be written as Py, 7 (ylu, z) = Py, (y|u). The
encoder is given as before in terms of Py x, given the fact
that we enforce the description U to be common to all tasks.
In this way, the average misclassification probability is given
by P(Y # }A/) =Ep, [P(Y. # Yz)] This probability has the
particularity that it is mathematically hard to optimize. As a
consequence, it is common to work with a surrogate function
given by the logarithmic loss log Py i, ,(Y|U, Z) which give
rise to the average cross-entropy risk:

RiSk(PU‘X’ PY\U,Z) = EPX,Y,ZPU\X [_ 10g P?|U7Z(Y|Ua Z)}
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Fig. 3. A relevance-rate region with its supporting hyperplane ().

It is straightforward to obtain that:

]}D(Y ” }A/) <1- 2—RiSk(PU|X1PY|U,Z)7 4)

which shows that the cross-entropy provides an upper bound
to the average misclassification probability, which motivates
its used as surrogate cost function for the MTL problem.
Besides this observation, cross-entropy risk provides in general
an effective and better behaved cost for minimizing the mis-
classification probability. An interesting observation is given
by the fact that in the above problem the optimal choice for
the decoder Py, ,(Y'|U, Z) becomes:

> Puix (ul2) Px v, z(%,y, 2)
Zx PU‘X(’LL|(L')PX72(IC, Z) ’

which is completely determined by the encoder Py x and
input distribution. With this choice of the decoder, the risk
is given by Risk(Py|x) = H(Y|U, Z). As a consequence the
problem is reduced to the one of finding the encoder Py x
which minimizes H(Y|U, Z) or equivalent, of maximizing
mutual information I(Y;U|Z).

The representation U is expected to summarize data X in a
compact way, where compactness of the model is measured in
terms of the minimum Shannon entropy rate. However, learn-
ing a representation U for predicting Y requires to capture the
regularities in Y that are present in X while other irrelevant
information for Y must be disregarded. In this sense, our
statistical measure of complexity says that the best description
U of the data is given by a model able to compress X which is
captured by Shannon mutual-information rate I(U; X |Z = z).
In the spirit of the Kolmogorov-Chaitin complexity [30] this
is a measure of the regularities present in an object above
and beyond pure randomness. To summarize finding the en-
coder that minimizes the average log-loss or cross-entropy is
equivalent to search for the encoder maximizing the mutual
(relevance) information I(Y;U|Z) = H(Y|Z) — H(Y|U, Z).
As a consequence, we can focus on maximizing the relevance
(mutual information) I(Y; U|Z) subject to a given complexity
(Shannon rate) I(X;U|Z).

Definition 1 (Relevance-rate region): A pair rates (R, u) is
achievable iff it belongs to the rate-relevance region:

Pyuz(ylu, z) = (5)

R:={(u,R) € RL,:3 Pyx st. R>1(U;X|Z),
p<I(Y;U|Z), U-X - (Y,Z)}. (6)



and the corresponding relevance-rate function is defined by

L(R,Pxyz) = max{uz

= max I(
Py x: I(X;U|Z)<R

(R,p) € R}, (7)
Y;U[Z). (8)

The computation of this function can be interpreted as an IB
problem with side information only at the decoder. At this
point, we should mention that problem () was obtained from
a single letter formulation of the MTL problem in terms of an
encoder which generates common representations and a family
of decoders which perform the classification tasks. Although,
it has been shown in [9, Theo. 1 with pus = 0, L = 1]
that the above problem has also an operational significance in
information-theoretic terms quantifying the asymptotic (with
increasing block-lengths) trade-offs between a multi-letter rel-
evance and the compression rate, this interpretation, however
has not major significance for the learning problem where
inputs are generally treated in single-letter basis and there is
no block-length tending to infinity.

It is worth to mention that Lo(R, Pxy) < L(R, Pxy,z) <
Lsgp(R, Pxy.z), where Lo (R, Px y) refers to the classical
IB relevance-rate function and Lsgp(R, Px,y,z) to the one
with side information at both the encoder and the decoder. This
behaviour is related to the fact that any additional knowledge
can generate relevant information [[11]]. Interestedly, these two
problems are particular cases of (8): when |Z| = 1 since the
IB problem with side information becomes the standard one,
while if X = (X,2), L(R, PX,Y,Z) becomes an IB problem
with side information at both the encoder and the decoder. In
this way, the problem in (8) is the most general and interesting.
The following lemma is important for the characterization of
the relevance-rate region:

Lemma 1: R is closed, convex and the cardinality of random

variable U can be bounded as |U/| < |X| + 1 without loss of
generality.
The proof of this result is not difficult and for that reason is
omitted. Observe that the relevance-rate function —as being the
upper-boundary of R— provides an alternative and complete
characterization of the region. It is important to mention that
the maximum in that problem is well-defined because we are
attempting to maximize a continuous function over a compact
set. A graphical example of the relevance-rate region can be
seen in Fig. |3| Although the optimization involved in does
not lead to a convex problem, the properties of R allows us
to characterize the optimal trade-off between compression and
relevance rates using supporting hyperplanes [31]]. As it is well
known, any closed and convex set can be characterized by all
its supporting hyperplanes [32]. A supporting hyperplane for
‘R with parameter A can be written as:

Va =max M(Y;U|Z) - (1 —

U | X

NI(X;U|Z). 9

With little effort it is easy to show that A € [0, 1] suffices
for the full characterization of R using supporting hyper-
planes. Finding the optimal encoder P, U‘ X in @) requires
knowledge of the underlying distribution Pxy,z. In prac-
tical applications, this lack of knowledge is overcome by
resorting to labeled examples, i.e., a training set of n i.i.d.

tuples: {(x1,v1,21),---, (Tn,Yn,2n)} sampled according to
the unknown distribution Px y,z. In Section [IV] we will study
some supervised learning setups where expression (9) together
with the iterative algorithm described below using empirical
distribution nyy’ z will serve as a supervised objective to
guide MTL. Obviously, there other alternative methods which
do not require the plug-in estimator but use an estimate of the
source distribution, e.g., [33[]-[35].

C. An iterative optimization algorithm

In order to simplify the notation, we define f(\, Py|x) as:

fO\ Pyix) = M(Y;U1Z) = (1= NI(X;U|Z). (10)
Clearly, we can write
FOPyix) = Pz(2)[M(Y;U|Z = 2)
zZEZ
- (1=-NI(X;U|Z = z2)], (11)

where we see the effect of the weights Pz(z) associated with
each task. Data Processing Inequality [29) sec. 2.3] allows
to conclude that the only allowable values for the relevance
are 0 < p < I(X;Y]Z). We wish to obtain an algorithm
that is able to find the supporting hyperplanes of R, for every
A € [0,1], allowing the computation of the upper-boundary
of R, i.e., finding the optimal pmf PU| "¢ that achieves the
maximum in (9

P A

]x = argmax J\ Pyix).

PUl

12)

Using the Markov chain U —-e— X —o— (Y, Z), the function
J(X, Py|x) can be written as:

O\ Poix) = A= DI(X;U|2) -

Depending on the value of ), it is appropriate to define the
algorithm in two different ways. This is similar to the approach
in [20]. If A € [0, 0.5], both terms of (I3) are non-positive and
thus, the solution is trivial: V), = 0. This is achieved for all pmf
that satisfies Py;jx = Py and corresponds to the point (0, 0) in
R. The interesting case is when A € (0.5, 1]. In this case, the
proposed iterative algorithm is summarized in Alg. 1, where
k, are constants such that ) Pg&il) =1Vz € X. In the
next section, we explain the rationale behind this algorithm.

(X U|Y,Z). (13)

III. ALGORITHM ANALYSIS

The above problem is not convex because Pyx +
f(X\, Pyx) is not concave. As a consequence, we cannot
expect to devise an efficient procedure determining the global
maximum of the problem. The algorithm proposed is a variant
of the BA algorithm [[14], [15] which is based on solid the-
oretical grounds and guarantee global optimum convergence
results when the optimization problem is convex. Although the
involved optimization problem is not convex, we provide some
results regarding the convergence properties of the proposed
algorithm. Convergence to a local maximum is guaranteed
which could be also the global maximum provided that some
theoretical conditions are fulfilled. These results are inspired
from seminal works in [18[]-[20].



ALGORITHM 1: Information Bottleneck with side information.

Input: Py 7. PO, A€ [0,1], € > 0.

U|x®
Output: P;}&
Initialize n := 0, I;O) = 400, F>(\0) = 0.
while 7" — F{"™ > ¢ do
Compute
PP
(n+1 o p (n+1) vixtXl|z
U|YZ Z U\X X|Y,2Z> QX\ZU - 5 5
Zz/ U|x/PX’|Z
1 2\ — 1 1
P((ff; ) = kg - exp { —_— ZPZ\X 10g(Q<)?|J2 [)]) +>  Pyix,zPzx log(Q;;%)} .
Y,z
Q("Jrl) P("+1)
(n+1) p(nt1) X|2,U pn+1) UIX
RV =20 =1) 3 Py Pxzlog | — —A D Fyix Pxvzlos | —aa |
xr,z,u Xl x,Y,z,u QUIY,Z

(n+1) _ _
I = max (2\ — 1) > Px,zlog

Q
T,z P

Update n :=n + 1.

end while
Report Péli( = P[(;‘L;(

(n+1)
X|Z,U

x|z

> Pk
— )\ nyyyzlog (n|+1) ,
T,Y,2 QU\Y,Z

A. Algorithm summary

We first study the algorithms expressions in further detail.
Eq. (13) can be expanded as:

) . (14)

Px\zu

JO Pyix) = (22— 1) ;LPU\XPX,Z log < Px iz

Py x
- A E Py x P lo
UIxXEXy.z 108 (PUY,Z

T,Y,z,u
Let the function F(A, Py x, Qu|y,z, @x|z,u) be:

F(X\ Pyix,Quyy,z, @x|z,u)
Qx|z,
= (ZA — 1) Z PU|XPX,Z10g (_;(ZU

X|Z

)
>, 15)

where Qu |y, z, Qx| z,u are arbitrary pmfs. For sake of simplic-
ity, sometimes we write [’ when the arguments are obvious.
This new function has some important properties.

Lemma 2: Consider any Pyjx and let A € (0.5,1]. The
following properties hold true:

D f(\ Pyix) > F(\ Pyix, Quyy,z, Qx| z,u). and equal-
ity is achieved iff QU\Y,Z = PU|Y,Z v (y,Z) EYXZ
and QX\Z,U = PX\Z,U \V,(Z,U) cZxU.

2) The value V) satisfies:

T,z,u

P
~ X > PyxPxy.zlog (Q X

T,Y,2,u

U,z

F(\ Pyix,Quiy,z, @x|2,0)-
(16)

VA = max max
Py \x Qu\y,z,.Qy|z,U

3) For any QU\Y,Z?QX|Z,U and \ € (05,1}, PU|X —
F()\,PU‘X,QUW’Z,QX‘Z’U) is concave and achieves
its maximum provided that:

22X\ —

Pyix = ks - eXp{ Z Pz x log(Qx|z,v)
z2€Z
+ Z Py \x 2Pz x 10g(QU|Y,Z)}7

(y,2)EYXZ
(17)

where k, are constants such that ) Pyjx = 1Vz € X.
Proof:
1) The difference between functions can be written as:

f\ Pyix) — F(\, Pyix, Quyy,z, Qx| z,v)
P
= (2)\ - 1) Z PU|XPX,Y,Z log (W)

P
Z,Y,2,u X|z

)

Qx|zU

P,
—A > PyxPxy.zlog <PU|X

z,Y,2,u uly,.z

—(2A=1) ) PyxPxy.zlog (

z,Y,2,u

)

Py x (18)

+ A Z PUlXPX,Y,Z10g<Q

ERTERT

UlY,z

Px |z
= AZ Py, z D(Py)y,z||Quy,z)
Y,z
+ (21 -1) ZPZ,U D(Px|zulQxzy) =0

R

19)

with equality iff Quy,z = Pyjy,z V (y,2) € ¥ x Z and
Qx|zu = Px|z,u V (z,u) € Z xU. This is easily seen
from the properties of relative entropy [29, sec. 2.3].



2) The claim follows by combining the previous claim

with ().
3) Every pmf satisfies ) Pyx = 1. Then, using La-
grange multipliers c,, = € X:

F + 3, (3, Puix — 1)
0Py |x

+(22=1))_ Px zlog (Qx|zv)

= ¢z — APx log(ePy|x)

+A Z Px y,zlog(Qujy,z) =0
Y,z
from which we immediately recover (I7). Note that this
solution meet Py|x—,(u) > 0 for all (z,u) € X x U.
The concavity results follow from:

(20)

PF(\, Pyix, Quyy,z, Qv|zu) APy log(e) -
P) - — =~ 0.
Py x Py x
21
|

We observe that the function F(A, Py x, Qu|y,z, @x|z,0)
provides an achievable and easy way to optimize a lower
bound to the objective function f(A, Pyx), for each Py x.
Interestingly, Pyx — F(X\ Pyix,Qu|y,z, Qx|zuv) is con-
cave for each (Qu|y,z, @x|z,v). guaranteeing that any local
optimum is also a global one. These facts lead naturally to the
iterative process in order to perform the double maximization
which results in V). This is the case in Algorithm 1, where we
perform an iterative maximization process on both arguments:
PU\X and (QU|Y,Za QX\Z,U)' For a given A€ (05, 1],
starting from an initial condition PO and according to 2) in

Ulx>

Sﬁyzv le)z v such that the max-

Lemma we search for @)
imum of F(/\,P[(JO‘)X,QU|Y7Z,QX|Z7U) is achieved, for fixed

P((JO‘)X. Next, from 3) in the previous lemma, we find P((Jl‘)X

as the argument that maximizes F'(\, Py|x, QS‘)Y 7 Q%)z )

This iterative process is repeated until a stopping criterion
is satisfied (see Section [[II-C). It is easy to show that the
sequence of values F'(), PUTX, ngnl)y 7 Qg?\)Z,U) is monotone
non-decreasing. This clearly guarantees the convergence. In
the sequel, we further study this process in detail.

B. Convergence properties

For sake of simplicity, let us assume that the
optimal  point P;}’l’}( is unique. Define F/{") =
F(A, P[(]T;( ,Q gjnl )Y 7> Qg?fz y)- From the previous section

we know that Ff"H) > F )(\n). Moreover, from 2) in
Lemma Vi > F/{n) for all n. However, there is no
guarantee that V) = F/soo). In order to obtain some insights
on the convergence process and on the limiting point of the
iterative process, we will consider the concept of d-superlevel
set (see [18]] for further details).

Definition 2: The §-superlevel set is defined as the set:
G57)\ = {PU|X X—)P(U)| f()\v-PU\X)Z(S} (22)

Definition 3: Consider a fixed conditional distribution Pe
Gs.a. The set Hs\(P) is defined as the set of all points

Py x € Gsx such that each of them (and P) are in the same
path-connected component of G5 . In order words, H;s x(P)
i§ the set of all points Pyx € G5\ that are reachable from
P by a continuous path.

Lemma 3: Let A € (0.5,1], the distribution P[(JT;D lies in

H(;,,\(P[(]T;() for all k such that Pl(]ll;( € Gs».

Proof: Let ~g; » be the E-superlevel of the func-

tion F(/\,PU‘X,ngl;}Z),ngLE()J). Since f(\, Pyix) =

F(A,PU‘X,QE;L';IZ),Q()?‘?[)]) from Lemma [2| (i.e. by claim

1), it follows that G, C G Vn. Also, PJ'k and PV

UlX UIX

lies in G , because:

(n+1) (n) (n+1) (n+1) \ (n)
Fy > F(\ Py ix, Qupy.z @xz,0) = F(A, PU\X)&23)

For fixed (Qg’I;IZ), Qg?l?l)]) pmfs, we know that F' is concave
in argument PU| x. Thus, ég,,\ is a convex set and it is
therefore path-connected and between any two of its points
there exists a continuous path. Then, it follows that ~§7 y €

H;, ,\(P[(;B() and we conclude that P[(;ll;l) € Hs, ,\(P[(;&) [

Clearly, this lemma and Definition |3 imply that if PO ¢

Ulx

Gy » for a given value of J, then PU‘; € H(;),\(PL(,(‘))X) Vn

and the complete trajectory of the algorithm for a particular

initial condition is contained in Hj, ,\(P[(]?)X) which is clearly
a path-connected set.

Lemma 4: Consider A € (0.5,1] and P((]O|)X € Gsa

for a given valud'| of §. If the optimal solution P{;G{

lies in Hy (P

U‘X), the function f(\, Py x) is concave in

Hs, ,\(PI(JOI?X), then the following inequalities hold for every n:
Q(""f‘l)
*, uUl\y,z
Vi< Z PU"/;(PXX,ZlOg —m
T.y,z,u Prix
C2(n+1)
TN -1 PN Py ylog | ZXIZV ) (24
| )TZ vixTe Px|z
P(7|L+1)
(n+1) .Y U|X
Vi — Fy < )\ZPU‘XPX log - (25)
T,u U|X
Proof: See Appendix [ ]
Theorem 1: Consider A € (0.5,1] and Py € G\
for a given value of §. If the optimal solution Pg& lies
in H(;,)\(P((J?)X) and the function f(\, Py|x) is concave in
H(;’,\(PI(](;)X) and P[(J(T)X is such that |supp(P[(](T)X)\ = |U|, then:

1) Convergence of Fy: lim,, o0 F)(\n) =V

2) Convergence of PI(;IL;(: lim,, oo P[(jll;( = Pg’&.
Proof:

'Tt is easy to show that we can always find a value of & such that this
condition is satisfied.



1) For any integer N > 1, from Lemma [Z_f] we can bound:

(V)
OISR o
U|X

(26)

Z)\(EX[ ( U\XH U|X)} _EX[ ( U\XH U|X)D

(27

< XEx [D(PSXIPS)] (28)

where the last term is finite because \supp(P,(]? = 1Ul.

(n+1)

From claim 2) in Lemma we have: V) > Fy , and

)(\”) is non-decreasing in n. Thus, for N — oo, the

: 1) n—
series converges and F(”Jr ) noge V.

2) From Lemma | Fy (15 > f(A, U|;() > F(n) so using

the previous claim f(\, P[(;B() IV = FLPIY).

Ulx
From Lemma [3| we have that PI(Jlgf € H;s /\(PI(J|)X) for

all n. As f(, PU‘X) is concave in H; ,\(P[(JI)X) and its

optimal point P} U] X is unique, it is easy to check that
P Pk
|
As f(X, Py|x) is not globally concave, the §-superlevel set
Gs,x is not convex and it is not necessarily connected. By
Lemma [3| the algorithm proposed stays in the path-connected
component Hj, /\(PI(JOBX) which is determined by the initial
condition. If the the optimal point P} U] X is contained in the
right path-connected component H, A(PI(J|)X) and f(A, Py|x)
is locally concave around the optimal pom PU’| - the algo-
rithm will converge to the global optimum. However, to avoid
convergence to a local maximum located in a wrong path-
connected component Gy, a simple solution in practice is
to run the algorithm from a few different and well-separated
initial conditions and keep the one that provides the largest
value of F' after stopping condition is met. It is worth to
mention that this convergence analysis will be valid for other
situations where a BA algorithm is used, e.g., for convex and
non-convex problems as the standard IB.

C. Optimal solution and stopping condition

We now consider some properties of the optimal solution
P{;‘ y and the stopping condition for the proposed algorithm
that can be obtained from them. Starting by the next lemma:

Lemma 5: Consider A € (0.5,1]. If f(\, Py|x) is concave

in a vicinity of the optimal solution P[j‘ > We have
ao*(Au) =V, for u €U such that PU‘X >0and Vz € X
a*(\u) <V, otherwise,
(29)
where
N Q;/\\Z U
a*(\u) = (2X—-1) Z Px zlog
Px |z
(z,2)EXXZ

>This is something reasonable to expect when the optimal point is an
interior one because of the smoothness of f(X, Py |x).

Qiv.z
: . (30)
P*,)\ (

UlX

+A

D

(z,y,2)EXXYXZ

Proof: See Appendix [ |
It is interesting to observe that the optimal solution PU" R
such that for each value of u € U where PSB{ > 0 the
value of a*(\, u) is constant and equal to the maximum value
V. Similar results are obtained for the optimum solutions for
the capacity of a discrete memoryless channel and the rate-
distortion function for a discrete memoryless source [36]. In
particular, we have:

Px v, zlog (

= (A, u). 31
Vi = maxa™(A,u) (3D
From these results, we can consider the quantity:
(n+1)
I(nH) =max (2\ — 1) Z Px zlog X5,V
uelU X\Z
(z,2)EXXZ
(n+1)
U,z
+A Z Px vy, zlog P (32)
(2,y,2) EXXYXZ U|X

It is clear from that for A € (0.5,1], I§"+1) > V.. This
suggests that a stopping condition specially matched to the
optimal value P{;& could be implemented by checking the

condition: [ )(\") - F /{") < € for a sufficiently small € > 0.

IV. NUMERICAL EVALUATION

In this section, we apply the proposed algorithm to different
application problems.

A. Example of computation of a relevance-rate region

According to the discussion presented in Section [[I al-
though region R is convex, the problem of obtaining its
upper-boundary (or the relevance-rate function defined in
expression (8)) is not a convex one. For this reason, only a
small number of cases can be solved in closed form. One of
them is the double binary source problem with binary side
information at the decoder which was completed solved in
(11]. In this problem, the pmf Py y, 7 is a probability measure
corresponding to a source (X, Y, Z) such that Y- X - Z and
(X, Z) form a doubly symmetric binary source with crossover
probability p, and (X,Y") forms a doubly symmetric binary
source with crossover probability p. It was shown in [11]] that
the relevance-rate region is given by the convex hull [32] of
the following region:

Ry:={(R,p): R>1(X;U|Z), p<I1(Y;U|Z),

with Py x = BSC(r) Vr € [0,0.5]}, (33)

where BSC(r) denotes a binary symmetric channel with
crossover probability r. It is clear that the algorithm presented
in Section allows the computation of all relevance-rate
pairs in R for an arbitrary pmf Px y,z. This can be easily
done by running the algorithm for a sufficient dense grid of
points A € (0.5,1] for the desired pmf Px y,z. In order to
test the suitability of the algorithm for this task we used it
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Fig. 4. Rate-relevance region corresponding to a double symmetric binary
source.

with the source (X,Y, Z) described above setting parameters
p =0.1and ¢ = 0.4. In Fig.[4] we show the region obtained by
our algorithm and the upper-boundary of region R;. We can
observe that the region obtained by the algorithm coincides
with the convex hull of R;.

B. Compression-based regularization learning

In the previous sections, we have shown that the problem
of maximizing the relevance I(U;Y|Z) subject to a mutual-
information constraint I(U; X|Z) < R is equivalent to that
of maximizing f(A, Py|x) which introduces the penalization
term: (1 — A\)I(U; X|Z). We now show that this constraint
can act as a regularization when applied to situations where
the joint statistics controlling the observations Px y,z is not
known but it is estimated from training samples. Indeed,
Shamir et al. [37] have already showed evidence that this
term can help to prevent “overfitting” and this idea was also
exploited in [[10], [38] to justify some features of deep learning
algorithms. It should mentioned that these analysis were
performed for the classical IB method without the presence
of side information. The results in [37] can be extended as
follows: For any distribution P y,z, with a probability of at
least 1 — ¢ over the draw of the sample of size n from Px y,z,
we have that for any Py x simultaneously,

1(Y;U|Z) = 1(Y; UlZ)l <

w5 o)

where I(Y;U|Z) is computed using the empirical distribution
PX,Y, z based on the n training labeled examples. This result
shed some light in how the achievable performance under
the empirical distribution approaches the true data distribution
one, as a function of the complexity rate I(X;U|Z) showing
that looking for the reduction of such term could be beneficial
when working this the empirical distribution. Based on these
results more precise statements on the generalization learning
performance could be obtained assuming a given deviation
(which could depend on n) between the true distribution
Px v,z and the empirical one pX7y7 z and providing a charac-
terization of the achievable performance in terms of rate and
relevance when the empirical distribution is used. We defer this
study to a future work. In this section, we provide numerical
evidence that the desired regularization effects hold in our
MTL setup.

(34)
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Fig. 5. Excess risk (35) as a function of the information rate.

Consider a multi-task supervised classification problem.
Finding the optimal encoder that minimize (3) requires knowl-
edge of the underlying distribution Px y,7. From a practical
perspective, as the input to the proposed algorithm, we will
use the data sampling distribution PX’Y’ z based on n training
labeled examples. By introducing the rate constraint (or pe-
nalization), the 0pt1mlzat10n problem is reduced to opt1m1z1ng

L(R, PX Y, z) in () from Wthh the resulting encoder P,

U\X
is derived while the decoder P U 7 follows from expression

(). The measure of merit will be the Excess-risk:

Excess-risk := Risk(P* AP ) —

S P ) — HIYIX, 2)

(35)

that is the difference between the minimum Bayesian risk
H(Y|U, Z) and the risk induced from the suboptimal encoder
]5;,& obtained by optimizing w.r.t the sample distribution
ZADX,Y, z subject to the rate constraint.

Experiments will be performed by using synthetic data with
alphabets |X'| = 128, |Y| = 4, | Z| = 2. The random variable
Z is assumed to follow a Bernoulli distribution with random
parameter p € [0, 1] while the joint distribution Px y|;—. is
defined as a Restrict Boltzmann Machine (see [1]] for further
details) with parameters randomly drawn for each z € Z.
The assumed probability Pz allows for tuning of the relative
importance associated to each of the tasks.

In Fig. 5] we plot the excess risk curve as a function of the
rate constraint for different size of training samples. With dash
lines we denoted the rate for which the excess risk achieves
its minimum. When the number of training samples increases
the optimal rate R approaches its maximum possible value:
H(X|Z) (dashed in black). We emphasize that for every curve
there exists a different limiting rate Ry, such that for each
R > Ry, the excess-risk remains constant with value. It
is not difficult to check that Ry, = H (X|Z). Furthermore,
for every size of training samples, there is an optimal value
of Ropt which provides the lowest excess-risk in (33). In a
sense, this is indicating that the rate R can be interpreted
as an effective regularization term and thus, it can provide
robustness for learning in practical scenarios in which the
true input distribution is not known and the empirical data
distribution is used. It is worth to mention that when more
data is available then the optimal value of the regularizing
rate R becomes less critical. Of course, this fact was expected
since as the amount of training data increases the empirical
distribution approaches the true data-generating distribution.
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Fig. 6. Hierarchical text categorization and MTL.

U,

C. Hierarchical text categorization and distributional word
clusters

The high dimensionality of texts can become a severe
deterrent in applying complex learners like support vector
machines (SVM) [1] to the task of text classification. Word
clustering is a powerful alternative to feature selection for
reducing the dimensionality of text 6], [39]. This issue can be
alleviated by intelligently grouping different classes in disjoint
sub-categories. In this way, a first classification problem can
be set over the generated sub-categories and the information
extracted can be used in a second classification problem
to discriminate better between classes. This is the case in
hierarchical text classification [17], [40]. We approach this
problem based on the scheme of Fig. [6] Consider a document
d consisting of different words X. We want to estimate the
class Y5 to which the document belongs by using information
related to a sub-category Y7 (typically related to the text topic)
to which the same document also belongs. To this end, assume
a pair of encoder 1-decoder 1 infers the document sub-category
Y by using our algorithm without side information (i.e. Z
is a degenerate RV) and with input Pxy,. This is clearly
a standard classification problem where U; is the feature
that encoder 1 extracts from X. Encoder 2-decoder 2 pair
generates the final classification in Ys by using the algorithm
with input Px y, v, . Uy can be considered as side information
available at decoder 2. This problem can be interpreted as a
MTL problem where the different classification tasks to be
inferred by decoder 2 are induced by the features extracted
from encoder 1.

Assume a training set consisting of documents belonging to
| V2| classes, which has |X| different words. The distribution
Py, |y, is known because the sub-category Y} is a deterministic
function of the more refined class Y3 (i.e. Y7 = h(Y3)). The
class priors Py, are replaced by the empirical distribution
and the words distribution conditional to the class, Px |y, is
estimated using Laplace rule of succession [1]]. Imposing the
Markov chain U; -e— X —e— Y5, the resulting joint pmfs are
given by Pxy, v, = Py, xPx|v, Py, and

Pxy, = Z Py, v, Px |y, Py, -
Y2€Y2

(36)

Once pmfs Py, x and Py, x are calculated using the proposed
algorithm, we estimate the class of the document §(d).
Assuming a generative multinomial model, and conditional
independence between clusters, the maximum a posteriori

—— Our algorithm for |U;| = 50
Our algorithm for |U;| = 20
= = = Our algorithm for || =5 |

= Without side information
Chechik version
:

Classification Accuracy [%)]

T
2 5 10 20 50 100
Number of word clusters |Us|

Fig. 7. Classification Accuracy in the hierarchical text categorization problem.

probability, which computes the most probable class for a
document d, is given by (see [39] for details):

n(ui,us,d)

J2(d) = arg max Py, H (Pu, valva) 37
2
Uy ,u2
= arg ?é%/f log (Py,) + ulz;Q n(u1,uz,d)log Py, v, vy,
where
> Pxvo.u Puyix
PU1,U2|Y2 = —— 2| ) (38)

Py,

and n(uy,usz,d) is the number of jointly occurrences of
clusters (ug,us) in the document d computed with:

ui(r) = argmax Py, x (ulr), i€ {l,2}. (39)

We test the above proposed classification procedure on the 20

Newsgroups (20Ng) dataset [41]]. This contains 11269 docu-
ments for training and 7505 for testing evenly divided among
20 UseNet Discussion groups or classes. Each newsgroup
represents one class in the classification task. The train dataset
had 53975 different words. The 20 Newsgroups correspond to
6 topics. The sub-category Y7 represents the topic among 6
possibilities and the refined classification Y5 is the class among
20 possibilities.

In Fig. [/} our algorithm performance (A = 0.99) versus
|Us| is compared with the algorithm without side information
(which is a single-task setup) and the one proposed in [|17].
It is interesting to mention that the single-task setting and
the one in [[17] can be covered using the proposed algorithm.
In particular, for the single-task setup, we estimate the final
class with Px y, as the input of the proposed algorithm (Z
is a degenerate RV). Our setting and the one in [[17] show
an improvement with respect to the single task setup without
side information. This suggests that exploiting the common
features in MTL may be advantageous. With [If1] = 20 and
|Uz| = 5, our method achieves 66.36% of accuracy. For which
we exploit the additional information in a structured manner
to show an improvement with respect to the other proposals.

A variation of this application is Distributional Word Clus-
ters (DWC) introduced in [42]] where the authors develop an
IB algorithm (without side information) for distributions of
verb-object pairs. Clusters derived by their algorithm seem
in many cases semantically significant, and it can be used to
study the linguistic structure of a language. The DWC is also
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used to relevant text categorization features extraction [43]].
We consider the same setting in Fig. [6] and study the average
relative entropy metric given by:

|X‘ Z D (P, x ()| Py, 0l un (2))) - (40)
where |U;| = 20,
is computed on the test set and PYQ\ XU, is defined by
Py, x v, = Z Py, x Py, u,,v,> (42)
uz EU
Pyusv = > » Puoix Px,va,un 43)

> w Pu,ixPu, xPx

These measurements of model quality were introduced in
[42]. While the setting in [17] has worse performance than
the IB without side information, our proposed framework
introduces some advantages showing an improved use of the
side information to enforce similarity between Py, |x and less
complex models (fewer number of clusters). In other words,
the MTL information-theoretic model behaves in the expected
sense with respect to generalization and model complexity.

Remark 1: There exists a strong relationship between our
objective and the one in [[17] when we redefine the tasks as
the classification within the different sub-categories. In this
case, referring to Fig. [2] we consider Y = Y5 and the side
information as a deterministic function of the task Z = g(Y)
(every class in the same sub-category belongs to the same 7).
Our objective f(\, Pyjx) can be written as:

FO\ Pyjx) = M(Y3Ug(Y)) = M(X;Ulg(Y)) (44)
=AI(Y;U) = I(g(Y); U)] = AI(X;U) = I(g(Y); U))]
=M(Y;U) = (22 = DI(g(Y);U) = M(X;U)

where A = 1— X and f(), Py x ) depends on the source via the
marginal distributions: Px y and Px z. This expression is the
cost function proposed in [17] with 8 = 125 and v = 22=1.

V. CONCLUSIONS

From information-theoretic methods, we have investigated
the supervised learning framework of MTL in which an
encoder builds a common representation intended to several
related tasks. The obtained formulation can be seen as the

problem of obtaining the rate-relevance region of an infor-
mation bottleneck problem with side information only at the
decoder. With this interpretation, we derived an iterative learn-
ing algorithm from the principle of compression-based regu-
larization as a natural safeguard against overfitting. Numerical
evidence showed that there exists an optimal compression
rate minimizing the excess risk according to the amount
of available training data. Indeed, this rate increases with
the size of the training set. Applications to hierarchical text
categorization were also considered.

It should be mentioned that several open questions remain
regarding the statistical regularization properties of building
compact representations of data. It is clear that both further
theoretical and practical studies are required. Applications of
our algorithm to other MTL setups, besides the hierarchical
text categorization one, should also deserve additional efforts.

One of the most important working hypotheses to be
modified would be the consideration of continuous sources.
Although the analysis would be harder we think that the results
could be of interest for other learning applications were the
examples are of continuous nature (e.g. images, speech signals,
etc). Studies regarding variations on the learning cost function
used (e.g. minimizing the maximum log-loss over the different
tasks instead of the average one) also deserve further study.

APPENDIX
APPENDIX A: PROOF OF LEMMA [4]

In order to show Lemma |4, we will need the following
auxiliary result:

Lemma 6: Let A € (0.5,1] and T be a convex set of con-
ditional distributions P x such that the function f(\, Py x)
is concave in the domain 7. Then, L[P,, P,] > 0 for any
P,, P, € T, where

L[P,, Py = Z P.Pxy,z[A\D (P,||Py)
(m7/llﬂz u)

— AD (Quy,z[PalllQuiv,z[Ps])

— (2A = 1)D (Qxu,z[PallQxv,2[Ps]) |
(45)
and we have defined, for ¢ = {a, b}:
P;Px|z
Quiy,z P ;PPXWZ, Qx|zulPi] = m
(46)

. Of(\P,
Proof: We start calculating fé#&"()

that Py x = 0 the derivative is zero. For (u,z) such
that Pyjx > 0, we use the identity: [f(xz)log(f(x))]" =
f'(x)log (ef(x)) and obtain:

8f()‘7 PU\X)

—(2A=1))_ Px zlog (ePy)z)

. For (u,x) such

= (2X — 1) Px log (ePy|x)

— XA Pxlog (ePyix) + XY _ Pxy.zlog (ePyy,z) (47)

Y,z
=(2x—1) Zszlog(

PUX>
Pyz



Py x )
- A P lo 48
; Xy (PUlY,Z “%)
=(2A—1)Y_ Pxzlog (PXZU>
—~ Px|z
_)\Znyzlog<PU|X). (49)
e Pyy,z
Note that
df(\, Pyix)
f\ Py Pyix——=. 50
U1x) Z UlX 9Pyx (30
Then,
Of (A, Pyix)
P, — (AP 51)
Z OPyix |p, f&B) (
Now, let us consider:
ZP df(\, Pyjx)
z,u ‘ 8PU|X Py
Qx|z U[Rz])
— FALP) — (20 =1) S PPy 4 log | X120l
FOVR) =(2A=1) 3 PuPzlog (e
+A> P.Pxlo La
T, e Pb
QUYZ[RJ)
Y P,Pxy zlog [ 2Y:21al 52
wyzz:u s g(QUY,Z[Pb] 62
= f(\ Pa)
+ Z PuPx vz [=(2X = 1)D (Qx|z,u[Pll Qx| zu[Pb])
T,Y,z2,u
+ AD (P,||Py) = AD (Quyy, z[Pa]l|Quyy, z[Pb)) | (53)
= f(\, Pa) + L[Py, By). (54)
Then,
of (A, Pyix)
L|P,, Py] P, —f(\, P, 55)
b Z Pox |y, f( ) (
Af (A, P,
=P py Ty k) )
T,u Ulx Py
(56)
If f(X, Py|x) is concave in T, then:
of(\, Pyix)
< P b _
FOPa) < fON Py) +Zu ohyy | (P T 6D
Py
and thus: L[P,, Py > f(\, Pa) — f(A\, P,) = 0. [ |

Now we can proceed to the proof of Lemma [d] In order to
show (24), we define the quantity 5:

Q n+1
X\ZU
2 —-1) AP log
chu vix X Px|z

Q (n+1)

Uly,z
+2 Y Py Pxyzlog |~ (58)
T,Y,2,U PU|X

Then, we can write:

Qxzv
n=02x-1) A Px.z1o :
A= Q;L U|X X,z 108 ( PX‘Z )
Quyy,z
+A D PixPxyzlog | —5 (59)
T,Y,2,U PU|X
* * n+1
#A=1) 3 PijkPrsD (@20 1Q%5)
+)\ZP D(Q 15
Y,z Uly,zII%uU|y,z
~A> PxD P (60)
X U\X U|X
P 61
[U\X’ U|X] ( )
Consider an integer n > 1 and the set G}, from the

proof of Lemma [3 It is known that this set is convex and

from its definition should contain P(I;( and the optimal

solution PU| % As the function f(\, Py|x) is concave in
Hs /\(PI(J|)X) and G’gﬁ/\ - H(;’,\(PI(J?)X), we can apply Lemma|§|

to E[P;}"’;(, P[(]B(] and conclude that V), < B. We also define:

,Y[(Jl;"(l) _ exp{ (n+1) )

+Z Py\x,zPz x 10%(@81;2)} , (62)

Y,z

from which it is clear that Py x o ’yé,”‘;l). It is not hard to
see that:
,-Y("J'_l)
B= /\ZP;&PX log ]‘D](‘TX) +(2A-1)H(X|Z). (63)
Ulx

On the other hand, F/{"H) can be written as:

(n-+1)
(n+1) (n+1) X|z2,u
F ZPUlX PX7Z10g T‘Z
(D
U|X
Z Y Py vz log (64)
Uix QD (n+1)
z,y,2 Un|YZ 2w 7U7|X
(n+1)
@x-1) > Py Py zlog | 512
T,z,u X‘Z
+A > P Pyy g log (QS’?Z vé,’f*;)
x,Y,2,U u’
— (@A -1) Z P Py 2 10g(QE)
—A Y PERY Pry 2 10s(QEY) (65)
T,Y,2,U
= )\ZPX log (Zygﬁ; ) +@2A\—=1H(X|Z).  (66)



Finally,
(n+1) (n+1)
Vi—F\"TV <B-\Y Pxlog ZVU,‘X
—(2A—1)H(X|2) (67)
(n+1)
UlX
— )\Z ‘XPX log - (68)
UlX

APPENDIX B: PROOF OF LEMMA [3]

The proofs is along the lines of Karush-Kuhn-Tucker (KKT)
conditions [31]]. In this case we look for the maximum of
J(\, Py|x) subject to > Pyjx = 1 for all z € X and
Pyix >0 for all (u,z) € U x X. Provided that f(), Py|x)
is concave in a vicinity of |’>( a necessary condition for the

local optimality of P, " "¢ 1s the existence of values ¢y o, Ky

such that N
OF (NP
1) J‘QT‘IQX) = Ky — Qg forall (u,z) eU x X,
2) S Py =1forallz e X,

3) P{;’G{ >0 for all (u,z) €U x X,
4) ¢y >0 forall (u,z) €U x X,
S) u.uPyx = 0 for all (u,z) €U x X.
From conditions 1) and 4), we obtain for all (u,z) € U x X:

_ TP
- OPyx

From condition 5), we observe that equality is_achieved for
all (u,x) € U x X such that P} |X > 0. From we have:

(69)

Kz

af(\ Px) Qx|zv
—_— =2\ =1 P log [ ———
T =AY P g( Pm)
P*,)\
—-A Z Px v,z log X (70
Y,z QU\Y,Z

Combining these two last equations and summing over all z €
X, we have:

QX |zu
Ky > (22— 1) Px zlog | ———
> DI ( P )
P*,)\
“AY Pryzlog | A% (71)
Ty QU\Y,Z
= " (\ ). (72)

In a similar manner, from conditions 1) and 5) and using Eq.
(30D, we can write:

P Of (N Piy)
Va=f(\ Z A TE(IX (73)
(75)

:E K-
xr

It is straightforward to check that V > a*(\, u) for all u € U.
Finally, from condition 5) and by similar arguments, it is easy

to see that Vy = o*(\,u) V (u,z) € U x X s.t. P} ‘X > 0.
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