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Abstract. We study a tower of function fields of Artin-Schreier type over a
finite field with 2s elements. The study of the asymptotic behavior of this tower
was left as an open problem by Beelen, Garćıa and Stichtenoth in 2006. We
prove that this tower is optimal over a finite field with four elements.

1. Introduction

In 2006 P. Beelen, A. Garcia and H. Stichtenoth gave the first steps in [BGS]

towards the classification, according to their asymptotic behavior, of recursive

towers of function fields over a finite field Fq with q elements. They focused on

recursive towers defined by equations of the form f(y) = g(x), where f and g

are suitable rational functions over Fq. Towers defined in this way were called

(f, g)-towers over Fq. In particular, they noticed that many (f, g)-towers can be

recursively defined by equations of the form h(y) = A·h(B ·x) for some polynomial

h over Fq and A, B ∈ GL(2,Fq). Here the symbol A ·u stands for the usual action

of elements of GL(2,Fq) as fractional transformations, i.e.(
a b
c d

)
· u : =

au+ b

cu+ d
.

This was a key observation that allowed them to obtain classification results in

the important cases of recursive towers of Kummer and Artin-Schreier type. As

an application of these results, they gave a complete list of all (f, g)-towers of

Artin-Schreier type with deg f = deg g = 2 over the finite field F2. They checked

that all the possible cases were already considered in previous works, except for

the following Artin-Schreier tower H recursively defined by the equation

(1.1) y2 + y =
x

x2 + x+ 1
,
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over F2. Nothing else was said about this tower and in fact they posed, as an open

problem, to determine when the above equation (1.1) defines an asymptotically

good tower over F2s with s ≥ 1. The aim of this work is to prove that equation (1.1)

defines an optimal tower over F4. We will also show that equation (1.1) defines a

tower H of finite genus and positive splitting rate over F2s for every even integer

s > 0. It can be also shown that equation (1.1) defines a tower of finite genus and

zero splitting rate when s is odd. Thus equation (1.1) defines an asymptotically

bad tower over F2s for s odd, but we will not include the details here and the

interested reader can find them in [HN17].

The organization of this paper is as follows. In Section 2 we give some basic

definitions and we recall some known results. In Section 3 we prove that equation

(1.1) defines a tower H of function fields over F2s of finite genus when s is even.

Finally, Section 4 is devoted to the study of the splitting rate of H over F4 and we

prove our main result, namely that the tower H is optimal over F4. This section

contains the most intricate and interesting part of the paper. After some technical

lemmas, we will show that all the rational places in the base step of the tower

ramify first and then they start to split completely in the tower. Our detailed

study of this behavior, which heavily relies on the explicit construction of what we

call Artin-Schreier elements of type 1 and 2 (see Definition 4.3) in each function

field of H, allowed us to compute, in Theorem 4.11, the exact number of rational

places in each step of the tower H over F4.

2. Preliminaries

We give now the basic definitions and concepts of function fields and towers of

function fields which will be used in this paper. The standard reference for all of

this is [S]. Let k be a perfect field. A function field (of one variable) F over k

is a finite algebraic extension F of the rational function field k(x), where x is a

transcendental element over k.

Let F be a function field over k. The symbol P(F ) stands for the set of all places

of F and g(F ) for the genus of F .

Let F ′ be a finite extension of F and let Q ∈ P(F ′). We will write Q|P when

the place Q of F ′ lies over the place P of F , i.e. P = Q∩ F . In this case the sym-

bols e(Q|P ) and d(Q|P ) denote, as usual, the ramification index and the different

exponent of Q|P , respectively.
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A tower F (of function fields) over k is a sequence F = {Fi}∞i=0 of function fields

over k such that

(a) Fi ( Fi+1 for all i ≥ 0.

(b) The extension Fi+1/Fi is finite and separable, for all i ≥ 1.

(c) The field k is algebraically closed in Fi, for all i ≥ 0.

(d) The genus g(Fi)→∞ as i→∞.

A tower F = {Fi}∞i=0 over k is called recursive if there exist a sequence of

transcendental elements {xi}∞i=0 over k and a bivariate polynomial H(X, Y ) ∈
k[X, Y ] such that F0 = k(x0) and

Fi+1 = Fi(xi+1),

where H(xi, xi+1) = 0 for all i ≥ 0. Associated to any recursive tower F we have

its basic function field F = k(x, y) where H(x, y) = 0 and x is a transcendental

element over k.

The the genus γ(F) of F over F0 is defined as

γ(F) := lim
i→∞

g(Fi)

[Fi : F0]
.

When k = Fq we denote by N(Fi) the number of rational places (i.e., places of

degree one) of Fi and the splitting rate ν(F) of F over F0 is defined as

ν(F) := lim
i→∞

N(Fi)

[Fi : F0]
.

A tower F over Fq is called asymptotically good if ν(F) > 0 and γ(F) < ∞.

Otherwise F is called asymptotically bad. Equivalently, a tower F is asymptotically

good over Fq if and only if the limit of the tower F

λ(F) := lim
i→∞

N(Fi)

g(Fi)
=
ν(F)

γ(F)
,

is positive.

An straightforward upper bound for the limit of a tower F over Fq is given by

Ihara’s function

A(q) := lim sup
g→∞

Nq(g)

g
,

where Nq(g) is the maximum number of rational places that a function field over Fq
of genus g can have. A result of Drinfeld and Vladut [S, Theorem 7.1.3] establishes

that

λ(F) ≤ A(q) ≤ √q − 1.
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A tower F over Fq is called asymptotically optimal if λ(F) = A(q). It is well known

([S, Remark 7.1.4 (b)]) that if q is a prime square power then A(q) =
√
q − 1 so

that in this case a tower F over Fq is asymptotically optimal when λ(F) =
√
q−1.

In the study of the asymptotic behavior of a tower F = {Fi}∞i=0 over Fq, the

following sets play an important role: the ramification locus R(F) of F , which is

the set of places P of F0 such that P is ramified in Fi for some i ≥ 1 and the

splitting locus Sp(F) of F , which is the set of rational places P of F0 such that P

splits completely in Fi for all i ≥ 1.

Let B ≥ 0 be a real number and let F ′/F be a finite extension of function fields

over k. A place P of F is called B-bounded in F ′ if

d(Q|P ) ≤ B · (e(Q|P )− 1),

for any place Q of F ′ lying over P . The extension F ′/F is called B-bounded if

every place of F is B-bounded in F ′. A tower {Fi}∞i=0 over k is called B-bounded if

every extension Fi/F0 is B−bounded. In [GS, Proposition 1.5] the following result

is proved.

Proposition 2.1. A B-bounded tower F = {Fi}∞i=0 over k with finite ramification

locus has finite genus. More precisely, the following bound for the genus of F holds:

γ(F ) ≤ g(F0)− 1 +
B

2

∑
P∈R(F)

degP.

We immediately see that a tower F = {Fi}∞i=0 over Fq is asymptotically good if

the tower is B-bounded, R(F) is a finite set and Sp(F) 6= ∅. The next proposition

is proved in [S, Proposition 3.9.6].

Proposition 2.2. Let F = {Fi}∞i=0 be a tower over Fq and let E = {Ei}∞i=0 be

the tower over Fqn where each Ei is the composite of the fields Fi and Fqn. Then

Sp(F) ⊆ Sp(E) ∩ P(F0).

We recall now from [S, Section 7.4] the concept of weakly ramified extensions.

Definition 2.3. Let F be a function field over k with Char(k) = p. A finite field

extension E/F is said to be weakly ramified, if the following conditions hold:

(i) There exist intermediate fields F = E0 ⊆ E1 ⊆ · · · ⊆ En = E such that all

extensions Ei+1/Ei are Galois p-extensions (i.e., [Ei+1 : Ei] is a power of p),

for i = 0, 1 . . . , n− 1.
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(ii) For any P ∈ P(F ) and any Q ∈ P(E) lying over P , the different exponent is

given by d(Q|P ) = 2(e(Q|P )− 1).

We have (see [S, Remark 7.4.11, Proposition 7.4.13]) the following results:

Proposition 2.4. Let E/F be an extension of function fields over k such that

[E : F ] = pm where p = char F . Assume that there exist a chain of intermediate

fields

F = E0 ⊆ E1 ⊆ · · · ⊆ En = E

with the property Ei+1/Ei is a Galois p-extension for all i = 0, 1 . . . , n − 1. Let

P ∈ P(F ) and Q ∈ P(E) lying over P and let Qi be the restriction of Q to Ei for

i = 0, . . . n− 1. Then the following conditions are equivalent:

(i) d(Q|P ) = 2(e(Q|P )− 1).

(ii) d(Qi+1|Qi) = 2(e(Qi+1|Qi)− 1) for i = 0, . . . , n− 1.

Notice that if every extension Fi/F0 of a tower {Fi}∞i=0 over k is weakly ramified

then the tower is 2-bounded.

Proposition 2.5. Let E/F be a finite extension of function fields over k and let

M and N be intermediate fields of E ⊇ F such that E = MN is the compositum

of M and N . If both extensions M/F and N/F are weakly ramified then E/F is

weakly ramified.

Now we can prove the following result which will be useful in the study of the

genus of the tower H.

Corollary 2.6. Let F = {Fi}∞i=0 be a recursive tower of function fields over k

such that the extension Fi+1/Fi is a Galois p-extension for i ≥ 0. Let F = k(x, y)

be the basic function field associated to F and suppose that the extensions F/k(x)

and F/k(y) are weakly ramified. Then each extension Fi/F0 is weakly ramified (in

which case we say that F is weakly ramified tower). Furthermore F has finite genus

if the ramification locus of F is finite.

Proof. We have that F0 = k(x0) and Fi+1 = Fi(xi+1) for i ≥ 0 where {xi}∞i=0 is a

sequence of transcendental elements over k. By hypothesis, the extensions F1/k(x0)

and F1/k(x1) are weakly ramified. In particular F1/F0 is weakly ramified. Now

suppose that Fi/F0 is weakly ramified. Since Fi = k(x0, . . . , xi), the extensions

Fi/F0 and k(x1, . . . , xi, xi+1)/k(x1) are isomorphic over k (by the map sending
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xj → xj+1 for j = 0, . . . , i), hence k(x1, . . . , xi, xi+1)/k(x1) is weakly ramified.

Since Fi+1 is the compositum of the fields F1 = k(x0, x1) and k(x1, . . . , xi, xi+1),

we have that the extension Fi+1/k(x1) is weakly ramified by Proposition 2.5 and

so Fi+1/Fi is a weakly ramified extension by Proposition 2.4. This immediately

implies that Fi+1/F0 is a weakly ramified extension and this proves the first part.

In particular we have that F is a 2-bounded tower, so the second statement follows

directly from Proposition 2.1. �

3. The genus of the tower H over F2s for s even

Let s > 0 be an even integer and let H = {Fi}∞i=0 be the sequence of function

fields over k = F2s recursively defined by (1.1).

In this section we will show thatH is a tower over k of finite genus. Our first task

is to prove that equation (1.1) defines a tower over k since this was not established

in [BGS]. From now on we will consider F4 := {0, 1, α, α+1} ⊂ F2s for any s where

α2 + α + 1 = 0.

Let x be a transcendental element over k and let us consider the polynomial

ϕ(T ) = T 2 +T +x/h(x) ∈ k(x)[T ], where h(x) = x2 +x+1 = (x−α)(x−α−1) ∈
k[x]. Let y be a root of ϕ(T ). If we denote by P the rational place of k(x) defined

by any of the linear factors of h(x), we have

(3.1) νP (x/h(x)) = −1 6≡ 0 mod 2,

so that Eisenstein’s criterion ([S, Proposition 3.1.15]) implies that ϕ(T ) is the min-

imal polynomial of y over k(x) and also that P is totally ramified in k(x, y)/k(x).

Therefore k(x, y)/k(x) is an Artin-Schreier extension of degree 2 and k is the full

field of constants of k(x, y).

The next lemma describes the ramification in the basic function field k(x, y)

corresponding to the equation (1.1) (see Figure 1). We will use the following no-

tation: the symbol Pa (resp. Ra) denotes the only zero of x + a (resp. y + a) in

k(x) (resp. k(y)) for a ∈ k, while P∞ (resp. R∞) denotes the only pole of x in k(x)

(resp. y in k(y)). Notice that we can write either x− a or x+ a because we are in

even characteristic.

Lemma 3.1. Let F = k(x, y) be the basic function field for the equation (1.1) and

let β ∈ {α, α + 1}. Then

(i) The place Pβ of k(x) is totally ramified in F and its different exponent is 2.

Moreover, if Q ∈ P(F ) lies over Pβ then Q ∩ k(y) = R∞.
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(ii) The place P0 of k(x) splits completely in F . Moreover, if Q ∈ P(F ) lies over

P0, then Q ∩ k(y) is either R0 or R1.

(iii) The place P∞ of k(x) splits completely in F . Moreover, if Q ∈ P(F ) lies over

P∞ then Q ∩ k(y) is either R0 or R1.

(iv) The place P1 of k(x) splits completely in F . Moreover, if Q ∈ P(F ) lies over

P1 then Q ∩ k(y) is either Rα or Rα+1.

(v) The place Rβ of k(y) is totally ramified in F and its different exponent is 2.

(vi) If P is a place of k(x) (resp. k(y)) different from Pβ (resp. Rβ) then P is

not ramified in F . Therefore the extensions F/k(x) and F/k(y) are weakly

ramified.

Proof. If we write mPβ = −νPβ (x/h(x)), then mPβ = 1 from (3.1) and if Qi is the

place of F lying over Pβ then d(Qi|Pβ) = (2 − 1)(mPβ + 1) = 2 by the theory of

Artin-Schreier extensions ([S, Proposition 3.7.8]). Since Qi is a pole (of order 2) of

y2 + y in F , then Qi is also a simple pole of y in F so that Qi ∩ k(y) = R∞ which

completes the proof of (i).

The places P0 and P∞ of k(x) are zeros of x/h(x) in k(x) so that the reduction

ϕ(T ) mod Pγ with γ = 0,∞ is the polynomial T (T + 1). Also the reduction ϕ(T )

mod P1 is the polynomial T 2 + T + 1. Then Kummer’s Theorem ([S, Theorem

3.3.7]) implies that (ii), (iii) and (iv) hold.

Now we prove (v). Let Qi be a place of F lying over Rβ. Then νQi(y
2 + y+ 1) =

e(Qi|Rβ). By writing Si = Qi ∩ k(x) we see from (iii) that Si 6= P∞ and since

(x+ 1)2

h(x)
= y2 + y + 1,

we have

2 ≥ e(Qi|Rβ) = e(Qi|Si)νSi((x+ 1)2/h(x)) = 2e(Qi|Si)νSi((x+ 1)/h(x)).

This implies that Si = P1, because h(x) is a polynomial, and also that e(Qi|Rβ) =

2. Thus we have proved that Rβ is totally ramified in F and Qi lies over P1 in

k(x). In particular νQi(x + 1) = 1, i.e. x + 1 is a prime element for Qi. We also

have that

(x+ 1)2 + (x+ 1)

(
y2 + y + 1

y2 + y

)
+
y2 + y + 1

y2 + y
= 0,

so that

(3.2) φ(T ) = T 2 +

(
y2 + y + 1

y2 + y

)
T +

y2 + y + 1

y2 + y
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is the minimal polynomial of x+ 1 over k(y) because it is irreducible over k(y) by

Eisenstein criterion ([S, Proposition 3.1.15]) using the place Rβ. From [S, Propo-

sition 3.5.12] we have

d(Qi|Rβ) = νQi(φ
′(x+ 1)) = νQi

(
y2 + y + 1

y2 + y

)
= 2,

which finishes the proof of (v).

Finally, we prove (vi). From (iii) and the theory of Artin-Schreier extensions we

see that the places Pα and Pα+1 are the only ones ramified in F . Now consider the

polynomial φ(T ) given in (3.2), which is the minimal polynomial of x+1 over k(y).

We have that k(x+1, y) = F and also for any place P of k(y) different from Rγ for

γ = 0, 1, the polynomial φ(T ) is integral over OP , the valuation ring corresponding

to P . Let Q be a place of F lying over P 6= Rγ with γ ∈ {0, 1, α, α + 1}, then by

[S, Theorem 3.5.10], we have

d(Q|P ) ≤ νQ(ϕ′(x+ 1)) = νQ

(
y2 + y + 1

y2 + y

)
= e(Q|Rγ)νRγ

(
y2 + y + 1

y2 + y

)
= 0,

so that P is unramified in F . Finally if either P = R0 or R1 and Q is a place of F

lying over P , then νQ(y2 + y) = e(Q|P ). Let S = Q ∩ k(x), then

1 ≤ e(Q|P ) = e(Q|S)νS(x/h(x)),

which implies that S is either P0 or P∞. By (ii) and (iii) we have that e(Q|P ) = 1

and we are done. �

k(x) k(y)

F

P0 R0

e
=
1

e
=
1

P0 R1

e
=
1

e
=
1

P∞ R0

e
=
1

e
=
1

P∞ R1

e
=
1

e
=
1

P1 Rα

e
=
1

d
=
e
=
2

P1 Rα+1

e
=
1

d
=
e
=
2

Pα R∞

d
=
e
=
2 e

=
1

Pα+1 R∞

d
=
e
=
2 e

=
1

Figure 1. Ramification in F/k(x) and F/k(y)

Now we prove a key identity for the study of the ramification of certain places

in the sequence H over k.
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Lemma 3.2. Let us consider the equation y2 + y = f(x) in k(x, y) where f(x)

denotes the right hand side of (1.1). Then

f(y) +

(
y + 1

x+ 1

)2

+
y + 1

x+ 1
= y +

1

x2 + x+ 1
+

1

x+ 1
·

Proof.

f(y) +

(
y + 1

x+ 1

)2

+
y + 1

x+ 1
=

y

y2 + y + 1
+

(
y + 1

x+ 1

)2

+
y + 1

x+ 1

=
y

f(x) + 1
+

(
y + 1

x+ 1

)2

+
y + 1

x+ 1

= y
x2 + x+ 1

(x+ 1)2
+

(
y + 1

x+ 1

)2

+
y

x+ 1
+

1

x+ 1

=
y(x2 + 1) + yx+ y2 + 1 + y(x+ 1)

(x+ 1)2
+

1

x+ 1

=
y(x+ 1)2

(x+ 1)2
+
yx+ y2 + 1 + y(x+ 1)

(x+ 1)2
+

1

x+ 1

= y +
1

x2 + x+ 1
+

1

x+ 1
.

�

Proposition 3.3. The sequence of function fields H = {Fi}∞i=0 defined by equation

(1.1) is a tower over k.

Proof. Let f(x) be the right hand side of (1.1) and let Qi
0 (resp. Qi

1) be a zero of

xi (resp. xi + 1) in Fi. Let Qi
β be a zero of xi +β where β ∈ {α, α+ 1}. We already

know, as established after (3.1), that F1/F0 is an extension of degree 2 with k as

the full field of constants of F1 and that Q0
β is totally ramified in F1/F0.

Now consider the place Q0
0. Since T (T + 1) is the reduction modulo Q0

0 of T 2 +

T + f(x0), from Kummer’s Theorem the place Q0
0 splits completely in F1/F0 into

the places Q1
0 and Q1

1. On the other hand T 2 + T + 1 is the reduction modulo Q0
1

of T 2 + T + f(x0). By Kummer’s Theorem we have that Q0
1 splits completely in

F1/F0 into the places Q1
α and Q1

α+1. Therefore

νQ1
β
(x0 + 1) = νQ0

1
(x0 + 1) = 1.

By writing u = x1+1
x0+1

, we have from Lemma 3.2 that

f(x1) + u2 + u = x1 +
1

x20 + x0 + 1
+

1

x0 + 1
,
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and since νQ1
β
(x1) = 0, we readily see that νQ1

β
(f(x1) + u2 + u) = −1 6≡ 0 mod 2.

The same argument used in the proof of [S, Proposition 3.7.8] shows that Q1
β is

totally ramified in F2/F1. Therefore k is the full field of constants of F2 and F2/F1

is an extension of degree 2. From Kummer’s Theorem we see now that Q1
1 splits

completely in F2/F1 into the places Q2
α and Q2

α+1 because T 2+T+1 is the reduction

modulo Q1
1 of T 2 + T + f(x1). Since x21 + x1 = f(x0) we have that νQ1

1
(x1 + 1) = 1

so that νQ2
β
(x1 + 1) = 1.

Now suppose that Fi/Fi−1 is a extension of degree 2 such that k is the full field

of constants of Fi, the place Qi−1
1 splits completely in Fi/Fi−1 into the places Qi

α

and Qi
α+1 and νQi−1

1
(xi−1 + 1) = 1. Then νQiβ(xi−1 + 1) = 1 and since νQiβ(xi) = 0,

by writing u = xi+1
xi−1+1

, we have from Lemma 3.2 that

f(xi) + u2 + u = xi +
1

x2i−1 + xi−1 + 1
+

1

xi−1 + 1
,

and so νQiβ(f(xi) +u2 +u) = −1 6≡ 0 mod 2. As above this condition implies that

Qi
β is totally ramified in Fi+1/Fi. Therefore k is the full field of constants of Fi+1

and Fi+1/Fi is an extension of degree 2. From Kummer’s Theorem we see that

the place Qi
1 splits completely in Fi+1/Fi into the places Qi+1

α and Qi+1
α+1 because

T 2 + T + 1 is the reduction modulo Qi
1 of T 2 + T + f(xi). Since x2i + xi = f(xi−1)

we have that νQi1(xi + 1) = 1 so that νQi+1
β

(xi + 1) = 1.

We have proved that each extension Fi/Fi−1 is an extension of degree 2 and that

k is the full field of constants of each Fi. It remains to prove that g(Fi) → ∞ as

i→∞ and for this it suffices to check that g(Fi) > 1 for some i ≥ 0. From Lemma

3.1 and Proposition 2.5 we have that F1/F0 is a weakly ramified Artin-Schreier

extension of degree 2 and just the places Q0
α and Q0

α+1 ramify in F1 and they are

totally ramified. It follows from [S, Proposition 3.7.8] that g(F1) = 1. Again, from

Lemma 3.1 and Proposition 2.5, we have that F2/F1 is a weakly ramified Artin-

Schreier extension of degree 2 and we have proved above that the places Q1
α and

Q1
α+1 lying above Q0

1 are totally ramified in F2/F1. From Hurwitz’s genus formula

[S, Theorem 3.4.13] we conclude that g(F2) ≥ 3 and we are done. �

As a direct consequence of the previous results we have:

Proposition 3.4. The sequence of function fields H defined by equation (1.1) is

a tower over k with finite ramification locus R(H). More precisely

R(H) ⊆ {P0, P1, Pα, Pα+1, P∞},
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with the notation used in Lemma 3.1.

Remark 3.5. We will prove in the next section (see Remark 4.12) that, in fact,

equality holds in Proposition 3.4, i.e.

R(H) = {P0, P1, Pα, Pα+1, P∞},

and also that every place Q in the tower H lying over a place of R(H) is rational.

Now we can state and prove the main result of this section.

Theorem 3.6. The tower H = {Fi}∞i=0 is a weakly ramified tower over k and its

genus γ(H) satisfies the estimate

γ(H) ≤ 2.

Proof. For any set S of places of F0 let Oi(S) be the set of all places of Fi lying over

the places of S. From Lemma 3.1 and Corollary 2.6 we have that H is a weakly

ramified tower over k. Thus Hurwitz’s genus formula, Proposition 3.4 and Remark

3.5 give

2g(Fi)− 2 = −2[Fi : F0] + 2
∑

P∈R(H)

∑
Q|P

(e(Q|P )− 1)

= −2[Fi : F0] + 2
∑

P∈R(H)

∑
Q|P

e(Q|P )− 2|Oi(R(H))|

= 2[Fi : F0](|R(H)| − 1)− 2|Oi(R(H))|

= 8[Fi : F0]− 2|Oi(R(H))|.

As a consequence of Theorem 4.11 to be proved later we have the estimate

|Oi(R(H))| ≥ 2[Fi : F0].

Therefore

γ(H) = lim
i→∞

g(Fi)− 1

[Fi : F0]
≤ 2,

as claimed. �

4. The splitting rate of the tower H over F4

Throughout this section the symbol Tr denotes the trace map from F4 to F2 and

recall that F4 := {0, 1, α, α + 1} where α2 + α + 1 = 0. We will show next that

the ramification behavior in the tower H = {Fi}∞i=0 over F4 of the zeros of xi and

xi + 1 and the poles of xi in Fi is well understood. However the understanding of
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the ramification behavior of the zeros of xi + α and xi + α + 1 in Fi in the tower

H will be achieved in Theorem 4.10 after the proof of some technical results.

Proposition 4.1. Let F be a function field over F4 such that F4 is its full field of

constants and let x ∈ F \F4 such that f(x) 6= u2+u for all u ∈ F where f(x) is the

right hand side of (1.1). Let F ′ = F (y) where y satisfies (1.1), i.e. y2 + y = f(x).

Then F ′/F is an Artin-Schreier extension of degree 2 where any zero P0 and any

pole P∞ of x in F respectively, split completely in F ′/F into a zero Q0 of y and a

zero Q1 of y + 1. Also any zero P1 of x+ 1 in F splits completely in F ′/F into a

zero Qα of y+α and a zero Qα+1 of y+α+1 in F ′ (see Figure 2 below). Moreover

νQi(y + i) = νP0(x) and νQi(y + i) = −νP∞(x),

where i = 0, 1 and

νQβ(y + β) = 2νP1(x+ 1),

where β = α or β = α + 1.

F

F ′ Q0

P0

Q1

1 1

Q0

P∞

Q1

1 1

Qα+1

P1

Qα

11

Figure 2. Decomposition of some zeros and poles in F ′/F

Proof. The first assertion follows from [S, Proposition 3.7.8]. Now consider the

polynomial

ϕ(T ) = T 2 + T + f(x) ∈ F [T ].

First notice that each zero or pole P of x in F is a zero of f(x) in F . Then

ϕ(T ) mod P = T 2 + T = T (T + 1),

so that Kummer’s Theorem implies that the first two diagrams of Figure 2 are

correct, i.e. there is a zero Q0 of y in F ′ and a zero Q1 of y+ 1 in F ′ lying over P .

Therefore

νQi(y + i) = νP0(x) and νQi(y + i) = −νP∞(x).
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Let P1 be a zero of x + 1 in F . Then νP1(x + 1) > 0 and νP1(x) = 0 so that

νP1(f(x)) = 0 and the residual class x(P1) = 1. Thus

ϕ(T ) mod P1 = T 2 + T + 1 = (T + α)(T + α + 1),

and again Kummer’s Theorem shows that the last diagram is correct. Now, by

rewriting (1.1) as

(4.1) y2 + y + 1 =
(x+ 1)2

x2 + x+ 1
,

we see that if Qβ|P1 then νQβ(y + β) = 2νP1(x+ 1) as desired. �

Proposition 4.2. Under the conditions of Proposition 4.1, let us consider a zero

Pβ of x+ β in F .

(i) Suppose that there exists an element u ∈ F such that

νPβ(f(x) + u2 + u) = −1,

then Pβ is totally ramified in F ′/F . The only place of F ′ lying over Pβ is a

pole Q∞ of y in F ′ and

νQ∞(y) = −νPβ(x+ β).

(ii) Suppose that Pβ is rational and that there exists an element u ∈ F such that

νPβ(f(x) + u2 + u) ≥ 0 and Tr((f(x) + u2 + u)(Pβ)) = 0.

Then Pβ splits completely in F ′/F into two poles of y in F ′ and

2νQ∞(y) = −νPβ(x+ β)

where Q∞ denotes any of these two poles (see Figure 3 below).

F

F ′ Q∞

Pβ

2

Q∞

Pβ

Q∞

1 1

Figure 3. The two possible decompositions of Pβ
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Proof. The first part of (i) is just [S, Proposition 3.7.8]. It is clear from the equation

(1.1) defining the extension F ′/F that νQ∞(y) = −νPβ(x+ β).

Let us see (ii). From [S, Proposition 3.7.8] and its proof, we have that Pβ is

unramified in F ′ and also F ′ = F (y + u) where

ϕ(T ) = T 2 + T + f(x) + u2 + u,

is the minimal polynomial of y + u over F . Then the reduction of ϕ(T ) modulo

Pβ splits into linear factors over F4 because Tr((f(x) + u2 + u)(Pβ)) = 0 and thus

we can conclude, by Kummer’s Theorem, that Pβ splits completely in F ′/F . From

equation (1.1) we see at once that 2νQ∞(y) = −νPβ(x+ β). �

The construction of elements satisfying (i) or (ii) in the above proposition will

be a crucial technical point in our proof of the existence of rational places which

split completely in the tower H over F4. At this point it is convenient to introduce

the following definition:

Definition 4.3. Let F ′/F be an Artin-Schreier extension defined by (1.1) as in

Proposition 4.1 and let f(x) be the right hand side of (1.1). Let P be a place of

F . An element u ∈ F is called an Artin-Schreier element of type 1 for P if

νP (f(x) + u2 + u) = −m,

for some odd positive integer m. Suppose now that P is rational. An element u ∈ F
is called an Artin-Schreier element of type 2 for P if

νP (f(x) + u2 + u) ≥ 0 and Tr((f(x) + u2 + u)(P )) = 0.

Remark 4.4. The arguments given in Proposition 4.2 show that a place P of

F is totally ramified in F ′/F if there is an Artin-Schreier element of type 1 for

P . Furthermore if P is rational then P splits completely in F ′/F if there is an

Artin-Schreier element of type 2 for P .

From now on we will use the following notation: let i ≥ 0. A zero of xi (resp.

xi+1) in Fi will be denoted as Qi
0 (resp. Qi

1) and a pole of xi in Fi will be denoted

as Qi
∞. A zero of xi + β in Fi will be denoted as Qi

β for β ∈ {α, α + 1} and this

will be the meaning of any symbol of the form Qi
γ when a Greek letter such as γ

is used as a subindex. Also from now on all the considered places lie over Q0
1 (the

only zero of x0 + 1 in the rational function field F0 of H). We will write in many

occasions P ⊂ Q when a place Q lies over a place P .
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We state and prove now some technical results (Lemmas 4.5, 4.6 and 4.7). In all

of them we will assume that the following condition holds:

Ramification condition. Let k ≥ 0 and consider the function fields Fk ⊂ Fk+1 ⊂
Fk+2 of the tower H. For the places Qk

1 ⊂ Qk+1
β one and only one of the following

conditions hold:

(R1) either νQk1 (xk + 1) = 1 and Qk+1
β is totally ramified in Fk+2/Fk+1 (so that

there is only one pole Qk+2
∞ of xk+2 in Fk+2 lying over Qk+1

β ), or

(R2) νQk1 (xk + 1) = 2 and Qk+1
β splits completely in Fk+2/Fk+1 (so that there are

exactly two poles Qk+2
∞ of xk+2 in Fk+2 lying over Qk+1

β ).

If (R1) (resp. (R2)) holds, we will say that the sequence Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞

satisfies the ramification condition (R1) (resp. (R2)).

Lemma 4.5. For k ≥ 0 and i ≥ k + 4 let us consider the subsequence {Fj}i−1j=k of

the tower H an also the following sequence of places:

Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ ⊂ Qk+3

0 ⊂ Qk+4
0 ⊂ · · · ⊂ Qi−1

0 ,

where we are having only the places Qj
0 for k+3 ≤ j ≤ i−1. Then e(Qi−1

0 |Qk+2
∞ ) = 1

and if we write

δ = xk+2 +
xk+1 + 1

xk + 1
,

then

(xk+2 + (xk+1δ)
2 + xk+1δ)(Q

k+2
∞ ) = β and νQi−1

0
(δ) = νQk+2

∞
(δ) = −1,

for i ≥ k + 4.

Proof. Any of the ramification conditions (R1) or (R2) together with Proposition

4.1 imply that e(Qi−1
0 |Qk+2

∞ ) = 1. Now we prove that νQi−1
0

(δ) = −1. Since x2k+2 +

xk+2 = f(xk+1), by Lemma 3.2 we have that

δ2 + δ = xk+1 +
1

x2k + xk + 1
+

1

xk + 1
·

Notice also that from any of the ramification conditions we have

(4.2) νQk+2
∞

(xk + 1) = e(Qk+2
∞ |Qk+1

β )νQk1 (xk + 1) = 2.

On the other hand, we know that νQk1 (x2k + xk + 1) = 0 and νQk+1
β

(xk+1) = 0, thus

(4.3) νQk+2
∞

(xk+1) = νQk+2
∞

(
1

x2k + xk + 1

)
= 0
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and

νQk+2
∞

(δ2 + δ) = νQk+2
∞

(
xk+1 +

1

x2k + xk + 1
+

1

xk + 1

)
= −2,

therefore νQi−1
0

(δ) = νQk+2
∞

(δ) = −1 becauseQi−1
0 |Qk+2

∞ is not ramified in Fi−1/Fk+2.

In order to prove that

(xk+2 + (xk+1δ)
2 + xk+1δ)(Q

k+2
∞ ) = β

we will use an identity which is a consequence of some tedious manipulations, so

for the sake of simplicity we will write x = xk, y = xk+1 and z = xk+2. We have

now that δ = z + y+1
x+1

and x, y, z satisfy the following equations:

z2 = z + f(y),

y2f(y) = 1 + y +
1

y2 + y + 1
,

1

y2 + y + 1
+

1

(x+ 1)2
+

1

x+ 1
=
x2 + x+ 1

(x+ 1)2
+

x

(x+ 1)2
= 1.

Then, from the above three equalities and (4.1), we have

z + (yδ)2 + yδ = z + (z + f(y))y2 + zy +
y2(y + 1)2

(x+ 1)2
+
y(y + 1)

(x+ 1)

= z(y2 + y + 1) + 1 + y +
1

y2 + y + 1
+
y2(y + 1)2

(x+ 1)2
+
y(y + 1)

(x+ 1)

= z(y2 + y + 1) + 1 + y +
(y2 + y + 1)2

(x+ 1)2
+
y2 + y + 1

(x+ 1)
+ 1

= z
(x+ 1)2

x2 + x+ 1
+ y +

(x+ 1)2

(x2 + x+ 1)2
+

x+ 1

x2 + x+ 1
.

Therefore

xk+2 + (xk+1δ)
2 + xk+1δ = xk+2

(xk + 1)2

x2k + xk + 1
+ xk+1 +

(xk + 1)2

(x2k + xk + 1)2
+

+
xk + 1

x2k + xk + 1
·

We have that νQk+2
∞

(xk + 1) = 2 and νQk+2
∞

(xk+1) = νQk+2
∞

(
1

x2k+xk+1

)
= 0 by (4.2)

and (4.3), respectively. This implies that νQk+2
∞

(xk+2) = −2 because

x2k+2 + xk+2 = xk+1
x2k + xk + 1

(xk + 1)2
·

We conclude now that

(4.4) νQk+2
∞

(xk+2 + (xk+1δ)
2 + xk+1δ) = 0,
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and

(xk+2 + (xk+1δ)
2 + xk+1δ)(Q

k+2
∞ ) = xk+1(Q

k+2
∞ ) = xk+1(Q

k+1
β ) = β.

�

Lemma 4.6. With the same hypothesis as in Lemma 4.5 we have that for all

j = k + 3, . . . , i− 1

νQj0

(
1

xj
+ xk+2

)
> 0.

Proof. For all j we have

x2j + xj = f(xj−1) and
1

f(xj−1)
=

1

xj−1
+ 1 + xj−1

then

1

xj
+ xk+2 =

xj + 1

x2j + xj
+ xk+2 =

xj + 1

f(xj−1)
+ xk+2

=
xj
xj−1

+ xj + xjxj−1 + 1 + xj−1 +
1

xj−1
+ xk+2.

On the other hand, in the previous proof we showed that Qk+2
∞ is a pole of order

two of xk+2 and e(Qj
0|Qk+2

∞ ) = 1, thus by Proposition 4.1 we have

(4.5) νQj0
(xj) = · · · = νQk+3

0
(xk+3) = −νQk+2

∞
(xk+2) = 2.

Now we proceed by induction on j. If j = k + 3 we have

1

xk+3

+ xk+2 =
xk+3

xk+2

+ xk+3 + xk+3xk+2 + 1 +
1

xk+2

and νQk+3
0

(xk+3/xk+2) > 0 by (4.5). Moreover, νQk+3
0

(xk+3xk+2 + 1) > 0 because

the residual class

(xk+3xk+2)(Q
k+3
0 ) = ((xk+3 + 1)(xk+3xk+2))(Q

k+3
0 ) = (xk+2f(xk+2))(Q

k+2
∞ ) = 1.

Thus

νQk+3
0

(
1

xk+3

+ xk+2

)
> 0.

Now assume that the result is valid for j − 1 ≥ k + 3. From the equation

(4.6)
(xj + 1)xj
xj−1

=
1

x2j−1 + xj−1 + 1
,
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we have the residual class (
xj
xj−1

)(Qj
0) = (

(xj+1)xj
xj−1

)(Qj
0) = 1 which implies that

νQj0
(
xj
xj−1

+ 1) > 0. Furthermore, by inductive hypothesis, the term 1/xj−1 + xk+2

has positive valuation and also the remaining terms of the right hand side of

1

xj
+ xk+2 =

xj
xj−1

+ 1 + xj + xjxj−1 + xj−1 +
1

xj−1
+ xk+2,

with respect to Qj
0. Therefore

νQj0

(
1

xj
+ xk+2

)
> 0.

�

Lemma 4.7. For k ≥ 0 and i ≥ k + 3 let us consider the subsequence {Fj}i+2
j=k of

the tower H and the sequence of places

Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ ⊂ Qk+3

1 ⊂ Qk+4
θ ⊂ Qk+5

∞ ,

if i = k + 3 or the sequence

Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ ⊂ Qk+3

0 ⊂ · · · ⊂ Qi−1
0 ⊂ Qi

1 ⊂ Qi+1
θ ⊂ Qi+2

∞ ,

if i > k + 3, where we are having only the places Qj
0 for k + 3 ≤ j ≤ i − 1. Then

Qi+1
θ splits completely in Fi+2/Fi+1 and the ramification condition (R2) holds for

Qi
1 ⊂ Qi+1

θ ⊂ Qi+2
∞ .

Proof. In order to prove that Qi+1
θ splits completely in Fi+2/Fi+1 it suffices to find

an Artin-Schreier element of type 2 for Qi+1
θ . Let

u :=
xi+1 + 1

xi + 1
+ xk+1δ,

where δ is as in Lemma 4.5. From Lemma 3.2 we have

f(xi+1) + u2 + u = xi+1 +
1

x2i + xi + 1
+

1

xi + 1
+ (δxk+1)

2 + δxk+1

= xi+1 +
1

x2i + xi + 1
+ xi

(
xi−1 + 1 +

1

xi−1

)
+ (δxk+1)

2 + δxk+1

= xi+1 +
1

x2i + xi + 1
+ xi(xi−1 + 1) +

xi + 1

xi−1
+

(
1

xi−1
+ xk+2

)
+ (xk+2 + (δxk+1)

2 + δxk+1).

Now we compute the residual class (f(xi+1) + u2 + u)(Qi+1
θ ). It is clear that(

xi+1 +
1

x2i + xi + 1
+ xi(xi−1 + 1)

)
(Qi+1

θ ) = θ + 1 + 1 = θ.
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For i > k + 3 we have from (4.5) that Qi−1
0 is a zero of order 2 of xi−1 and by

Proposition 4.1 and equation (1.1) we also have that Qi
1 is a zero of order 2 of

xi+ 1. The same holds for i = k+ 3, i.e. Qk+2
∞ is a zero of order 2 of xk+2 and Qk+3

1

is a zero of order 2 of xk+3 + 1. Then for i ≥ k + 3 we have that νQi1

(
xi+1
xi−1

)
= 0

and so xi+1
xi−1

(Qi
1) = 1. Finally, Lemma 4.6 and Lemma 4.5 imply that(

1

xi−1
+ xk+2

)
(Qi+1

θ ) + (xk+2 + (δxk+1)
2 + δxk+1)(Q

i+1
θ ) = β,

therefore

(f(xi+1) + u2 + u)(Qi+1
θ ) = θ + 1 + β.

Since θ + 1 + β is equal to 0 or 1, then

νQi+1
θ

(f(xi+1) + u2 + u) ≥ 0 and Tr
(
(f(xi+1) + u2 + u)(Qi+1

θ )
)

= 0,

so that u is an Artin-Schreier element of type 2 for Qi+1
θ . In particular, the sequence

Qi
1 ⊂ Qi+1

θ ⊂ Qi+2
∞ satisfies the ramification condition (R2). �

From Proposition 4.1 we know that the places between Qk+2
∞ and Qi

1 for i > k+2

are given by a combination of sequences of places of the form

Qj
1 ⊂ Qj+1

γ ⊂ Qj+2
∞ or Qj

0 ⊂ · · · ⊂ Qj+l−1
0 ⊂ Qj+l

1 ⊂ Qj+l+1
η ⊂ Qj+l+2

∞ .

By using Proposition 4.1 and Lemma 4.7 as many times as needed we have

Corollary 4.8. Suppose that the place Qk
1 is rational. If in the tower H we have

the sequence of places Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ satisfying the ramification condition

(R2) and a sequence of places of the form Qi
1 ⊂ Qi+1

θ ⊂ Qi+2
∞ with Qi

1 lying over

Qk+2
∞ for i > k+2, then this sequence also satisfies the ramification condition (R2)

and Qk
1 splits completely in Fi+3/Fk. In particular the place Qi

1 is rational.

Proposition 4.9. Consider the subsequence {Fj}k+2
j=k of the tower H and the se-

quence of places

Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ .

If Qk
1 is a simple zero of xk + 1 then e(Qk+2

∞ |Qk+1
β ) = 2, i.e. the above sequence of

places satisfies the ramification condition (R1).

Proof. Let u = xk+1+1

xk+1
and let δ = xk+2 + u. By Lemma 3.2 we have

δ2 + δ = f(xk+1) + u2 + u = xk+1 +
1

x2k + xk + 1
+

1

xk + 1
·
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Since Qk
1 is a simple zero of xk + 1 and e(Qk+1

β |Qk
1) = 1 from Proposition 4.1, we

see that Qk+1
β is also a simple zero of xk + 1. Then, by writing e = e(Qk+2

∞ |Qk+1
β ),

we have

νQk+2
∞

(δ2 + δ) = e νQk+1
β

(
xk+1 +

1

x2k + xk + 1
+

1

xk + 1

)
= −e,

so that 2νQk+2
∞

(δ) = −e. Therefore e = 2 as desired. �

We are finally in a position to state and prove the main results of this work.

Theorem 4.10. Let {Fj}k+2
j=k be a subsequence of the tower H and consider the

sequence of places

Qk
1 ⊂ Qk+1

β ⊂ Qk+2
∞ .

Suppose that Qk
1 is a rational place and a simple zero of xk + 1. Then Qk+2

∞ splits

completely in H.

Proof. From Proposition 4.1 we see that the sequence of places in the tower H
lying above Qk+2

∞ is a combination of the following two types of sequences of places

(S1) and (S2) respectively:

Qj
1 ⊂ Qj+1

θ ⊂ Qj+2
∞ ,

and

Qj
0 ⊂ · · · ⊂ Qj+l−1

0 ⊂ Qj+l
1 ⊂ Qj+l+1

γ ⊂ Qj+l+2
∞ ,

for j ≥ k + 3 and l ≥ 4. From Proposition 4.9 we have that Qk+2
∞ is a rational

place so that from Proposition 4.1 we see that the place Qk+3
1 (resp. Qk+3+l

1 ) is

rational in the case (S1) (resp. (S2)) for j = k + 3. Then Lemma 4.7 implies that

the sequence of type (S1) satisfies the ramification condition (R2) for j = k + 3

and so does the sequence Qj+l
1 ⊂ Qj+l+1

γ ⊂ Qj+l+2
∞ in the sequence of type (S2) for

j = k + 3 and l ≥ 4. In the first case Qk+2
∞ splits completely in Fk+5 while in the

second one Qk+2
∞ splits completely in Fk+5+l for l ≥ 4. Now the conclusion follows

immediately from Corollary 4.8. �

Now we compute the exact number of rational places of each Fl ∈ H for l ≥ 3.

Theorem 4.11. Let l ≥ 3. The number N(Fl) of rational places of the function

field Fl ∈ H is

N(Fl) = 2l+1 + 8.
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Proof. Since Q0
1 is rational and a simple zero of x0 +1 ∈ F0, we have two sequences

Q0
1 ⊂ Q1

α ⊂ Q2
∞ and Q0

1 ⊂ Q1
α+1 ⊂ Q2

∞,

by Proposition 4.1. Moreover each Q2
∞ splits completely in Fl/F2 by Theorem 4.11,

so we have 2 · 2l−2 rational places in Fl lying over Q1
0.

Now we consider the rational place Q0
0 which is a simple zero of x0 ∈ F0. By

Proposition 4.1 Q0
0 splits completely into the places Q1

1, a simple zero of x1 + 1,

and Q1
0, a simple zero of x1. Thus we have two sequences Q0

0 ⊂ Q1
1 and Q0

0 ⊂ Q1
0.

In the first case we have the sequences

Q1
1 ⊂ Q2

α ⊂ Q3
∞ and Q1

1 ⊂ Q2
α+1 ⊂ Q3

∞,

and we are in the above same situation because Q1
1 is rational and a simple zero of

x1 + 1 ∈ F1. The same argument we used above shows that we have 2l−2 rational

places of Fl lying over Q1
1. Now for 1 ≤ i ≤ l − 2 we have the following sequences

of places lying over Q0
0

Q0
0 ⊂ Q1

0 ⊂ · · · ⊂ Qi−1
0 ⊂ Qi

1, and Q0
0 ⊂ Q1

0 ⊂ · · · ⊂ Ql−3
0 ⊂ Ql−2

0 .

Each of the first l− 2 sequences add 2l−i−1 rational places to Fl and for the latter

we conclude from Proposition 4.1 that there are four additional rational places Ql
α,

Ql
α+1, Q

l
∞ and Ql

∞ lying over Ql−2
0 . Therefore the number of rational places of Fl

lying over Q0
0 is

2l−2 + 2l−3 + · · ·+ 2 + 4 = 2l−1 + 2.

Let us consider now the rational place Q0
∞, which is a simple pole of x0. From

Proposition 4.1 we see that the rational places of Fl lying above the rational place

Q0
∞ exhibit the same behavior we already saw for Q0

0. Thus the number of rational

places of Fl lying over Q0
∞ is also 2l−1 + 2.

Finally we consider the number of rational places of Fl lying over Q0
β with

β ∈ {α, α + 1}. Since Q0
β is a simple pole of x0 + β, from Proposition 4.2 (i) with

u = 0, we have that Q0
β is totally ramified in F1/F0 and the place Q1

∞ of F1 over

Q0
β is a simple pole of x1. We see that we are in the situation considered for the

place Q0
∞ but starting from F1. Therefore the number of rational places of Fl lying

over Q0
β is 2l−2 +2. Putting all together we have that the number N(Fl) of rational

places of Fl is exactly

N(Fl) = 2l−1 + 2 · (2l−1 + 2) + 2 · (2l−2 + 2) = 2l+1 + 8.

�
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Remark 4.12. We see from Proposition 4.9 and the arguments used in the above

proof that every rational place of the base step F0 in the tower H over F4 ramifies

in the tower and also every place of Fi lying over any rational place of F0 is also

rational . This is exactly what was claimed in Remark 3.5.

Corollary 4.13. The tower H over F4 is optimal.

Proof. From Theorem 4.11 we have that ν(H) = 2 and from Theorem 3.6 we know

that γ(H) ≤ 2, then

1 =
√

4− 1 ≥ λ(H) =
ν(H)

γ(H)
≥ 1,

so that λ(H) = 1. �

Corollary 4.14. The tower H over F2s is asymptotically good for s even with

limit

λ(H) ≥ 1.
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