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We show that Petermichl’s dyadic operator P (Petermichl (2000) [8]) is a Calderón–
Zygmund-type operator on an adequate metric normal space of homogeneous type. We 
also compare the maximal operators associated with truncations of the kernel and to the 
summability of the Haar series.
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r é s u m é

Nous démontrons que l’opérateur dyadique de Petermichl P est un opérateur de type 
Calderón–Zygmund sur un espace normal métrique de type homogène. Nous comparons 
les opérateurs maximaux associés aux troncatures du noyau et à la sommabilité de la série 
de Haar.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [8], Stefanie Petermichl proves a remarkable identity that provides the Hilbert kernel 1
x−y in R through a mean value 

of dilations and translations of a basic kernel defined in terms of dyadic families on R. The basic kernel for a fixed dyadic 
system D is described in terms of Haar wavelets. Assume that D is the standard dyadic family on R, i.e. D = ∪ j∈ZD j

with D j = {I j
k : k ∈ Z} and I j

k = [ k
2 j , k+1

2 j ). Let H be the standard Haar system built on the dyadic intervals in D. There 
is a natural bijection between H and D. We shall use D as the index set and we shall write hI to denote the function 
hI (x) = |I|−1/2 (XI− (x) −XI+ (x)) where I− and I+ are the respective left and right halves of I , XE is, as usual, the indicator 
function of E and |E| denotes the Lebesgue measure of the measurable set E . With the above notation, the basic Petermichl’s 
operator on L2(R) is given by
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P f (x) =
∑
I∈D

〈 f ,hI 〉 (hI−(x) − hI+(x)), (1.1)

where, as usual, 〈 f ,hI 〉 = ´
R

f (y)hI (y) dy. Hence, at least formally, the operator P is defined by the nonconvolution non-
symmetric kernel

P (x, y) =
∑
h∈D

hI (y)(hI−(x) − hI+(x))

= P+(x, y) + P−(x, y);
with

P+(x, y) =
∑

I∈D+
hI (y)(hI−(x) − hI+(x)) (1.2)

and D+ = {I j
k ∈D : k ≥ 0}.

Let us observe that, for x ≥ 0, y ≥ 0 and x �= y, the series 
∑

I∈D+ hI (y)[hI− (x) − hI+ (x)] is absolute convergent. In fact,∑
I∈D+

|hI (y)| |hI−(x) − hI+(x)| =
∑

I∈D+,I⊇I(x,y)

1√|I| |hI−(x) − hI+(x)|

≤
∑

I∈D+,I⊇I(x,y)

2
√

2

|I| = 4
√

2

|I(x, y)|
where I(x, y) is the smallest dyadic interval in R containing x and y.

In §2, we show that P+ (and P−), the operator induced by the kernel P+ (resp. P−), is of Calderón–Zygmund type in 
the normal space of homogeneous type R+ (resp. R−) with the dyadic ultrametric δ(x, y) = inf{|I| : x, y ∈ I and I ∈ D} and 
Lebesgue measure. In §3, we compare the maximal operators induced by the geometric truncations of the kernel with the 
maximal operator of the partial sums of the Haar series.

2. Petermichl’s operator as a Calderón–Zygmund operator

Following [7], a linear and continuous operator T : D(Rn) → D ′(Rn), with D and D ′ the test functions and the distribu-
tions on Rn , is a Calderón–Zygmund operator if there exists K ∈ L1

loc(R
n ×R

n \ �) where � is the diagonal of Rn ×R
n such 

that

(1) there exists C0 > 0 with

|K (x, y)| ≤ C0

|x − y|n , x �= y;
(2) there exist C1 and γ > 0 such that

(2.a)
∣∣K (x′, y) − K (x, y)

∣∣ ≤ C1

∣∣x′ − x
∣∣γ

|x − y|n+γ when 2 
∣∣x′ − x

∣∣ ≤ |x − y|;

(2.b)
∣∣K (x, y′) − K (x, y)

∣∣ ≤ C1

∣∣y′ − y
∣∣γ

|x − y|n+γ when 2 
∣∣y′ − y

∣∣ ≤ |x − y|;
(3) T extends to L2(Rn) as a continuous linear operator;
(4) for ϕ and ψ ∈ D(Rn) with suppϕ ∩ supp ψ = ∅, we have:

〈Tϕ,ψ〉 =
¨

Rn×Rn

K (x, y)ϕ(x)ψ(y)dx dy.

With a little effort, the notions of Calderón–Zygmund operator and Calderón–Zygmund kernel K – i.e. satisfying (1) and (2) 
– can be extended to normal metric spaces of homogeneous type. Even when the formulation can be stated in quasi-metric 
spaces for our application, it shall be enough in the following context. Let (X, d) be a metric space. If there exists a Borel 
measure μ on X such that for some constants 0 < α ≤ β < ∞ such that the inequalities αr ≤ μ(B(x, r)) ≤ βr hold for every 
r > 0 and every x ∈ X , we shall say that (X, d, μ) is a normal space. As usual B(x, r) = {y ∈ X : d(x, y) < r}. In particular, 
(X, d, μ) is a space of homogeneous type in the sense of [4], [6], [5], [2], and many problems of harmonic analysis find 
there a natural place to be solved.

In this setting in [6] a fractional-order inductive limit topology is given to the space of compactly supported Lipschitz γ
functions (0 < γ < 1). We shall still write D = D(X, d) to denote this test functions space. And D ′ = D ′(X, d) its dual, the 
space of distributions. So, the extension of the definition of Calderón–Zygmund operators to this setting becomes natural.
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Definition 1. Let (X, d, μ) be a normal metric measure space such that continuous functions are dense in L1(X, μ). We say 
that a linear and continuous operator T : D → D ′ is Calderón–Zygmund on (X, d, μ) if there exists K ∈ L1

loc(X × X \ �), 
where � is the diagonal in X × X , such that

(i) there exists C0 > 0 with

|K (x, y)| ≤ C0

d(x, y)
, x �= y;

(ii) there exist C1 > 0 and γ > 0 such that

(ii.a)
∣∣K (x′, y) − K (x, y)

∣∣ ≤ C1
d(x′, x)γ

d(x, y)1+γ
when 2d(x′, x) ≤ d(x, y);

(ii.b)
∣∣K (x, y′) − K (x, y)

∣∣ ≤ C1
d(y, y′)γ

d(x, y)1+γ
when 2d(y′, y) ≤ d(x, y);

(iii) T extends to L2(X, μ) as a continuous linear operator;
(iv) for ϕ and ψ ∈ D with d(suppϕ, suppψ) > 0 we have:

〈Tϕ,ψ〉 =
¨

X×X

K (x, y)ϕ(x)ψ(y)d(μ × μ)(x, y).

Our first result shows that P+ and P− are Calderón–Zygmund operators. In what follows, we shall keep using P for P+
and P for P+ .

Theorem 2. There exists a metric δ on R+ = {x : x ≥ 0} such that (R+, δ, |·|) is a normal space where δ-continuous functions are 
dense in L1(R+, dx) and P can be written, for x �= y both in R+ , as

P (x, y) = 	(x, y)

δ(x, y)
, (2.1)

where 	 is bounded, δ-smooth and homogeneous of degree zero, i.e. 	(2 jx, 2 j y) = 	(x, y). Moreover, P is a Calderón–Zygmund 
operator on (R+, δ, |·|).

Proof. For x �= y, two points in R+ , define δ(x, y) = inf{|I| : x, y ∈ I ∈ D}. Define also δ(x, x) = 0 for every x ∈R
+ . It is easy 

to see that δ is an ultra-metric on R+ . This means that the triangle inequality improves to δ(x, z) ≤ sup{δ(x, y), δ(y, z)} for 
every x, y and z ∈ R

+ . Notice that |x − y| ≤ δ(x, y), but they are certainly not equivalent. Also, for x ∈ R
+ and r > 0 given, 

taking m ∈ Z such that 2−m < r ≤ 2−m+1, we see that Bδ(x, r) = {y ∈ R
+ : δ(x, y) < r} = {y ∈ R

+ : δ(x, y) ≤ 2−m} = Im
k(x) , 

where k(x) is the only index k ∈N ∪{0} such that x ∈ Im
k . Hence, the Lebesgue measure of Bδ(x, r) is that of the interval Im

k(x) . 
Precisely, |Bδ(x, r)| = 2−m . So that r

2 ≤ |Bδ(x, r)| < r, for every x ∈ R
+ and every r > 0. In terms of our above definitions 

(R+, δ, |·|) is a normal metric space. The integrability properties of powers of δ resemble completely those of the powers 
of x. In fact, for fixed x ∈ R

+ , the function of y ∈ R
+ given by 1/δα(x, y) is integrable inside a δ-ball when α < 1. It is 

integrable outside a δ-ball when α > 1. In particular, 1/δ(x, y) is neither locally nor globally integrable on R+ .
Notice now that real-valued simple functions built on the dyadic intervals are continuous as functions defined on (R+, δ). 

In fact, for I ∈D, we have that |XI (x) −XI (y)| equals zero for x and y in I or for x and y outside I . Assume that x ∈ I and 
y /∈ I , then δ(x, y) ≥ 2 |I|, so that |XI (x) −XI (y)| ≤ δ(x, y)(2 |I|)−1 for every x and y ∈ R

+ . In other words, for I ∈ D, XI is 
Lipschitz with respect to δ with constant (2 |I|)−1. Hence, δ-continuous functions are dense in L1(R+, dx).

The operator P is actually defined as an operator in L2(R+, dx). For f ∈ L2(R+, dx),

P f (x) =
∑

I∈D+
〈 f ,hI 〉 (hI−(x) − hI+(x))

=
∑

I∈D+
〈 f ,hI 〉hI−(x) −

∑
I∈D+

〈 f ,hI 〉hI+(x).

Hence ‖P f ‖2
2 ≤ 2 

∑
I∈D+ |〈 f ,hI 〉|2 = 2 ‖ f ‖2

2, which proves (iii) in Definition 1. In particular, if ϕ is a simple function built on 
the dyadic intervals, we see that Pϕ ∈ L2(R+, dx), so that when ψ is another simple function such that δ(supp ϕ, suppψ) >
0, the two variables function F (x, y) = ϕ(x)ψ(y) is simple in R+ × R

+ and for some ε > 0, supp F ∩ {δ < ε} = ∅, we have 
that, since only a finite subset of D+ is actually involved,

¨
+ +

⎛⎝ ∑
I∈D+

hI (y)[hI−(x) − hI+(x)]
⎞⎠ϕ(y)ψ(x)dy dx
R ×R
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=
ˆ

x∈R+

⎛⎜⎝ ˆ

y∈R+
P (x, y)ϕ(y)

⎞⎟⎠ψ(x)dx

=
ˆ

x∈R+
Pϕ(x)ψ(x)dx

= 〈Pϕ,ψ〉 .

Hence, P (x, y) = ∑
I∈D+ hI (y)[hI− (x) − hI+ (x)] is the kernel for P . Let us now show that P (x, y) = 	(x,y)

δ(x,y)
for x �= y. For 

J ∈D+ , define

	 J (x, y) = �1
J (y)�2

J (x)

where

�1
J (y) = X J−(y) −X J+(y)

�2
J (x) = (X J−+(x) +X J+−(x)) − (X J−−(x) +X J++(x)).

Let us denote with I(x, y) the smallest interval containing x and y, then we have

P (x, y) =
∑

I∈D+
hI (y)[hI−(x) − hI+(x)] = √

2
∑

I∈D+,I⊇I(x,y)

1

|I|	I (x, y).

Since |I(x, y)| = δ(x, y) and in the last series, we are adding on all the dyadic ancestors of I(x, y), including I(x, y) itself,

P (x, y) =
√

2

δ(x, y)

∞∑
m=0

1

2m
	I(m)(x,y)(x, y) = 	(x, y)

δ(x, y)

with I(m)(x, y) the m-th ancestor of I(x, y) and

	(x, y) = √
2

∞∑
m=0

2−m	I(m)(x,y)(x, y).

Hence (i) in Definition 1 holds with C0 = 25/2.
Let us check (ii.a). Let x, y and x′ ∈ R

+ be such that δ(x, x′) ≤ 1
2 δ(x, y). Let I(x, y) be the smallest dyadic interval 

containing x and y. Then |I(x, y)| = δ(x, y). In a similar way 
∣∣I(x, x′)

∣∣ = δ(x, x′) and 
∣∣I(x′, y)

∣∣ = δ(x′, y). Since those three 
intervals are all dyadic and since 

∣∣I(x, x′)
∣∣ ≤ 1

2 |I(x, y)|, we necessarily must have that x′ belongs to the same half of I(x, y)

as x does. Hence I(x′, y) = I(x, y) and certainly also are the same all the ancestors I(m)(x′, y) = I(m)(x, y). Now,

1√
2

∣∣P (x′, y) − P (x, y)
∣∣ =

∣∣∣∣	(x′, y)

δ(x′, y)
− 	(x, y)

δ(x, y)

∣∣∣∣
≤

∣∣	(x′, y) − 	(x, y)
∣∣

δ(x, y)
+ ∣∣	(x′, y)

∣∣ ∣∣∣∣ 1

δ(x′, y)
− 1

δ(x, y)

∣∣∣∣
= I + I I.

In order to estimate I , let us first explore the δ-regularity of each 	 J . Let us prove that

(a) for fixed y ∈ R
+ we have that 

∣∣	 J (x′, y) − 	 J (x, y)
∣∣ ≤ 8

| J | δ(x, x′); and

(b) for fixed x ∈R
+ , 

∣∣	 J (x, y′) − 	 J (x, y)
∣∣ ≤ 2

| J | δ(y, y′).

Let us check (a). The regularity in the second variable is similar. Since the indicator function of a dyadic interval I is 
δ-Lipschitz with constant 1

2|I| , we have∣∣	 J (x′, y) − 	 J (x, y)
∣∣ =

∣∣∣�1
J (y)(�2

J (x′) − �2
J (x))

∣∣∣
=

∣∣∣�2
J (x′) − �2

J (x)
∣∣∣

≤ ∣∣X J−+(x′) −X J−+(x)
∣∣ + ∣∣X J+−(x′) −X J+−(x)

∣∣+
+ ∣∣X J−−(x′) −X J−−(x)

∣∣ + ∣∣X J++(x′) −X J++(x)
∣∣
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≤ 4
4

2 | J |δ(x, x′).

Since the series defining 	 is absolutely convergent, from the above remarks, we have

I ≤ 1

δ(x, y)

∞∑
m=0

2−m
∣∣	I(m)(x′,y)(x′, y) − 	I(m)(x,y)(x, y)

∣∣
= 1

δ(x, y)

∞∑
m=0

2−m
∣∣	I(m)(x,y)(x′, y) − 	I(m)(x,y)(x, y)

∣∣
≤ 8

δ(x, y)

∞∑
m=0

2−m δ(x, x′)∣∣I(m)(x, y)
∣∣

= 16
δ(x, x′)
δ2(x, y)

.

Let us estimate II. Since |	| is bounded above by 2 and δ is a metric on R+ , we have

I I ≤ 2

∣∣δ(x, y) − δ(x′, y)
∣∣

δ(x, y)δ(x′, y)
≤ 2

δ(x, x′)
δ(x, y)δ(x′, y)

as we already observed, under the current conditions, δ(x′, y) = δ(x, y). And we get the desired type estimate I I ≤ 2 δ(x,x′)
δ(x,y)

. 

Hence 
∣∣P (x′, y) − P (x, y)

∣∣ ≤ √
2 14

3
δ(x,x′)
δ2(x,y)

when δ(x, x′) ≤ 1
2 δ(x, y).

The analogous procedure, using (b) and a similar geometric consideration for x, y, y′ with δ(y, y′) ≤ 1
2 δ(x, y) gives∣∣P (x, y′) − P (x, y)

∣∣ ≤ √
212

δ(y, y′)
δ2(x, y)

. �
3. Comparison of the maximal operators

As usual, for Calderón–Zygmund operators, the truncations of the kernel and the associated maximal operator play a 
central role in the analysis of the boundedness properties of the operator. For 0 < ε < R < ∞, set

Pε,R(x, y) = X{ε≤δ(x,y)<R} P (x, y) = X{ε≤δ(x,y)<R}
	(x, y)

δ(x, y)
.

Sometimes, for example when P acts on Lp(R+, dx) with p > 1, only the local truncation about the diagonal is actually 
needed. For ε > 0, Pε,∞(x, y) = X{δ(x,y)≥ε}(x, y)P (x, y). Since the original form of Petermichl’s kernel is given in terms of 
the Haar–Fourier analysis, a scale truncation is still possible and natural. For l < m both in Z, we consider also the scale 
truncation of P between 2l and 2m . In other words,

Pl,m(x, y) =
∑

{I∈D+:2l≤|I|<2m}
hI (y)[hI−(x) − hI+(x)].

Since δ takes only dyadic values, Pε,R can also be written as P2λ,2μ for λ and μ ∈ Z. For simplicity, we shall write Pλ,μ to 
denote P2λ,2μ . Hence, in our notation the distinction between the two truncations is only positional: Pl,m is scale truncation; 
Pl,m is metric truncation. Let us compare these two kernels and the operators induced by them. The calligraphic versions 
P l,m and Pl,m denote the operators induced by Pl,m and Pl,m , respectively.

In the next statement, we use two notations for the ancestrality of a dyadic interval. Given I ∈ D+ , I(n) denotes, as 
before, the n-th ancestor of I . Instead, ̂ I j denotes the only, if any, ancestor of I in the level D j of the dyadic interval. For 
instance, if I = [ 3

2 , 2), then I(1) = [1, 2), I(2) = [0, 2), ̂ I0 = [1, 2), ̂ I3 = [0, 8).

Lemma 3. Let l and m in Z with l < m. Then

(1) Pl,m(x, y) = Pl,m(x, y) + Q l,m(x, y), where

Q l,m(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, for δ(x, y) ≥ 2m;
√

2
m−1∑

j=l
2− j	̂I j(x,y)(x, y), for 0 < δ(x, y) < 2l;

−
√

2
δ(x,y)

∞∑
n=log2

2
δ(x,y)

2−n	I(n)(x,y)(x, y), when 2l ≤ δ(x, y) < 2m;
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(2) Pl,m belongs to L1(R+, dx) in each variable when the other variable remains fixed. Moreover
ˆ

y∈R+
Pl,m(x, y)dx =

ˆ

y∈R+
Pl,m(x, y)dy = 0;

(3)
∣∣Q l,m(x, y)

∣∣ ≤ 2
√

2
(

2−lX{δ(x,y)<2l}(x, y) + 2−mX{δ(x,y)<2m}
)

;

(4) the inequality 
∣∣∣´y∈R+ Q l,m(x, y)dy

∣∣∣ ≤ 2
√

2 holds for every l, m in Z and every x ∈R
+;

(5) the sequence ́ y∈R+ Q l,0(x, y) dy converges uniformly in x ∈R
+ for l tending to −∞.

Proof. Let us rewrite together the two truncations of P for the same values of l and m with l < m,

Pl,m(x, y) =
∑

I∈D+,2l≤|I|<2m

hI (y)[hI−(x) − hI+(x)];

Pl,m(x, y) = X{2l≤δ(x,y)<2m}(x, y)
	(x, y)

δ(x, y)

with 	(x, y) = √
2
∑∞

n=0 2−n	I(n)(x,y)(x, y). Let us compute Pl,m(x, y) for the three bands around the diagonal � of R+ ×R
+

determined by 2l and 2m . First, assume that 0 < δ(x, y) < 2l . Then

Pl,m(x, y) = √
2

∑
I∈D+

2l≤|I|<2m

1

|I|	I (x, y).

Since supp	I ⊂ I × I , once (x, y) is given, with δ(x, y) < 2l , the sum above is performed only on those dyadic intervals I
for which 2l ≤ |I| < 2m that contain I(x, y); the smallest dyadic interval containing both x and y. Hence,

Pl,m(x, y) = √
2

m−1∑
j=l

1

2 j
	̂I j(x,y)(x, y) = Q l,m(x, y) = Q l,m(x, y) + Pl,m(x, y)

in the δ-strip {(x, y) :R+ ×R
+ : δ(x, y) < 2l}. Second, assume that δ(x, y) ≥ 2m . Then no dyadic interval I containing both x

and y has a measure less than 2m , so that Pl,m vanishes when δ(x, y) ≥ 2m and again Pl,m = Q l,m + Pl,m . The third and last 
case to be considered is when 2l ≤ δ(x, y) < 2m . Again the non-vanishing condition for 	I (x, y) requires I ⊇ I(x, y), hence

Pl,m(x, y) = √
2

∑
I∈D|I|<2m

I⊇I(x,y)

1

|I|	I (x, y).

Since I ⊇ I(x, y) then, in the above sum, I has to be an ancestor of I(x, y). Hence |I| = 2n |I(x, y)| = 2nδ(x, y) for some 
n = 0, 1, 2, . . . The upper restriction on the measure of I , |I| < 2m , provides an upper bound for n. In fact, since 2m > |I| =
2nδ(x, y), n ≤ (log2 2mδ−1(x, y)) − 1. Notice that 2mδ−1(x, y) is an integral power of 2, so that log2 2mδ−1(x, y) ∈ Z. Hence,

Pl,m =
√

2

δ(x, y)

log2
2m

δ(x,y)
−1∑

n=0

1

2n
	I(n)(x,y)(x, y)

=
√

2

δ(x, y)

(
	(x, y) −

∞∑
n=log2

2m

δ(x,y)

1

2n
	I(n)(x,y)(x, y)

)

= Pl,m(x, y) + Q l,m(x, y),

and (1) is proved.
In order to prove (2), notice that for x fixed Pl,m(x, ·) is a finite linear combination of Haar functions in the variable y. 

Hence, Pl,m(x, ·) is an L1(R+, dx) function and its integral in y vanishes, since each Haar function has mean value zero. An 
analogous argument hold for y fixed and Pl,m(·, y).

Let us get the bound in (3). We only have to check it in the bands {δ(x, y) < 2l} and {2l ≤ δ(x, y) < 2m}. Let us first take 
δ(x, y) < 2l . Then,
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∣∣Q l,m(x, y)
∣∣ = √

2

∣∣∣∣∣∣
m−1∑

j=l

2− j	̂I j(x,y)(x, y)

∣∣∣∣∣∣ ≤ √
2

m∑
j=l

2− j ≤ 2
√

22−l,

as desired. Assume now that 2l ≤ δ(x, y) < 2m . Then,

∣∣Q l,m(x, y)
∣∣ ≤ √

2
1

δ(x, y)

∞∑
n=log2

2m

δ(x,y)

2−n = 2
√

2
1

δ(x, y)

δ(x, y)

2m
= 2

√
22−m.

For the proof of (4), notice that from (3), we have that, for fixed x and fixed l and m, as a function of y, Q l,m(x, y), and 
hence Pl,m(x, y) are integrable. Then,∣∣∣∣∣

ˆ

y∈R+
Q l,m(x, y)dy

∣∣∣∣∣ ≤ 2
√

2
ˆ

y∈R+

{
2−lX{

δ(x,y)<2l
}(x, y) + 2−mX{δ(x,y)<2m}(x, y)

}
dy = 2

√
2.

Let us prove (5). From the expression in (1) for Q l,0, we have

ˆ

y∈R+
Q l,0(x, y)dy = √

2
ˆ

Bδ(x,2l)

( −1∑
j=l

2− j	̂I j(x,y)(x, y)

)
dy

− √
2

ˆ

Bδ(x,1)\Bδ(x,2l)

1

δ(x, y)

( ∞∑
n=log2

1
δ(x,y)

1

2n
	I(n)(x,y)(x, y)

)
dy

= √
2

−1∑
j=l

2− j
ˆ

Bδ(x,2l)

	̂I j(x,y)(x, y)dy − √
2

−1∑
i=l

2−i
ˆ

{y:δ(x,y)=2i}

( ∞∑
n=−i

1

2n
	I(n)(x,y)(x, y)

)
dy

= √
2

( −1∑
j=l

2− j2lσ̂l, j(x) − 1
2

−1∑
i=l

2−i
∞∑

n=−i

2−n2iσn,i(x)

)
,

where σ̂l, j(x) = ffl
Bδ (x,2l)

	̂I j(x,y)(x, y) dy and σn,i(x) = ffl
{δ(x,y)=2i} 	I(n)(x,y)(x, y) dy and 

ffl
E f denotes the mean value of f on 

E , so that

ˆ

y∈R+
Q l,0(x, y)dy = √

2
−l−1∑
i=0

2−iσ̂l,i+l(x) −
√

2

2

( −l∑
n=1

2−n
−1∑

i=−n

σn,i(x) +
∞∑

n=−l+1

2−n
−1∑
i=l

σn,i(x)

)
.

Since, in the definitions of σ̂ and σ , we are taking mean values of functions with L∞-norm equal to 1, we certainly have 
that |σ̂ | ≤ 1 and |σ | ≤ 1. Hence, 

∣∣∣∑−1
i=−n σn,i(x)

∣∣∣ ≤ n, and 
∣∣∣∑−1

i=l σn,i(x)
∣∣∣ ≤ |l| = −l. So the first term in the expression for the 

integral is dominated by the geometric series 
∑

i≥0 2−i , the second term is dominated by the convergent series 
∑∞

n=1 n2−n , 
and the third term is bounded by |l|∑∞

n=−l+1 2−n , which tends to zero as |l| tends to infinity. �
Let us notice that (4) and (5) in the above lemma hold also integrating in the variable x. Let

Mdy f (x) = sup
x∈I∈D+

1

|I|
ˆ

I

| f (y)| dy

be the dyadic maximal operator. Set

P∗ f (x) = sup
l<m

l,m∈Z

∣∣∣∣∣∣
ˆ

R+
Pl,m(x, y) f (y)dy

∣∣∣∣∣∣
P∗ f (x) = sup

l<m
l,m∈Z

∣∣Pl,m(x, y)
∣∣
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Theorem 4. The inequalities

P∗ f (x) ≤ 4
√

2Mdy f (x) +P∗ f (x) (3.1)

and

P∗ f (x) ≤ 4
√

2Mdy f (x) +P∗ f (x) (3.2)

hold for every locally integrable function f defined on R
+ .

Proof. Inequalities (3.1) and (3.2) follow from (1) and (3) in Lemma 3. �
The above theorem, together with properties (2), (4) and (5) in Lemma 3, and the results in [1] and [3], give classical 

boundedness properties in Lebesgue spaces of P∗ , so that, from (3.2) and the boundedness properties of Mdy we obtain the 
corresponding bounds for P∗ .
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