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Abstract. We deal with anomalous diffusions induced by continuous time
random walks - CTRW in R

n. A particle moves in R
n in such a way that the

probability density function u(·, t) of finding it in region � of R
n is given by∫

� u(x, t)dx. The dynamics of the diffusion is provided by a space time probability
density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the
equation

u(x, t) = [(J − δ ) ∗ u](x, t),

where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem
for a given initial density distribution f . We use Banach fixed point method to
solve it and prove that under parabolic rescaling of J, the equation tends weakly
to the heat equation and that for particular kernels J, the solutions tend to the
corresponding temperatures when the scaling parameter approaches 0.

1 Introduction and statement of the results

We are concerned with a probabilistic description of the motion of a particle in the
space R

n. As is usual, we write

R
n+1
+ = {(x, t) : x ∈ R

n and t ≥ 0}.

Sometimes we also consider the whole space-time

R
n+1 = {(x, t) : x ∈ R

n and t ∈ R}.

The x variable is thought as a space variable, while t represents time.
For fixed t, we denote by u(x, t) the probability density of the position of the

particle at time t. Precisely, for a given Borel set E in R
n, the quantity P(t, E) =∫

E u(x, t)dx measures the probability of finding the particle in E at time t.
The general problem is to find u(x, t) when the dynamics of the system is

known and some initial state is given.
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Regarding the dynamics of the system, we deal with anomalous diffusions,
more precisely, with continuous time random walks (CTRW). For a comprehen-
sive introduction to the subject, we refer to [6]. A CTRW in R

n is provided by
a space-time probability density function and kernel J(x, t), defined on R

n+1. In
this model, the particle has a probability density function u(x, t) of arrival at pos-
ition x ∈ R

n at time t > 0 which depends on the events of arrival at any y ∈ R
n

(sometimes only on the events of arrival at any y in some neighborhood of x) at
any previous time s < t. This dependence is given precisely by the convolution in
R

n+1 of J with u itself. In other words, for t ≥ 0 and x ∈ R
n,

(1.1) u(x, t) = (J ∗ u)(x, t) =
∫∫

Rn+1
J(x − y, t − s)u(y, s) dy ds.

The physical condition of the dependence of the current position of the particle
only on the past (s < t) gives us the first natural condition on J:

(J1) supp J ⊂ R
n+1
+ .

On the other hand, since J is a density in R
n+1, we must have

(J2) J ≥ 0, and
(J3) J ∈ L1(Rn+1) and

∫∫
Rn+1 J(x, t) dx dt = 1.

Following the notation in [6], we call the density function defined in R
n by

λ(x) =
∫

R

J(x, t) dt

the jump length probability function. Notice that from (J1), we have λ(x) =∫
R+ J(x, t) dt. On the other hand, the waiting time probability function is

given by

τ(t) =
∫

Rn

J(x, t) dx.

Regarding the initial condition, let us first assume that the particle is localized
at the origin of Rn for t < 0. In other words, u(x, t) = δ0(x) for t < 0. Hence, since
u(x, t) for t ≥ 0 needs to satisfy (1.1), from (J1) we must have that

u(x, 0) =
∫∫

Rn+1
J(x − y,−s)u(y, s)dy ds

=
∫

R−

(∫

Rn

J(x − y,−s)u(y, s)dy

)
ds

=
∫

R−

(∫

Rn

J(x − y,−s)δ0(y)dy

)
ds

=
∫

R−

J(x,−s)ds

= λ(x).
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In other words, the deterministic situation the particle is at the origin for t < 0
produces immediately at time t = 0 a random situation modeled precisely by the
jump length probability function λ(x) associated to the density J .

More generally, if the position at time t < 0 of the particle distributes as in-
dicates the density f (x), then u(x, 0) = (λ ∗ f )(x). In this framework, the basic
initial problem we are interested in, takes the following form. Given J(x, t) and
f (x), find u(x, t) for (x, t) ∈ R

n+1
+ such that

(P)





u(x, t) = (J ∗ u)(x, t), x ∈ R
n, t ≥ 0;

u(x, t) =





f (x), t < 0;

u(x, t), t ≥ 0.

Sometimes, to emphasize the data J and f in (P), we write P(J, f ) for the
problem P and u(J, f ) for its solution.

Let us observe that the expected initial condition is attained since, taking t = 0
in the first equation in (P), we get

u(x, 0) = (J ∗ u)(x, 0) =
∫∫

J(x − y,−s) f (y) dy ds = (λ ∗ f )(x).

We consider wide families of kernels J , but there is one, the parabolic mean
value kernels, which plays a more significant role for our subsequent analysis. We
denote by H (for heat) these special occurrences of J . Let us introduce the most
known of these kernels H ; see [7] or [5]. Denote by W(x, t) the Weierstrass kernel
for t > 0 and x ∈ R

n. Precisely, W(x, t) = (4πt)−n/2e−|x|2/(4t). Set

E = {(x, t) ∈ R
n+1
+ : W(x, t) ≥ 1} and H(x, t) =

1
4
XE (x, t)

|x|2

t2
.

It is easy to check that H satisfies properties (J1), (J2) and (J3) stated above.
Moreover,
(J4) H has compact support in R

n+1;
(J5) H is radial as a function of x ∈ R

n for each t.
The outstanding fact regarding H is given by its role in the mean value formula

for temperatures. If v(x, t) is a solution of the heat equation ∂v
∂t

= △v in a domain
� in R

n+1, then, for (x, t) ∈ � and r small enough, we have

v(x, t) =
∫∫

Hr(x − y, t − s)v(y, s)dy ds,

where Hr denotes the parabolic r-mollifier of H. Precisely

Hr(x, t) =
1

rn+2
H

(
x

r
,

t

r2

)
=

1
rn

XE(r)(x, t)
|x|2

t2
,
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with E(r) = {(x, t) ∈ R
n+1
+ : W(x, t) ≥ r−n}. Figure 1 depicts the support E(r) of

Hr .

t

x

Figure 1. Sets E(r) for n = 1 and r = 1/2, 1/4, 1/8.

In the sequel, for any kernel J(x, t) and any r > 0, we denote by Jr(x, t) the
parabolic approximation to the identity given by Jr(x, t) = 1

rn+2 J
(

x
r
, t

r2

)
. Moreover,

the notation vr(x, t) or even fr(x) for functions depending on space-time or, only
on the space variable always the same meaning. Precisely,

vr(x, t) = r−n−2v(r−1x, r−2t) and fr(x) = r−n−2 f (r−1x).

The results of this paper are in the spirit of those in [4] and [3]. Instead of deal-
ing with generalization of boundary conditions, we are concerned with diffusion
problems in the whole space R

n, and the initial condition is generalized.
Let us state the main results of this paper. The first one is the weak convergence

to the heat equation.

Theorem 1. Assume that J(x, t) satisfies (J2), (J3), (J4) and (J5). Then, for
each ϕ in the Schwartz class of Rn+1,

lim
r→0

1
r2

(Jr − δ ) ∗ ϕ = µ
∂ϕ

∂t
+ ν△ϕ,

uniformly on R
n+1, where µ = −

∫∫
tJ(x, t)dx dt and ν = 1

2n

∫∫
|x|2 J(x, t)dx dt.

The second result concerns the existence of solutions for problem (P). For a
given Lipschitz function f ∈ C

0,γ(Rn) of order γ, we denote by [ f ]γ the corre-
sponding seminorm of f . In the next statement, C denotes the space of continuous
functions.

Theorem 2. Assume that J(x, t) satisfies (J1), (J2), (J3), and (J4). Set α =
sup{β :

∫∫
s≤β J(y, s)dyds < 1}. Let f ∈ L∞(Rn) be given. Then there exists a

unique solution u(x, t) of (P) in the space (C ∩ L∞)(Rn+1
+ ). If f ∈ (L1 ∩ L∞)(Rn),
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then
∫
Rn u(x, t)dx =

∫
Rn f (x)dx for every t ≥ 0. In particular, if f is a density

function, so is u(·, t) for every t ≥ 0. Moreover, if f belongs to (C0,γ ∩ L∞)(Rn),
then

(1.2) |u(x, t) − f (x)| ≤ C[ f ]γ

for (x, t) ∈ R
n × [0, α] and some C which does not depend on f .

The next result, which is interesting in and of itself, contains a maximum prin-
ciple which is used in the proof of Theorem 4. Precisely, the supremum of the
probability density function in the future of α = sup{β :

∫∫
s≤β J(y, s)dy ds < 1}

coincides with its supremum in R
n × [0, α].

Theorem 3. Let J be a kernel satisfying (J1), (J2), (J3), and (J4). Let w(x, t)
be a bounded function defined in R

n+1
+ such that

(1.3) w(x, t) =
∫∫

J(x − y, t − s)w(y, s)dy ds

for (x, t) ∈ R
n × [α, +∞). Then

sup
(x,t)∈Rn+1

+

|w(x, t)| = sup
(x,t)∈Rn×[0,α]

|w(x, t)| .

Let us proceed to state the fourth result of the paper.

Theorem 4. For each H ∈ H , there exists C > 0 such that, for every r > 0
and every f ∈ (C0,γ ∩ L∞)(Rn),

‖u(Hr, f ) − u‖L∞(Rn+1
+ ) ≤ C[ f ]γrγ,

where u is the temperature in R
n+1
+ given by u(x, t) = (W(·, t) ∗ f )(x).

Let us finally remark that in [2] the authors prove the Hölder regularity for
solutions of the master equation associated to CTRW’s.

In Section 2, we prove the weak convergence of parabolic rescalings to a heat
equation. In Section 3, we show existence of solution for the Cauchy nonlocal
problem. Section 4 is devoted to proving the maximum principle contained in
Theorem 3. Finally, Section 5 deals with convergence of solutions of rescalings of
(P) to temperatures.
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2 Some space time nonlocal parabolic operators and

their weak limit. Proof of Theorem 1

Since
∫∫

J(y, s)dyds = 1, applying Taylor’s formula, we get, for 0 < r < 1,

∫∫
Jr(x − y, t − s)ϕ(y, s)dyds − ϕ(x, t)

=
∫∫

Jr(x − y, t − s)(ϕ(y, s) − ϕ(x, t))dy ds

=
∫∫

Jr(x − y, t − s)

[
n∑

i =1

∂ϕ

∂xi

(x, t)(yi − xi) +
∂ϕ

∂t
(x, t)(s − t)

+
1
2

(y − x, s − t)D2ϕ(x, t)(y − x, s − t)t + R(y − x, s − t)
]

dy ds,

where D2 denotes the Hessian matrix of the second derivatives of ϕ with respect
to x and t, and |R(x, t)| = O(|x|2 + t2)3/2.

The last integral in the above identities can be written as the sums of the fol-
lowing seven terms:

I =
n∑

i =1

∂ϕ

∂xi

(x, t)
(∫∫

(yi − xi)Jr(x − y, t − s)dy ds

)
,

II =
∂ϕ

∂t
(x, t)

(∫∫
(s − t)Jr(x − y, t − s)dy ds

)
,

III =
n∑

i j =1,i 6= j

∂2ϕ

∂xi∂x j

(x, t)
(

1
2

∫∫
(yi − xi)(y j − x j )Jr(x − y, t − s)dy ds

)
,

IV =
n∑

i =1

∂2ϕ

∂x2
i

(x, t)
(

1
2

∫∫
(yi − xi)

2 Jr(x − y, t − s)dy ds

)
,

V =
n∑

i =1

∂2ϕ

∂xi∂t
(x, t)

(
1
2

∫∫
(yi − xi)(s − t)Jr(x − y, t − s)dy ds

)
,

VI =
∂2ϕ

∂t2
(x, t)

(
1
2

∫∫
(s − t)2 Jr(x − y, t − s)dy ds

)
,

and

VII =
∫∫

Jr(x − y, t − s)R(y − x, s − t)dy ds.

Since, for t fixed, J is radial as a function of x, we see that I , III and V vanish.
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For the other four integrals, we perform the parabolic change of variables (z, ζ ) =
( x−y

r
, t−s

r2 ) to obtain

II =
∂ϕ

∂t
(x, t)r2

(
−

∫∫
ζJ(z, ζ )dz dζ

)
,

IV =
n∑

i =1

∂2ϕ

∂x2
i

(x, t)r2
(

1
2

∫∫
z2

i J(z, ζ )dz dζ

)
,

VI =
∂2ϕ

∂t2
(x, t)r4

(
1
2

∫∫
ζ 2 J(z, ζ )dz dζ

)
,

VII =
∫∫

J(z, ζ )R(rz, r2ζ )dz dζ.

Finally, since, as a function of r, VI and VII are of order at least r3 close to 0, we
see that

lim
r→0

1
r2

[
(Jr − δ ) ∗ ϕ

]
(x, t) = lim

r→0

(
II

r2
+

IV

r2

)
= µ

∂ϕ

∂t
(x, t) + ν△ϕ(x, t),

where µ and ν are defined as in the statement of Theorem 1. That convergence is
uniform in R

n+1 follows from the fact that ϕ is a Schwartz function, and so VI and
VII converge to 0 uniformly.

Lemma 5. If J = H, then µ = −ν; and the limit equation in Theorem 1 is
the heat equation multiplied by a constant.

Proof. All we need to show is that

(2.1)
∫∫

H(y, s)s dy ds =
1

2n

∫∫
H(y, s)|y|2 dy ds.

Let us compute both of these integrals in terms of the Euler gamma function and
the area surface of the unit ball of Rn, Sn−1. On one hand,
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∫∫
H(y, s)s dy ds =

1
4

∫∫
XE(1)(−y,−s)

|y|2

s2
s dy ds = −

1
4

∫∫

E(1)

|y|2

s
dy ds

=
1
4

∫ 0

− 1
4π

∫

B

(

0,(2ns ln(4π(−s)))
1
2

)

|y|2

−s
dy ds

=
1
4

∫ 0

− 1
4π

1
−s

∫ (2ns ln(4π(−s)))
1
2

0
ρn+1

∫

Sn−1
dσ dρ ds

=
σ(Sn−1)
4(n + 2)

∫ 0

− 1
4π

1
−s

(2ns ln(4π(−s)))
n+2

2 ds

=
σ(Sn−1)
4(n + 2)

∫ 1

0

1
t

( n

2π
t(− ln(t))

) n+2
2

dt

=
σ(Sn−1)n

n+2
2

4(n + 2)2
n+2

2 π
n+2

2

∫ ∞

0
e−θ( n+2

2 )θ
n+2

2 dθ

=
σ(Sn−1)n

n+2
2

4(n + 2)2
n+2

2 π
n+2

2

2
(n + 2)

2
n+2

2

(n + 2)
n+2

2

∫ ∞

0
e−ζζ

n+2
2 dζ

=
σ(Sn−1)n

n+2
2

2(n + 2)
n+6

2 π
n+2

2

Ŵ

(
n + 4

2

)
.

On the other hand,

1
2n

∫∫
H(y, s)|y|2 dy ds =

1
8n

∫∫
XE(1)(−y,−s)

|y|2

s2
|y|2 dy ds =

1
8n

∫∫

E(1)

|y|4

s2
dy ds

=
1
8n

∫ 0

− 1
4π

∫

B

(

0,(2ns ln(4π(−s)))
1
2

)

|y|4

s2
dy ds

=
1
8n

∫ 0

− 1
4π

1
s2

∫ (2ns ln(4π(−s)))
1
2

0
ρn+3

∫

Sn−1
dσ dρ ds

=
σ(Sn−1)

8n(n + 4)

∫ 0

− 1
4π

1
s2

(2ns ln(4π(−s)))
n+4

2 ds

=
σ(Sn−1)
8(n + 4)

n
n+4

2 4π

2
n+4

2 π
n+4

2

∫ 1

0

1
t2

(t(− ln(t)))
n+2

2 dt

=
σ(Sn−1)n

n+2
2 4π

8(n + 4)2
n+4

2 π
n+4

2

∫ ∞

0
e−θ( n+2

2 )θ
n+4

2 dθ

=
σ(Sn−1)n

n+2
2 4π

8(n + 4)2
n+4

2 π
n+4

2

2
(n + 2)

2
n+4

2

(n + 2)
n+4

2

∫ ∞

0
e−ζζ

n+4
2 dζ

=
σ(Sn−1)n

n+2
2

(n + 4)(n + 2)
n+6

2 π
n+2

2

Ŵ

(
n + 6

2

)
.
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Now, since Ŵ(z + 1) = zŴ(z), we have that 1
n+4Ŵ

(
n+6

2

)
= 1

2Ŵ
(

n+4
2

)
. �

3 Existence of solutions for (P). Proof of Theorem 2

Let J(x, t) be a kernel defined in space time R
n+1 satisfying (J1)–(J4). Let

f ∈ L∞(Rn). Following the ideas in [4], [3], and [1], we solve (P) by iter-
ated application of the Banach fixed point theorem. From (J3) and (J4), we
have that α = sup{β :

∫∫
s<β J(x, s)dx ds < 1} is positive and finite. For the

first step in the use of the fixed point theorem, we consider the Banach space
B1 = (C ∩ L∞)(Rn × [0, α/2]) with the L∞ norm.

As in the statement of (P), set

v(x, t) =





f (x), t < 0;

v(x, t), t ∈ [0, α/2],

where v ∈ B1. Since v is bounded on R
n × (−∞, α/2] and J ∈ L1(Rn+1), the

integral

g(x, t) :=
∫∫

Rn×(−∞,α/2]
J(x − y, t − s)v(y, s)dy ds

is absolutely convergent for (x, t) ∈ R
n × [0, α/2]. Let us prove that, as a function

of (x, t) ∈ R
n × [0, α/2], the function g belongs to B1. From the definition of g,

we see that

|g(x, t)| ≤

(∫∫
Jdy ds

)
‖v‖∞ ≤ sup{‖ f ‖∞ , ‖v‖∞}.

Let us check the continuity of g. For h ∈ R
n and k ∈ R such that (x + h, t + k) ∈

(−∞, α/2], we have

|g(x + h, t + k) − g(x, t)|

≤

∫∫
|J(x + h − y, t + k − s) − J(x − y, t − s)| |v(y, s)| dy ds

≤ ω1(
√

|h|2 + k2) ‖v‖∞ ,

where ω1 is the modulus of continuity in L1 of J . Hence, for v ∈ B1, we also have
that g ∈ B1 when restricted to the strip R

n × [0, α/2].
Define the mapping T1 : B1 → B1 by T1v = g. Let us now prove that T1 is a

contractive mapping in B1. Let v,w ∈ B1. Let (x, t) ∈ R
n × [0, α/2]. Then, with

w(x, t) =





f (x), t < 0;

w(x, t), t ∈ [0, α/2],
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we have

T1v(x, t) − T1w(x, t) =
∫∫

s≤α/2
J(x − y, t − s)(v(y, s) − w(y, s))dy ds

=
∫∫

0<s≤α/2
J(x − y, t − s)(v(y, s) − w(y, s))dy ds.

Hence

‖T1v − T1w‖∞ ≤

(
sup

(x,t)∈Rn×[0,α/2]

∫∫

0<s≤α/2
J(x − y, t − s)dyds

)
‖v − w‖∞

Now (J1) and the definition of α give

∫∫

0<s≤α/2
J(x − y, t − s)dyds =

∫∫

t−α/2<σ≤t

J(z, σ)dz dσ

=
∫∫

0<σ≤t

J(z, σ)dz dσ

≤

∫∫

0<σ≤α/2
J(z, σ)dz dσ =: τ < 1,

so that ‖T1v − T1w‖∞ ≤ τ ‖v − w‖∞. Hence T1 is a contractive mapping of B1.
Thus there exists a unique fixed point u1 ∈ B1 of T1. In other words,

(3.1) u1(x, t) =
∫∫

J(x − y, t − s)u1(y, s)dy ds

for x ∈ R
n and 0 ≤ t ≤ α/2.

Let us check that ∫

Rn

u1(x, t)dx =
∫

Rn

f (x)dx

for every 0 ≤ t ≤ α/2 when f ∈ L1(Rn). Since u1 can be realized as the limit
of the sequence of iterations of T1 applied to any function v ∈ B1, we may take
v(x, t) = f (x) as the starting point. In doing so, we see that the integral in the
variable x of

∣∣T m
1 f (x, t)

∣∣ does not exceed
∫

| f | dx. In fact, from (J3), we see that

∫
|T1 f (x, t)| dx =

∫ ∣∣∣∣
∫∫

J(x − y, t − s) f (y)dy ds

∣∣∣∣ dx

≤

∫ (∫∫
J(x − y, t − s)dx ds

)
| f (y)| dy =

∫
| f | dy.
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Hence, inductively, assuming
∫ ∣∣T m

1 f (x, t)
∣∣ dx ≤

∫
| f | dx, we have

∫ ∣∣∣T m+1
1 f (x, t)

∣∣∣ dx =
∫ ∣∣T1(T m

1 f )(x, t)
∣∣ dx

=
∫ ∣∣∣∣
∫∫

J(x − y, t − s)T m
1 f (y, s)dy ds

∣∣∣∣ dx

=
∫ ∣∣∣∣
∫∫

J(y, t − s)T m
1 f (x − y, s)dy ds

∣∣∣∣ dx

=
∫ ∣∣∣∣
∫∫

s<0
J(y, t − s) f (x − y)dy ds

+
∫∫

s>0
J(y, t − s)T m

1 f (x − y, s)dy ds

∣∣∣∣ dx

≤

∫∫

s<0
J(y, t − s)

∣∣∣∣
∫

f (x − y)dx

∣∣∣∣ dy ds

+
∫∫

s>0
J(y, t − s)

∣∣∣∣
∫

T m
1 f (x − y, s)dx

∣∣∣∣ dy ds

≤

∫
| f | dx.

By the same arguments, we can conclude that
∫

T m+1
1 f (x, t)dx =

∫
f (x)dx for

0 ≤ t ≤ α/2. The result then follows since, for f ∈ L1 ∩ L∞, we have that
T m

1 f → u1 also in C([0, α/2], L1(Rn)). In fact, if

(3.2) |||T m+1
1 f − T m

1 f ||| ≤ τm|||T 1
1 f − f |||

where |||v ||| = supt∈[0,α/2] ‖v(·, t)‖L1(Rn), then T m
1 f is also a Cauchy sequence in

C([0, α/2], L1(Rn)). Since T m
1 f converges uniformly to u1 we get the desired pre-

servation of the integral. It remains to prove (3.2).
Let us first check that T m

1 f is continuous as a function of t ∈ [0, α/2] with
values in L1(Rn) for each m. For t, t + h ∈ [0, α/2],
∫

|T m
1 f (x, t) − T m

1 f (x, t + h)|dx =
∫ ∣∣∣∣
∫∫

J(x − y, t − s)T m−1
1 f (y, s)d yds

−

∫∫
J(x − y, t + h − s)T m−1

1 f (y, s)dy ds

∣∣∣∣ dx

=
∫ ∣∣∣∣
∫∫

〈J(z, t − s) − J(z, t + h − s)〉T m−1
1 f (x − z, s)dz ds

∣∣∣∣ dx

≤

∫ ∫
|J(z, t − s) − J(z, t + h − s)|

(∫ ∣∣∣T m−1
1 f (x − z, s)

∣∣∣ dx

)
dz ds

≤

∫
| f (x)| dx

∫ ∫
|J(z, t − s) − J(z, t + h − s)| dz ds,

which tends to 0 as h → 0 because J ∈ L1(Rn+1).
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Similar calculations show that T m
1 f is a Cauchy sequence in the ||| · |||. In fact,

for t ∈ [0, α/2],
∫

|T m+1
1 f (x, t) − T m

1 f (x, t)|dx

=
∫ ∣∣∣∣
∫∫

J(x − y, t − s)
(

T m
1 f (y, s) − T m−1

1 f (y, s)
)

dy ds

∣∣∣∣ dx

=
∫ ∣∣∣∣
∫ ∫

0≤s≤t

J(x − y, t − s)
(

T m
1 f (y, s) − T m−1

1 f (y, s)
)

dy ds

∣∣∣∣ dx

≤

∫ ∫

0≤s≤t

J(z, t − s)
(∫ ∣∣∣T m

1 f (x − z, s) − T m−1
1 f (x − z, s)

∣∣∣ dx

)
dz ds

=
∫ ∫

0≤s≤t

J(z, t − s)
(∫ ∣∣∣T m

1 f (x, s) − T m−1
1 f (x, s)

∣∣∣ dx

)
dz ds

≤

(
sup

s∈[0,α/2]

∫ ∣∣∣T m
1 f (x, s) − T m−1

1 f (x, s)
∣∣∣ dx

)∫∫

0≤s≤α/2
J(z, t − s)dz ds

= τ|||T m
1 f − T m−1

1 f |||.

Hence

|||T m+1
1 f − T m

1 f ||| ≤ τ|||T m
1 f − T m−1

1 f |||.

By iteration, we obtain (3.2).

Observe that since u1(x, t) can be obtained as the iteration of T1 starting with
any function v ∈ B1, we can take, in particular, the constant function
v = (s( f ) − i( f ))/2, where s( f ) = sup f and i( f ) = inf f . Then v = vX{0≤t≤α/2} +
f X{t<0}, so that i( f ) ≤ v ≤ s( f ) everywhere. From (J2) and (J3), we also have
i( f ) ≤ T1v ≤ s( f ) on R

n × [0, α/2]. The same argument shows that for every
iteration T k

1 v of T1v , we have i( f ) ≤ T k
1 v ≤ s( f ). Since u1 is the uniform limit

of T k
1 v , we get i( f ) ≤ u1(x, t) ≤ s( f ) on the strip R

n × [0, α/2]. So far we have
existence and mass preservation for t ∈ [0, α/2].

Now proceed inductively by covering R
+ with intervals of the type

[(i − 1)α/2, iα/2]. The first step, i = 1, is precisely the one described above.
Assume that ui ∈ Bi = (C ∩ L∞)(Rn × [(i − 1)α/2, iα/2]) for each i = 1, . . . , j

have been built in such a way that

ui(x, t) =
∫∫

J(x − y, t − s)ui(y, s)dy ds

with

ui(x, t) =





ui−1(x, t), t < (i − 1)α/2;

ui(x, t), (i − 1)α/2 ≤ t ≤ iα/2.
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Moreover,
∫
Rn ui(x, t)dx =

∫
Rn f (x)dx for (i − 1)α/2 ≤ t ≤ iα/2,

(3.3) i( f ) ≤ ui(x, t) ≤ s( f )

for every (x, t) ∈ R
n×[(i−1)α/2, iα/2], and ui(x, (i−1)α/2) = ui−1(x, (i−1)α/2)

for every x.
Define B j+1 as the space (C∩ L∞)(Rn × [ jα/2, ( j + 1)α/2]) with the complete

metric induced by the L∞ norm. For v ∈ B j+1, define

T j+1v(x, t) =
∫∫

J(x − y, t − s)v(y, s)dy ds

with 



v(x, t) = u j (x, t), t < jα/2;

v(x, t), jα/2 ≤ t ≤ ( j + 1)α/2.

As in the case of i = 1, it easy to check that with (x, t) ∈ R
n × [ jα/2, ( j + 1)α/2],

T j+1v ∈ B j+1. Hence T j+1 : B j+1 → B j+1. It is also easy to prove that T j+1 is
contractive on B j+1 with the same rate of contraction τ obtained when i = 1.

Also, by the same argument as in the case i = 1, with
∫

u j (x, t)dx =
∫

f (x)dx

when t ≤ jα/2, we have
∫
Rn u j+1(x, t)dx =

∫
R

f (x)dx for t ∈ [ jα/2, ( j + 1)α/2].
To check that u j+1(x, jα/2) = u j (x, jα/2), we need only observe that for jα/2 ≤

t ≤ ( j + 1)α/2, the fixed point equation is given by

u j+1(x, t) =
∫∫

J(x − y, t − s)u j+1(y, s)dy ds.

For t = jα/2, property (J1) shows that the above integral involves only values of
s which are bounded above by jα/2. For those values, u j+1(y, s) = u j (y, s), so that

u j+1(x, jα/2) =
∫∫

J(x − y, jα/2 − s)u j (y, s)dy ds = u j (x, jα/2),

as desired.
Property (3.3) for i = j + 1 can be proved following the same argument used in

the case i = 1. Notice that the function u(x, t) defined on R
n+1
+ by u(x, t) = u j (t)(x, t)

with j(t) the only positive integer for which ( j(t) − 1)α/2 ≤ t < j(t)α/2 is
continuous and bounded. Moreover, i( f ) ≤ u(x, t) ≤ s( f ) for every (x, t) ∈ R

n+1
+ .

The above remarks prove that u ∈ B = (C ∩ L∞)(Rn+1
+ ) and solves (P).

To prove the uniqueness of the solution u, we argue as follows. If u and ũ are
solutions, their restrictions on the strip R

n × [0, α/2] coincide. Since the fixed
point of T1 is unique and, being a solution of (P) in R

n × [0, α/2] is equivalent to
being a fixed point for T1, we see that u ≡ ũ on R

n × [0, α/2]. For the next time
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interval [α/2, α], the restriction of both u and ũ to this interval are fixed points
of the same operator T2. Again the uniqueness given by the Banach fixed point
guarantees u ≡ ũ on R

n × [α/2, α]. Proceeding inductively, we get that u ≡ ũ

everywhere.

Let us finally prove the estimate (1.2). First we show that (1.2) holds when
(x, t) ∈ R

n × [0, α/2]. This is because the function u in the first time interval
[0, α/2] coincides with u1 provided by the Banach fixed point theorem, and the
rate of convergence can be estimated by the contraction constant τ. We already
know that τ =

∫∫
s≤α/2 J(y, s)dy ds < 1. Denote by um

1 the m-th iteration of T1

applied to the initial guess u0
1 = f . Then, since

∥∥um+1
1 − um

1

∥∥
∞

≤ τm
∥∥u1

1 − u0
1

∥∥
∞

,
we see that

∥∥um
1 − f

∥∥
∞

≤




m∑

j =0

τ j



∥∥∥u1

1 − f
∥∥∥

∞
≤

1
1 − τ

∥∥∥u1
1 − f

∥∥∥
∞

for every m = 1, 2, . . .

Let us now show that for (x, t) ∈ R
n × [0, α/2] there exists a constant C̃ de-

pending only on J such that
∥∥u1

1 − f
∥∥

∞
≤ C̃[ f ]γ. In fact,

∣∣∣u1
1(x, t) − f (x)

∣∣∣ = |(T1 f )(x, t) − f (x)|

=

∣∣∣∣
∫∫

J(x − y, t − s)( f (y) − f (x))dy ds

∣∣∣∣

≤ [ f ]γ

(∫∫
J(x − y, t − s) |x − y|γ dy ds

)
.

Hence for every m = 1, 2, . . .,

∥∥um
1 − f

∥∥
L∞(Rn×[0,α/2]) ≤ C[ f ]γ,

where C depends only on J . The same is true for the uniform limit u1 of the
sequence um

1 . In other words,

(3.4) ‖u1 − f ‖L∞(Rn×[0,α/2]) ≤ C[ f ]γ.

Let us now see how to get the same type of estimate for the time interval [α/2, α].
From the construction of u, we have that on R

n × [α/2, α], u = u2 with

u2(x, t) =
∫∫

J(x − y, t − s)u2(y, s)dy ds, u2(x, t) =





f (x), t < 0;

u1(x, t), t ∈ [0, α/2];

u2(x, t), t ∈ [α/2, α].
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On R
n × [α/2, α], the solution u2 is the only fixed point for the operator T2 and,

since the limit u2 of iterations um
2 of T2u0

2 = u1
2 is independent of the starting point

u0
2, let us take again u0

2 = f . Hence ‖u2 − f ‖∞ ≤ 1
1−τ

∥∥u1
2 − f

∥∥
∞

. Notice that,
writing

f (y, s) = f (y)Xs<0(s) + u1(y, s)X[0,α/2](s) + f (y)X[α/2,α](s),

we have

u1
2(x, t) =

∫∫
J(x − y, t − s) f (y, s)dy ds.

Let us finally check that the desired estimate holds for
∥∥u1

2 − f
∥∥

∞
in R

n×[α/2, α].
Take (x, t) ∈ R

n × [α/2, α], then

∣∣∣u1
2(x, t) − f (x)

∣∣∣ = |(T2 f )(x, t) − f (x)|

=

∣∣∣∣
∫∫

J(x − y, t − s) f (y, s)dyds − f (x)

∣∣∣∣

≤

∫∫

s≤0
J(x − y, t − s) | f (y) − f (x)| dy ds

+
∫∫

0<s<α/2
J(x − y, t − s) |u1(y, s) − f (y)| dy ds

+
∫∫

s≤α

J(x − y, t − s) | f (y) − f (x)| dy ds.

The first and the third terms on the right hand side of the above inequality are
bounded by the product of the Lipγ seminorm of f and a constant depending only
on J . For the second term, we use (3.4), and we are done.

4 Maximum principle. Proof of Theorem 3

Recall that α = sup{β :
∫∫

s≤β J(y, s)dy ds < 1}. Since the function I(β) =∫∫
s≤β Jdy ds is increasing and continuous as a function of β, α is also the infimum

of those values of β for which I(β) = 1. Moreover, from definition of α, we have
0 < I(α/2) < 1.

Let tk = α + (k − 1)α/2, Bk = R
n × [0, tk], Sk = supBk

|w| for k = 1, 2, . . .; see
Figure 2. Let us see that Sk = Sk−1. Let (x, t) ∈ R

n × [tk−1, tk], hence
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α

s

R
n

tk−2

tk−1

tk
(x, t)

Figure 2. The relative position of supp J and the stripes Bk.

|w(x, t)| =

∣∣∣∣
∫∫

J(x − y, t − s)w(y, s)dyds

∣∣∣∣

=

∣∣∣∣∣∣

∫∫

tk−1≤s≤t

J(x − y, t − s)w(y, s)dy ds +
∫∫

t−α≤s≤tk−1

J(x − y, t − s)w(y, s)dy ds

∣∣∣∣∣∣

≤ Sk

∫∫

tk−1≤s≤t

J(x − y, t − s)dyds + Sk−1

∫∫

t−α≤s≤tk−1

J(x − y, t − s)dy ds

= Sk


1 −

∫∫

t−α≤s≤tk−1

J(x − y, t − s)dyds


 + Sk−1




∫∫

t−α≤s≤tk−1

J(x − y, t − s)dy ds




= Sk − (Sk − Sk−1)
(∫∫

t−α≤s≤tk−1

J(x − y, t − s)dy ds

)
.

Hence
(∫∫

t−α≤s≤tk−1

J(x − y, t − s)dyds

)
(Sk − Sk−1) ≤ Sk − |w(x, t)| ,

since
∫∫

t−α≤s≤tk−1

J(x − y, t − s)dyds =
∫∫

t−tk−1≤s1≤α

J(x − y, s1)dy ds1

≥

∫∫

α/2≤s1≤α

J(x − y, s1)dy ds1 = 1 − I(α/2).

Then

(4.1) (1 − I(α/2))(Sk − Sk−1) ≤ Sk − sup
Bk\Bk−1

|w| .
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Of course, Sk ≥ Sk−1, if Sk > Sk−1. Then Sk = supBk\Bk−1
|w|, and the right hand of

(4.1) vanishes. Since 1 − I(α/2) is positive, Sk ≤ Sk−1, which is a contradiction.

5 Convergence of solutions. Proof of Theorem 4

Throughout this section, we assume that J in problem (P) is a fixed parabolic res-
caling of a mean value kernel H ∈ H . More precisely, for r > 0, we consider the
CTRW with past density distribution f (x) generated by the space-time probabil-
ity density Hr(x, t) = 1

rn+2 H ( x
r
, t

r2 ), with H (x, t) satisfying (J1)–(J5) and the mean
value formula. The space probability density function for the localization of the
moving particle at time t is the solution u(Hr, f )(·, t) of P(Hr, f ).

The result contained in Theorem 4 is a consequence of the two following lem-
mas and the maximum principle contained in Theorem 3.

Lemma 6. Let J be a kernel satisfying (J1)–(J4). Set

α = sup
{
β :
∫∫

s≤β

J(y, s)dy ds < 1
}
.

Let f ∈ (C0,γ ∩ L∞)(Rn), 0 < γ ≤ 1. Then there exists a constant C > 0 such that
for every r > 0,

‖u(Jr, f ) − f ‖L∞(Rn×[0,αr2]) ≤ C[ f ]γrγ.

The next lemma contains a well-known result on the rate of convergence of
temperatures when the initial condition belongs to a Lipschitz class.

Lemma 7. Let f ∈ (C0,γ ∩ L∞)(Rn) and

u(x, t) = (4πt)−n/2
∫

Rn

e−|x−y|2/4t f (y)dy

be the solution of 



∂u
∂t

= △u, R
n+1
+ ;

u(x, 0) = f (x), x ∈ R
n.

Then there exists a constant C > 0 such that

|u(x, t) − f (x)| ≤ C[ f ]γtγ/2

for every (x, t) ∈ R
n+1
+ .

Proof of Theorem 4. From Lemmas 6 and 7, we have

sup
(x,t)∈Rn×[0,αr2]

|u(Hr, f )(x, t) − u(x, t)| ≤ C[ f ]γrγ.
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Now, since α = sup{β :
∫∫

s≤β H (y, s)dyds < 1}, we also have

αr2 = sup
{
β :
∫∫

s≤β

Hr(y, s)dy ds < 1
}
.

Hence, for (x, t) ∈ R
n × (αr2, +∞), the support of Hr(x − y, t − s) as a function of

(y, s) is contained in R
n+1
+ , o that for a temperature u defined on R

n+1
+ and t > αr2,

since H ∈ H , the mean value formula holds, and

u(x, t) =
∫∫

Hr(x − y, t − s)u(y, s)dy ds

for x ∈ R
n and t > αr2.

On the other hand, we also have that u(Hr, f ) = Hr ∗ u(Hr, f ) for x ∈ R
n and

t > αr2, because u(Hr, f ) solves P(Hr, f ). Hence, applying Theorem 3 with Hr

instead of J , αr2 instead of α, and u(Hr, f ) − u instead of w, we get

sup
R

n+1
+

|u(Hr, f )(x, t) − u(x, t)| ≤ sup
Rn×[0,αr2]

|u(Hr, f )(x, t) − u(x, t)| ≤ C[ f ]γrγ,

as desired. �

Proof of Lemma 6. The result follows from (1.2), after parabolic rescaling.
In fact, denote by u(J, g) the solution in R

n+1
+ of P(J, g). Then

u(Jr, f ) =
[
u

(
J, f 1

r

)]

r

,

for each r > 0. Hence, for x ∈ R
n and 0 ≤ t/r2 ≤ α, from (1.2) with f (r·) instead

f , we have

|u(Jr, f )(x, t) − f (x)| =

∣∣∣∣
[
u

(
J, f 1

r

)]

r

(x, t) − f (x)

∣∣∣∣

=
∣∣u(J, f (r·))

(
x
r
, t

r2

)
− f

(
r
(

x
r

))∣∣

≤ C[ f (r·)]γ = Crγ[ f ]γ. �

Proof of Lemma 7. Since the Weierstrass kernel has integral equal to 1, for
(x, t) ∈ R

n+1
+ ,

|u(x, t) − f (x)| =

∣∣∣∣
1

(4πt)n/2

∫

Rn

e−
|x−y|2

4t f (y)dy − f (x)

∣∣∣∣

≤
1

(4πt)n/2

∫

Rn

e−
|x−y|2

4t | f (y) − f (x)| dy

≤
[ f ]γ

(4πt)n/2

∫

Rn

e−
|x−y|2

4t |y − x|γ dy =
[ f ]γ
πn/2

∫

Rn

e−|z| |z|γ dz t
γ
2 .

�
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