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Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to
correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient es-
timates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA),
the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant
experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gra-
dient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input
subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more
reactive to changes and robust to large parametric uncertainties. Simulation results performed on the
run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a
nice balance between experimental cost and optimality.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial plants target at optimizing process economics, while
respecting operational constraints such as those on product qual-
ity, safety, and environmental regulations. In the presence of plant-
model mismatch and process disturbances, real-time optimization
(RTO) plays a pivotal role toward operating the plant optimally.
RTO typically relies on the accuracy of the process model and/or
the availability of plant measurements. RTO strategies differ in
the way they exploit the available data and the model to update
the operating point. For instance, the most common RTO strat-
egy proceeds by first adapting the model parameters using exper-
imental data and then optimizing the plant economics over the
adapted model. This iterative approach is known as the two-step
approach (Chen and Joseph, 1987). The two-step approach is in-
tuitive and has become industrial practice in many process indus-
tries (Naysmith and Douglas, 1995). However, this approach typi-
cally converges to a sub-optimal solution in the presence of struc-
tural plant-model mismatch (Forbes and Marlin, 1996; Marchetti,
2009).
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An alternative RTO strategy consists in adapting the optimiza-
tion problem directly, while keeping the model parameters at their
nominal values. This involves the adaptation of bias terms added
to the constraints of the optimization problem (zeroth-order cor-
rections). This approach, which is known as constraint adaptation
(Chachuat et al., 2008), has shown promising results on an ex-
perimental solid-oxide fuel cell setup developed for industrial use
(Bunin et al., 2012). In addition to these bias corrections, modifier-
adaptation (MA) schemes include (first-order) gradient correction
terms in the cost and constraint functions of the optimization
problem (Marchetti et al., 2009). MA represents an appealing so-
lution in the presence of plant-model mismatch as it guarantees
the satisfaction of the plant first-order Karush-Kuhn-Tucker (KKT)
conditions upon convergence. For the implementation of MA, plant
measurements are expected to be sufficiently rich to allow good
estimates of the plant cost and constraint values and of their gra-
dients. The most straightforward way of estimating gradients is via
finite differences, which requires evaluating the plant outputs at
several (perturbed) operating points. The required number of per-
turbed points depends on the number of inputs and, as a con-
sequence, the experimental cost of gradient estimation increases
with increasing input dimension.

In the past years, several methods have been proposed to obtain
gradient information. In dual MA (Marchetti et al., 2010), one con-
siders an additional constraint in the RTO problem, which restricts
the location of the next RTO inputs such that reliable gradient in-
formation can be extracted using the current and previously vis-
ited operating points. Dual ISOPE (Brdys and Tatjewski, 2005) and
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the approach proposed by Rodger and Chachuat (2011) also make
use of ‘duality constraints’ so as to simultaneously estimate gradi-
ents and optimize the plant. Recently, Gao et al. (2016) proposed
to combine a quadratic approximation used in derivative-free op-
timization (Conn et al., 2009) and MA to improve the quality of
gradient estimates in the presence of noise. Alternatively, instead
of estimating gradients, one can attempt to directly compute the
first-order correction terms using an additional optimization layer
as proposed by Navia et al. (2015). We refer to Marchetti et al.
(2016) and the references therein for a detailed literature overview
on MA.

Recently, Costello et al. (2016) proposed a MA approach that re-
duces the burden of gradient estimation by questioning the neces-
sity of correcting in all input directions. The approach, labeled di-
rectional modifier adaptation (DMA), proposes to correct the model
gradients only in ‘privileged’ directions that span a reduced sub-
space of the input space. This subspace is computed once offline
by means of a local sensitivity analysis conducted on the gradient
of the Lagrangian function predicted by the model. The sensitivi-
ties are evaluated with respect to variations around the nominal
values of the model parameters.

In this paper, we extend the concept of DMA to cover the case
where the parametric uncertainty is not local, but belongs to a
fairly large uncertainty set. In this case, we argue that correcting
the gradients only in the privileged directions identified offline via
local sensitivity analysis may result in significant sub-optimality.
Instead, we propose here to perform a global sensitivity analysis
using ideas derived from active subspaces (Constantine, 2015; Russi,
2010). The concept of active subspaces has emerged as a set of
techniques for reducing the dimension of the input space. Simi-
lar ideas are used in this paper to develop an active directional
modifier-adaptation (ADMA) algorithm.

The contribution of this paper is in establishing the theoreti-
cal foundations of ADMA via the concepts derived from active sub-
spaces. We extend our preliminary work described in Singhal et al.
(2017) by providing a formal analysis of optimality upon conver-
gence in ADMA. We discuss the practical aspects of ADMA and we
demonstrate the effectiveness of the algorithm for the run-to-run
optimization of two different semi-batch reactors.

The paper is structured as follows. Preliminary material includ-
ing the formulation of the optimization problem, the description
of the MA and DMA schemes, and background elements from ac-
tive subspace theory, are presented in Section 2. The novel RTO
approach that deals with large parametric uncertainty is then pro-
posed in Section 3. In Section 4, two case studies dealing with
semi-batch reactors are presented. The first case study consid-
ers only parametric uncertainty, while the second study deals
with structural plant-model mismatch. We conclude the paper in
Section 5.

2. Preliminaries
2.1. Problem formulation

The plant optimization problem can be written mathematically
as:

min - () = P, yp(u) (1)

st. Gpi(w) :=gi(wy,(w)) <0, i=1,...,ng (1b)

where u e R™ is the vector of input variables, y, € R are the
measured output variables, ¢: R™ x R™ — R is the cost to be
minimized, g;: R™ xR — R, i=1,...,ng are the inequality
constraints. The solution to Problem (1) is denoted uj,.

The main challenge in solving this optimization problem stems
from the fact that the input-output mapping yp(u) is unknown.

However, an approximate process model is assumed to be avail-
able, which gives the input-output mapping y(u, 6), where 6 € R"
are the model parameters. Then, using the model, Problem (1) can
be approximated as:

min ®(u,0) := ¢(u,y(u,0)) (2a)
st. Gi(u,0):=g(uyw)=<0 i=1,...,ng (2b)

The nominal solution u* is found by solving Problem (2) for
0 = 0y, where 6 is the vector of nominal model parameters. In the
presence of plant-model mismatch, the model optimum u* may
not be equal to the plant optimum uj. The goal of RTO is to find

uz‘ by iteratively modifying and solving Problem (2).
2.2. Modifier adaptation

Modifier adaptation introduces first-order correction terms that
are added to the cost and constraint functions predicted by the
nominal model. At the kth RTO iteration, the next inputs are
computed by solving the following modified optimization problem
(Marchetti, 2009):

min By (u) := O(u,0) + (A)Tu (3a)
st Gu(w) :=G(u, 0) + & + (A)T(u—w) <0, (3b)
where G e R" is the vector of constraints G;, i=1,...,ng; &f € R

is the vector of zeroth-order modifiers for the constraints; and
lff e R™ and Af e R™*"s are the first-order modifiers for the cost
and constraint functions, respectively. At the kth RTO iteration, the
modifiers are computed as follows:

¢ = Gp(uy) — G(uy., 0), (4a)
AT = Vu®@, (1) — Vy@(uy, 0), (4b)
(AT = VuGp(uy) — VuG(uy, 0), (4c)

where Vy(-) is the gradient of a scalar-valued function or the Jaco-
bian of a vector-valued function with respect to u. MA guarantees
meeting the plant KKT conditions of Problem (1) upon convergence
(Marchetti et al., 2009). Gradient adaptation via first-order modi-
fiers plays a key role in meeting the plant KKT conditions. How-
ever, finding reliable plant gradients is a costly task as it requires
additional plant evaluations. If, for instance, the forward finite-
difference approach is used, then the number of plant evaluations
at each RTO iteration increases linearly with the dimension of the
input space.

2.3. Directional modifier adaptation

The dependency of MA on the knowledge of full plant gradients
can be reduced with the help of a process model. As the model
gradients are sensitive to model parameters, the input subspace in
which the parametric uncertainty has the most influence on the
solution to Problem (2) can be found via local sensitivity analysis.
In Costello et al. (2016), this subspace is spanned by the so-called
‘privileged directions’ for the purpose of gradient estimation. DMA
evaluates offline the sensitivity of the model Lagrangian gradient
with respect to local parametric variations that are evaluated at
the model optimum. To this end, the model Lagrangian function is
defined as

L(u, p,0) :=>u6)+pn Gu,b), (5)
with g € R" the vector of Lagrange multipliers. Then, the sensitiv-
ity matrix A* € R is computed as follows:

9L

A" = VyL(u, p*, 0p) = 709u .
ur, pr, 0o

(6)
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where p* are the Lagrange multipliers corresponding to the nomi-
nal solution u*. Singular value decomposition of A* gives:

A =WSVT, (7)

where W e R™>™ js an orthonormal matrix whose columns w;,
i=1,...,ny, are the left singular vectors of A*; S e RM™*M s
a rectangular diagonal matrix whose diagonal elements s;, i=
1,...,ns with ng = min{ny, ny}, are the singular values of A*; and
V e R"™*"9, Through the singular values of A*, one can rank the
input directions w; according to their sensitivity with respect to
local parametric perturbations. The reduced matrix W, e R,
with n; <ny, can be constructed as:

W, = [w; Sne+1 < Sn,s (8)
i.e, a large gap between the consecutive singular values is ex-
ploited to construct W;. At each RTO iteration, the directional
derivatives are estimated only in the privileged directions spanned

by the columns of W;. Note that the number of privileged direc-
tions for DMA satisfies the following condition:

oWy ]

nr < min {ny, ny}. 9)

Assuming that &, is differentiable at u, the directional derivative
of @, in any direction r contained in the input subspace is defined
as

®,(u+W,.r
Vw, @, (u) := M , (10)
ar =0
with Vi, @, € R and r € R™. Note that
Vw, ®p(u) = Vy@p(u)W,. (11)
The directional derivatives for the plant constraints Gy, i=
1,...,ng, are defined in similar fashion. These derivatives can be

estimated by forward finite differences or using a duality con-
straint as done in dual modifier adaptation (Marchetti et al., 2010).
The DMA scheme is summarized in Algorithm 1.

Past studies have shown a significant reduction in the experi-
mental cost of gradient estimation when DMA is applied. For in-
stance, DMA has been applied to perform RTO on an airbone-wind
energy system (Costello et al., 2016; 2015). Therein, DMA signif-
icantly reduces the input space from 40 to 2 dimensions for the
purpose of gradient estimation. Yet, the optimality loss is only 5
percent despite adapting the gradients in only two directions (in
the other 38 directions, nominal model gradients are used).

Nevertheless, by no means can it be expected that a local sen-
sitivity analysis will systematically yield a good approximation to
global sensitivities. When this is not the case, then adapting the
gradients in the privileged directions found offline by DMA may
result in significant optimality loss. In order to address this issue,
we propose an online procedure for determining the privileged di-
rections via a global sensitivity analysis carried out at each RTO
iteration.

2.4. Mathematical preliminaries

We present a few mathematical tools that are inspired by active
subspace theory (Constantine, 2015; Russi, 2010).

Consider a twice differentiable function f:4 x ® — R, where
UCRW, @cCcR% and © is a bounded and connected set. Let
the probability density function of 6 be p(#). Also, consider that
p(0) is strictly positive and bounded for 6 ® and p(@) =0 for
#¢ 0, so that the focus is only on the parameter values of in-
terest. Assume that p and ® are such that the components of
6 are independent with mean zero and scaled according to their
range. Such a normalization ensures that each parameter compo-
nent is given equal importance. In addition, assume that the matrix

Ve f(u.0) := azfo(gho) € R™*" is bounded, that is,
[|Veof(u, 0| <L, L>0 Yuel, 00,

where || -]| is the Frobenius norm.
Next, we define the matrix A, € R™*™ as:

A= /o (Vuof(“kv0))(Vuof(“k,0))T,0 de. (12)

It follows that each element of A is the average of the product of
partial double derivatives (which we assume exist):

[ XA (M) (32 f(u6)
a"iv’“/@;( 26, 0u; uk)( 36, 0u, Joce.
ij=1,....n, (13)

where aj; i is the (i, j) element of Ay; 6, is the Ith element of 6;
and u; is the ith element of u. The matrix Aj is positive semi-
definite since

VA = [ (07 Vao (0, 0)) (" Vao (1, ) p a6

uy

>0 VveRM.
Moreover, as A is symmetric, we can write:
T .
A=W L, W, X =diag(o1 -0,
Ok =2 05k>0, (14)

where W), e R™*™ s an orthonormal matrix whose columns w; ,
i=1,...,ny, are the normalized eigenvectors of A;.

Lemma 2.1. For all u, € U, it holds that

2 .

fo W Vao f (0, 0] pd0 = 03y, =1, (15)
where o;  is the eigenvalue corresponding to the eigenvector w; ; of
Ay.
Proof. The definition of o; j implies

T
Ok = Wi Ap Wi,
which can be written as:

Oik = WIk(/@ (Vo f (i, 0)) (Vo f (uy, 0))T,0 do)wi,k
— [ (W Vo 0, 0)) (W], VaoS (. 8)) " p a6

_ /@ || W] Vo f (w0 [ p d6.
O

It follows from this lemma that, if the eigenvalue o;;, = 0, then

wlTk Vu0f(ukv 0) =0, Vo e ®. (16)

Integrating (16) with respect to 6, and using the fundamental the-
orem of calculus, gives

ceR, VOeO. (17)

In other words, the lemma implies that the directional derivative
of f (with respect to u at uy) in the direction w; ; is constant re-
gardless of the value of the parameter @ (as long as < ®).

The matrix W, can be split into two submatrices, the matrix
Wi e RW*" and the matrix W, € RMxMu=n) whereby W
contains the eigenvectors w; , corresponding to the n; non-zero
eigenvalues and the matrix W, ; collects the remaining eigenvec-
tors corresponding to the zero eigenvalues:

W =Wy, Wy

Wi=[wi... Wy liop=-20,,>0,

Oik=0,= Vuf(u, )w; =c

n<ng, (18
Wik =Wy 1k - Wral 2 0n 1=+ =03, =0.

Such a construction will let us show that, if at each RTO iter-
ation the cost and constraint gradients of the model are adapted

in the directions corresponding to the matrix Wy, then the plant
KKT point is reached upon convergence.
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3. Active directional modifier adaptation

Privileged directions should ideally be chosen such that they
capture the maximum variability of the Lagrangian gradient with
respect to parametric perturbations. As parametric perturbations
get large, the local sensitivity analysis conducted in DMA may not
be able to yield such directions. Therefore, we propose to find the
set of privileged directions based on the following global sensitiv-
ity matrix Ay:

A= /o (Vo LW, i 0)) (Vg LWy, i 0))" p . (19)

Then, the resulting privileged direction matrix W \ is used to up-
date the modifiers as follows :

&; = Gp(u) — G(uy, 0o), (20a)
AD)T = Va®, () — Vud (uy, ). (20b)
AT = VuGp () — VuG(uy, ), (200)

where the gradients V/ud?p(uk) and V/uc\p(uk) are updated as:

VuEp(uy) = VyE(uy, 00)(’11“ - Wl,kwtk) + VWU{ Ep(uk)w?—,k’
E e {®, G}, (21)

where Vi, , Ep(uy) is the directional derivative of Ep at uy, and
Wlfk is the Moore-Penrose pseudo-inverse of W, ;. For the sake
of simplicity, the filter matrices used in Algorithm 1 are dropped
from the modifiers in (20). Updating the modifiers using first-order
filters does not affect the validity of the results presented hereafter.

3.1. KKT matching under parametric plant-model mismatch

Our further developments are based on the following technical
assumptions.

Assumption 1 (Parametric plant-model mismatch). Let 8, ® be
such that

(u,0p) = p(w), (22a)

G(u,0,) =Gy(u), (22b)

0, is the vector of plant parameters, and © is a bounded and
connected set in which @ lies with the probability density function

0.

Assumption 2 (Exact plant directional derivatives). At each RTO
iteration k, exact plant directional derivatives are available for
the cost and constraint functions in the directions given by the
columns of the matrix Wy .

Assumption 3 (Exact sensitivity information). The matrix A, in
(19) is perfectly known at each RTO iteration k.

Theorem 3.1 (Optimality upon convergence). Consider the opti-
mization Problem (3) with the modifiers (20) and the gradient up-
dates (21) with W, , satisfying (18). Let Assumptions 1-3 hold. Also,
assume that 6y < ©. If the iterative solution to this problem converges
to the fixed point (U, €5, x;‘;, Afo), with u., being a KKT point of

Problem (3), then u, is also a KKT point for the plant Problem (1).

Proof. The modifiers take the following values upon convergence
t0 Uno:

€c?c = Gp(uoc) - G(“om 00)» (23&)
AS)T = Vu®, () — Vud (., bp), (23b)
(AS)T = VuGy(uy) — VyuG(u, ). (23¢)

The KKT conditions at u., for Problem (3) read:

G0 (Us) < 0, (24a)

RLGno () =0, p, =0, (24b)

Vu®Pm o (Uoo) + Mo, VuGim oo (Uoo) = 0. (24c)
From (3), (23) and (24), one can write:

Gp(uy) <0, (25a)

wlGy(u,) =0, pm, >0, (25b)

Va®p () + 1T VuGy () = 0. (25¢)

Next, consider (21) at uy:
Vu®p(uy) = Vu® (U, 00) (I, — W1 W7
+ VWI_MCDP(UOO)W{DO.
It follows from (11) that
Vu(pp(uoo) = vllcb(uom 00)(’11“ _Wl,oow-l'—_oo
+ qu)p(uoc)wl,ocwroc,
Vu®p(U) = Va® (U, 60) W WD, ~ W, WT )
+ qu)p(uoc)wl‘oowtoc,
Va®p (i) = Va® (U, 80) W W]+ W, W]
— Wi W) + V@, ()W W .
Since the matrix W o, has orthonormal columns, W7 _ = wi ...
and
qu)p(uoo) = Vucb(uom 00)W2.mW§,w
+ Va®@p (U)W W . (26)

Similarly, for the constraints, one can write:

VuGp(Us) = VG (U, )W W] + ViGp (U)W W] .
(27)

Using (26), (27) and (25c) gives:

Vul (oo, fog, 00)Wo W3+ VyLp(Uee, o )W W] =0,
(28)

where £p (U, fs) = Dp(Us) + L Gp(Us).

We know from Lemma 2.1 that the directional derivatives of the
Lagrangian are constant in the directions given by the columns of
the matrix W, ., since the corresponding eigenvalues are zero. We
also know that these directional derivatives are independent of the
parameter values 6 € ®. Hence,

Val(Uao, oo, 00)W oo = VuL(Us, iy, 0,)W o, = € € RIX (=),

(29)
It follows from (28), (29) and Assumption 1 that
Vulp (U, fo,) Wo o W3+ Wy W] ) =0, (30a)
Valy(Ueg, foe) W W) =0, (30b)
VuL:p(uow ll’oo) =0. (3OC)

Then, from Equations (25a), (25b) and (30c), we conclude that
U, is a KKT point of the plant Problem (1). O

Remark 1. An implicit assumption in Theorem 3.1 is that the ma-
trix A, has at least one eigenvalue equal to zero. However, most
often in practice, none of the eigenvalues is exactly zero; in-
stead, some eigenvalues are small compared to others and can be
discarded without much information loss. Note that, if the ma-
trix A, has no eigenvalues that can be discarded, the partitioning
(18) gives W4 ;, = W), and ADMA reduces to standard MA.
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Algorithm 1 Directional Modifier Adaptation (DMA)

Step 0 (Initialization): Compute the nominal solution u* and the corresponding Lagrange mul-

tipliers p* by solving Problem (2) for 8 = 6y. Evaluate the sensitivity matrix A* in (6),

perform singular value decomposition and determine the privileged directions W .

Set the initial values of the modifiers to zero, ES; =0, Ag’ =0 and )\g;i = 0, and the values

of the filter matrices K€, K® and K% (typically diagonal matrices) with eigenvalues in the

interval (0, 1]. Also, set arbitrarily uy = 0.

for k = 0 — oo.

Step 1 (Optimization): Solve the modified model-based Problem (3) for 8 = 6, to compute the

optimal inputs ugyq.

Step 2 (Plant evaluation): Apply uy to the plant and collect the measurements y,, (1)

Use these measurements to compute ®,(uyy1) and Gp(ugp1).

Step 3 (Estimation of directional derivatives): Estimate the directional derivative of the

plant cost Vw, ®,(ug41) and of the constraints Vw, Gpi(ugs1), @ = 1,...,ng, as per (6)-

(10). At ug1, the full gradients are computed as:

VUEp(uk+1) = VUE(uk+17 00) (I’n,u - WrWI—-’—) + VWrEp(Uk+1)WI—.’—7

with Z € {®, G;}, and W the Moore-Penrose pseudo-inverse of W,.

Step 4 (Modifier update): Update the modifiers using first-order filters:

G
€hp1 = (In, —

K®)el! + K*(Gp(upt1) — G(ug+1,00)),

= T
A = (I, — KOAL + K®(Vu®y(ugi1) — Va®(ugi1,600))

. ) . S T .
Ag}rl = (Inu — KG’))\gI + KG" (Vqu(ukH) - VuGi<uk+1, 00)) y 1= 1, e ,ng.

end

3.2. Practical aspects of ADMA

ADMA requires the knowledge of A, and W,, which are approx-
imated as the estimates A, and W .

3.2.1. Computation of A, and W,

The available process models are often too complex for allowing
the derivation of analytical expressions for the matrices A, and W,.
For these cases, we propose to estimate these matrices from data

using a sampling-based Monte-Carlo approach. It is recommended
to scale the inputs and parameters so that they lie between —1 and
1. The estimates flk and Wk are computed via the following steps:2

The sample size N should be chosen such that increasing N has
a negligible effect on the eigenvalues of the matrix Ak.

2 Note that similar steps have been proposed for computing active subspaces in

Constantine (2015).
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(a) Top plot: Squared singular values of matrix
A*. Middle and bottom plots: Directional
derivatives computed at 8;, j = 1,..., N, along
the left singular vectors of A*. The plotted data

is mean centered.
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(b) Top plot: Eigenvalues of the matrix Aj.
Middle and bottom plots: Directional deriva-
tives computed at 8;, 7 = 1,..., N, along the
eigenvectors of A,. The plotted data is mean

centered.

Fig. 1. Comparison of the sensitivity matrices A and A; corresponding to DMA and ADMA, respectively.

3.2.2. Formal difference between DMA and ADMA
An alternative approach based on singular value decomposition
(SVD) can be used to compute the eigenpairs of A,. Note that we

oA o AT . oA R
can write A, = BB, where the matrix By ¢ R">™N s

) 1

B, = Wi [Vl - Vap£M]. (32)
Applying SVD to B, and using the well-known relation of SVD to
eigenvalue decomposition gives:

B, =W, S0,. with§S$; =3, (33)
This allows comparing the SVDs performed in DMA and in ADMA.
In the former, SVD is performed on the sensitivity matrix A* that
is evaluated for the nominal parameters 6. In the latter, SVD is
performed on the matrix B, that stacks the local sensitivity matri-
ces evaluated at N randomly chosen realizations of the parametric
uncertainty into a single matrix, thereby representing global sensi-
tivity.

The sensitivity matrix A* is local in both the inputs u and the
parameters 6. In contrast, the sensitivity matrix flk (or ﬁk) is local
in the inputs u but global in the parameters 6. If the model La-
grangian is linear in the parameters, then the sensitivity matrices
A* and /ik are equal when computed for the same inputs, that is,
when computed at (u*, u*) = (u, ).

Numerical example

To verify whether Ak successfully captures the global sensitivi-
ties with respect to @, in particular when the model Lagrangian is
a nonlinear function of the parameters, and to compare the perfor-
mance of Ak to that of A*, let us consider the following exemplary
Lagrangian function:

L(u, 0) = exp(Br1u; + Oa2uz) + 607 (us + usg) + 65 (0.5u3 — uy),
(34a)

i=1,...,4 (34b)

Since the constraints are independent of the parameters 6, the
dependency of the Lagrangian on the Lagrange multipliers p is
omitted in this example.

Let us assume that all the elements of the vector 6=
[01, 64, O3]T are uniformly distributed in the interval [-2, 0]. The
sensitivity matrix A* is constructed from the knowledge of 6y =
[-0.5, —0.5, —0.1]T and u* =u; =[1, 1, 1, —1]T. The matrix A,
is constructed using Algorithm 2 on the basis of N = 1000 Monte-
Carlo samples. To compare the two sensitivity matrices, the gra-
dient VyL(uy,0;) is evaluated for all 1000 Monte-Carlo samples.
Each sampled gradient is then projected onto each of the left sin-
gular vectors of A*. The resulting projections are plotted in the
middle and bottom plots of Fig. 1a. These plots represent the sen-
sitivities of the directional derivatives to parametric perturbations,

-T=u =<1,
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Algorithm 2 Computation of matrices Ak and Wk.

Step 1: Draw N independent samples #; from ® using the proba-
bility density p.

Step 2: Compute the (ny x ng)-dimensional sensitivity matrix of
the Lagrangian gradient:

j 02L .
Vuafl,(f) = m(“k, me 05, j=1,....N.

Step 3: Compute A, as follows:
~ 1Y i NT
A= 5> (Vut) (Vwt?)'. GO
j=1

Step 4: Compute the eigenvalue decomposition of flk to obtain
Wk:

-~ a a AT
A=W, S W,.

with the vertical width of each plot being a measure of variance.
The squared singular values are plotted in the top plot of Fig. 1a.
The magnitude of a singular value quantifies the sensitivity of the
corresponding directional derivative to parametric variations, that
is, the larger the singular value s;, the larger the variance along
the left singular vector w;. However, as seen in Fig. 1a, the singu-
lar vectors w; and w, do not show this behavior.

The sampled gradients are also projected onto the eigenvectors
of A; (the left singular vectors of B;) and the resulting projec-
tions are shown in the middle and the bottom plots of Fig. 1b. The
eigenvalues of A; are plotted in the top plot of Fig. 1b. Here, the
eigenvalue magnitude quantifies the parametric sensitivity of V4.
in the direction given by the corresponding eigenvector. One sees
that the eigenvectors of A; are ranked correctly by the correspond-
ing eigenvalues.

3.2.3. Choice of privileged directions

The aforementioned analysis indicates that the privileged direc-
tions can also be chosen based on the variance of the directional
derivatives. The variance along the direction d € R™ is computed
as

N N
Jj=1

j=1
(35)

For the numerical example at hand, the variance is computed from
N = 1000 Monte-Carlo samples and plotted in Fig. 2. One sees that
the variance does not decrease monotonically for the left singular
vectors of A*, whereas it decreases monotonically for the eigenvec-
tors of A;. A monotonic variance decrease indicates that the eigen-
values are ranking the eigenvectors in the right order. To determine
the privileged directions, a threshold value on the variance is fixed
at 1072, and the directions that result in a variance larger than
the threshold value are chosen as privileged directions. A variance
smaller than 10~2 indicates that the parametric changes do not
cause a significant change in the gradients along that direction and,
therefore, the gradient errors along that direction are relatively
small. The global sensitivity matrix A; yields n; = 2 privileged di-
rections, namely Wy ; and W, ;, whereas the local sensitivity ma-
trix A* yields n; = 3 privileged directions, namely w;,w, and ws.
Hence, the global sensitivity matrix A; finds a smaller set of priv-
ileged directions, thereby reducing the number of required plant
experiments for gradient estimation. At the same time, A; ensures

1

10
P A
0l
10 A A
= (0]
e
> 10 F
El
>
1072 ¢ o
o d=W;; A
3 ; .
10~
1 2 3 4

Input direction ¢

Fig. 2. Variance plot for the sensitivity matrices A* and A; computed for the exam-
ple (34).

that the gradient errors due to parametric perturbations are small
along the neglected directions.

Often, one selects the maximal number of privileged directions,
Nmax, SO as to upper-bound the experimental budget per RTO it-
eration. Then, on the basis of the eigenvalues &6;;, the variance
Var (Vuﬁk d) and npax, one can choose the number of privileged
directions n; using one of the following two criteria:

Criterion 1

Ny = minfi, Nmax} : 61k <K Gik s (36)
Criterion 2

ny = min{i, nmax} = Var (VaLe Wiy) > Vmin and

var (VaLi Wiyt ) < Viin (37)

where nmax and the threshold variance v, are user-defined pa-
rameters. The matrix of privileged directions W, j then becomes:

W= Wy ... Wyl (38)

3.2.4. Evaluation of plant directional derivatives

In practice, one often relies on finite differences to evaluate
the plant gradients. To reduce the number of plant experiments
for gradient estimation, well-excited plant measurements obtained
at past RTO iterations can be used. To this end, the optimization
objective and the gradient estimation objective are combined by
enforcing duality constraints at the RTO layer (Brdys and Tatjew-
ski, 1994; Marchetti et al., 2010). Furthermore, estimating gradients
from noisy measurements can be reliably achieved by quadratic-
approximation of the plant mapping (Gao et al., 2016). For a com-
parative study of different gradient estimation techniques in RTO,
we recommend the paper by Mansour and Ellis (2003). The differ-
ent approaches mentioned here can also be exploited to estimate
the plant directional derivatives defined in (10).

3.2.5. Structural plant-model mismatch

Assumption 1regarding parametric plant-model mismatch may
not be met in practice. In the case of structural plant-model mis-
match, ADMA still drives the plant toward optimality in the sub-
space given by the privileged directions. The following theorem
does not require Assumption 1.

Theorem 3.2 (Optimality limited to privileged directions). Consider
the optimization Problem (3) with the modifiers (20) and the gradient
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Algorithm 3 Active Directional Modifier Adaptation (ADMA)

Step 0 (Initialization): Set the initial values of the modifiers to zero, €§ = 0, AY = 0 and

)\g' i = 0, and the values of the filter matrices K¢, K® and K (typically diagonal matrices)
with eigenvalues in the interval (0, 1]. Also, set arbitrarily ug = 0 and select values for nax
and v, and set the values of ny,« and vipi,. Scale the parameters @ such that the scaled

parametric uncertainty range is [—1,1].
for k=0— o0

Step 1 (Optimization): Solve the modified optimization Problem (3) for & = 6 to generate the

optimal inputs uy; and the corresponding Lagrange multipliers gy, ;.

Step 2 (Plant evaluation): Apply uz;; to the plant and collect the measurements y,(ug1).

Use these measurements to evaluate ®,(ug41) and Gp(ug1).

Step 3 (Computation of privileged directions): Compute VAV;CH using Algorithm 2 and the

privileged direction matrix W17k+1 using either Criterion 1 in (36) or Criterion 2 in (37).

Step 4 (Estimation of directional derivatives): Estimate the directional derivatives of the

plant cost Vi ®p(up41) and of the constraints Vg 1,k+1Gp’i(uk+1)’ i=1,...,ng. At

k1

uyy1, the full gradients are computed as:

—

= - - s+ - s +
VuZp(Wri1) = VuE(rt1,00)Lny = Wikt W) + Vg Ep(Wes )W g,
1 — =+ . =
with = € {®, G;}, and W ;. ; the Moore-Penrose pseudo-inverse of W 1.

Step 5 (Modifier update): Update the modifiers using first-order filters:

EEH = (In, — Ks)sg + K* (Gp(uk+1) - G(uk+1790))=
A = (In, — K®)AL + Kq)(@a(“kﬂ) = Vu®(ugy1, 90))T,

; . ; IS N T .
)‘Sjrl = (Inu — I(GZ))\SZ + KGZ (qup7i(uk+1) - qui(uk+1, 90)) s 1 = 1, e ,ng.

end

updates (21). Also, assume that 6y € ©. Let Assumptions 2 and 3 hold.
If the iterative solution to this problem converges to the fixed point
(U, €5, A2 AS,). with s, being the KKT point of Problem (3), then
Uy is also a KKT point for the plant in the directions given by the
columns of the matrix Wy .

Proof. See Costello et al. (2016) O

3.3. ADMA algorithm
The proposed ADMA algorithm is summarized in Algorithm 3.
4. Case studies

The proposed approach is illustrated next via the simulation of
two semi-batch reactors.
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Table 1
Williams-Otto reactor: plant-model mismatch.

Parameter  Plant value  Nominal model value  Uncertainty range Probability distribution
by (K) 6000 6666.7 [5334,8000] Uniform
b, (K) 83333 8750 [7500,9166] Uniform
ap (s7) 1.6599-10°  1.8259-106 [1.4109-10°,1.9089-10°]  Uniform
a (s71) 7.2117 - 108 6.8511-108 [6.1299-108,8.2935-108]  Uniform

4.1. Williams-Otto semi-batch reactor

ADMA is applied to the problem of run-to run (batch-to-batch)
optimization of the Williams-Otto semi-batch reactor described in
Wiirth et al. (2009) and Salau et al. (2014). The following reactions
take place in the reactor:

A+BXc c+BXPLrE Pic B

Reactant A is initially present in the reactor, whereas reactant B
is continuously fed during the batch. As a result of the exother-
mic reactions, the desired products P and E and the side product
G are formed. The heat generated by the exothermic reactions is
removed via a cooling jacket, whose temperature is controlled by
manipulating the cooling water temperature. The model equations
and parameter values are given in Appendix A.

The objective is to maximize the revenue generated by selling
the products produced at the end of the batch, while respecting
path constraints on the inlet flowrate of reactant B (Fg), the reac-
tor temperature (T;), the reactor volume (V) and the cooling water
temperature (Ty). The manipulated variables are the time-varying
profiles Fp(t) and Ty(t). The dynamic optimization problem can be
written mathematically as follows:

max P mp(t;) + P mg () (39a)
Fp(£), Tw (1)
s.t. model equations (A.1) (39b)
0 < F(t) < 5.784kg/s (39¢)
V() <5m’ (39d)
20°C < T, (t) < 100°C (39e)
60°C < T:(t) <90°C. (39f)

The batch time ¢ is fixed at 1000 s. Problem (39) is trans-
formed into a nonlinear program (NLP) via direct single shooting.
This is done by discretizing the problem in time over ng con-
trol stages. For each time interval, the dynamic input variables are
parametrized using low-order polynomials. We parameterize each
time-varying input using n.s = 40 piecewise-constant values. This
results in the input dimension n, = 80.

In this simulation study, the plant is substituted by a simulated
reality. The simulated reality is then treated as a black box and
it is assumed that the concentration measurements of the formed
products are available only at the final batch time t;. This permits
the simulated reality to act as a real system/plant.

The experimental cost of evaluating the plant gradients via fi-
nite differences is found as follows:

Experimental cost per RTO iteration
= Total number of privileged directions x Batch time.

This implies that the cost to evaluate the full plant gradients is
ny x tr. However, with the DMA and ADMA algorithms, only the
derivatives in the privileged directions need to be evaluated, with
the experimental cost n; x t;.

Plant-model mismatch is introduced by considering parametric
uncertainty in the values of the activation energies b; and b, and

the pre-exponential factors a; and a,. The parameter values for the
plant and the nominal model, and the uncertainty ranges are given
in Table 1. The parameters are assumed to be uniformly distributed
within the given uncertainty intervals.

The optimal input profiles obtained by solving Problem (39) for
both the nominal model and the plant are shown in the top plots
of Fig. 3. As seen in the figure, the model and plant solutions are
quite different. The optimal revenue for the plant is 3.14 - 106. How-
ever, upon applying the model solution to the plant, a sub-optimal
revenue of 1.66-10% is obtained.

The optimal input profiles for the plant are assumed to be un-
known. Hence, the goal of the different RTO methods is to improve
upon the sub-optimal revenue resulting from applying the model
optimal solution. The best RTO method is the one that requires the
minimal experimental effort to reach plant optimality.

At first, MA with full gradient estimates is implemented. The
top plots in Fig. 5 show the input and output profiles obtained
with MA upon convergence. Although MA starts from the input se-
quences given by the model solution, it is able to identify the cor-
rect set of constraints that are active at the plant optimum, thereby
reaching the maximal possible revenue. However, MA requires full
gradient estimation and, thus, incurs a large experimental cost at
each RTO iteration, which makes the application of this type of MA
prohibitive in practice.

To implement the DMA and ADMA algorithms, the sensitivity
matrices A* and A, are constructed. The number of Monte-Carlo
samples for constructing flk is N = 200. The number of privileged
directions is determined successively based on Criteria 1 and 2 in
(36) and (37). To this end, the values of nmax and v, are fixed at
4 and 1, respectively.

Criterion 1. The squared singular values of A* and the eigenval-
ues of A; at the model solution at k = 1 are plotted in Fig. 4a. No-
tice that there is a large gap between the second and third singu-
lar values of A*. Hence, based on Condition (8) or (36), the number
of privileged directions for DMA can be fixed at n; = 2. However,
for the same gap, the number of privileged directions with A; is
more than nmax = 4. Hence, for a fair comparison between DMA
and ADMA, we fix the number of privileged directions for both al-
gorithms at 4.

Criterion 2. The number of privileged directions can also be de-
termined on the basis of variance values as described by (37). The
variances associated with both the left singular vectors of A* and
the eigenvalues of A; are plotted in Fig. 4b. It is seen that the vari-
ances associated with the left singular vectors of A* do not exhibit
a monotonic decrease except for the first few left singular vectors.
In contrast, the variances associated with the eigenvectors of A;
show a monotonic decrease. The median and the minimal value of
the variance for A; are 0.51 and 1.1-10~15, respectively. In com-
parison, the median and the minimal values of the variance for
A* are 2.3-108 and 6.7 -10°, respectively. Hence, the eigenvectors
of A; give a much better orthogonal decomposition of the input
space, which is able to capture most of the global sensitivity in a
relatively low number of directions. The threshold v, =1 is not
very useful here as it retains all 80 directions for DMA and 40 di-
rections for ADMA. Hence, Criterion 2 also gives n; =4 for both
DMA and ADMA. In the ADMA algorithm, we then keep the num-
ber of privileged directions fixed at 4 for every RTO iteration for
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Table 2
Williams-Otto reactor: comparison of different RTO methods.

RTO method Per RTO iteration

Revenue -(10°)

No. of privileged directions, n, ~ Avg. computational time of sensitivity matrix

Experimental cost

MA 80 - 2223 h 314
DMA 4 0 s (A* computed only once offline) 112 h 213
ADMA 4 90.92 s (Ak computed via Algorithm 2) 112 h 3.14

the sake of comparison with DMA. The sets of 4 privileged direc-
tions computed by DMA and ADMA at the first RTO iteration are
different as the model Lagrangian is a highly nonlinear function of
the model parameters b; and b,. Note that the 4 privileged direc-
tions in ADMA change from one iteration to the next due to the
re-computation of A, at each iteration.

Upon application of DMA Algorithm 1, the plant input and out-
put profiles reached upon convergence are shown in the middle
plots of Fig. 5. Although DMA successfully finds the optimal water
temperature profile, it is unable to find the optimal profile for the
feedrate of B. Obviously, adapting the gradients in the 4 privileged
directions found by DMA is not sufficient to reach plant optimality
as the gradient uncertainty along these directions is not sufficiently
representative. The bottom plots of Fig. 5 show the input and out-
put profiles obtained with the ADMA Algorithm 3. As seen, ADMA
successfully reaches the plant optimal profiles (see also Fig. 6). This
indicates that most of the gradient errors lie along the 4 privileged
directions of ADMA.

The comparison of the different MA-based RTO methods is
summarized in Table 2. As MA requires full gradient estimation,
one must have 80 batches to evaluate the plant gradients at each

x10°

Revenue

— MA
— — DMA
—-—- ADMA

Fig. 6. Willliams-Otto reactor:
methods.

15 20 25 30 35 40
RTO iteration index k

Revenue evolution of the plant with different RTO
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Table 3
Kinetic parameters for diketene-pyrrole reaction.

Parameter Plant value  Nominal model value  Uncertainty range  Probability distribution
Ky (Lmol 'min™")  0.053 0.053 [0.0424, 0.0636]  Uniform
k, (Lmol 'min”')  0.128 0.128 [0.1024, 0.1536]  Uniform
ks (min~") 0.028 0 - -
ks (Lmol'min~')  0.001 0 - -
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Fig. 7. Diketene-pyrrole reaction. Top plots: input profile: dashed line: model optimal solution; solid line: plant optimal solution. Middle plots: output variables that are
constrained at final time: model optimal solution. Bottom plots: output variables that are constrained at final time: dashed lines: plant response at the model optimal solution;
solid lines: plant response at the plant solution. Cross, x : terminal constraint threshold.

RTO iteration. That amounts to 22.23 h of waiting time per RTO
iteration. This experimental time is reduced by applying DMA,
which requires directional derivatives to be computed in only 4
directions, thus, needing only 4 batches, which reduces the exper-
imental cost to 1.12 h. However, the maximal revenue reached by
DMA is only 2.13-10%. ADMA, on the other hand, gives an optimal
revenue of 3.14-105, while incurring the same experimental cost
as DMA. This increase in revenue is made possible by the matrix
f\k that requires on average a computational time of 90.92 s per
RTO iteration when computed via Algorithm 2.3

4.2. Diketene-pyrrole reaction system

Next, we compare the performance of the different RTO meth-
ods on the run-to-run optimization of the semi-batch reactor given

3 Simulations were conducted on a MacBook Pro with 2.5 GHz intel Core i7 pro-
cessor. The software used is CasADi (Andersson, 2013) version 3.2.3 in MATLAB ver-
sion R2016a.

in Ruppen et al. (1997) or Chachuat et al. (2009). The reaction sys-
tem is the acetoacetylation of pyrrole with diketene and consists
of following reactions:

kq ko ks

A+BS.c 28D BXME Cc+BXFE

The model equations, the initial conditions and the concentra-
tion of B in the feed used in this simulation study are given in
Appendix B. The objective is to maximize the yield of product C,
while penalizing large changes in the feedrate Fg of reactant B. The
optimization problem can be written mathematically as:

t;
max eV (t) - [ B@d (402)
B (L 0
s.t. model Eq. (B.1) (40Db)
ca(tr) < g™ (40c)

cp(ty) < cp™ (40d)
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Fig. 8. Diketene-pyrrole reaction: comparison of the sensitivity matrices A* and A;.

0 < F(t) < B, (40e)

The values of the final batch time t;, the maximal inlet flowrate
Ej"%, the maximal concentrations of species B and D at final time
and the value of the weight w are given in Table B.6. The problem
is formulated as an NLP by using a piecewise-constant discretiza-
tion of the input Fp(t) comprised of 50 control stages. Hence, the
input dimension is ny = 50.

Structural plant-model mismatch is introduced by ignoring the
third and fourth reactions in the model, that is, by taking ks =0
and k4 = 0 for the model. Also, it is assumed that the model pa-
rameters k; and k, are uncertain and uniformly distributed within
the ranges corresponding to 4 20% of the nominal values. The mis-
match considered and the uncertainty ranges are given in Table 3.
The optimal solutions for the model and the plant are shown in
the top plot of Fig. 7. The two input profiles are quite different
from each other. The evolution of the model cg(t) and cp(t) at the
model optimal solution is shown in the middle plots of Fig. 7. The
bottom plots of Fig. 7 show the evolution of the plant cg(t) and
cp(t) obtained upon application of both the model and the plant
optimal solutions. It is observed that the terminal constraint on
the concentration of reactant B is not at its upper limit for the
plant when the model optimal solution is applied. The model op-
timal solution applied to the plant result in a sub-optimal yield
of 0.3865 moles, whereas the plant optimal yield is 0.5050 moles
(Table A.5).

Since only the two parameters k; and k, are uncertain, the lo-
cal sensitivity matrix A* generates 2 privileged directions as per
Condition (9). The variances along the left singular vectors of A*
are plotted in Fig. 8b. It is seen that the variances along the re-
maining 48 directions do not decrease monotonically and, thus,
more privileged directions cannot be selected. To construct A, via
Algorithm 2, the number of Monte-Carlo samples is fixed at N =

100. Here, in contrast to the previous case study, we do not fix
the number of privileged directions in ADMA,; instead, we apply
Criterion 1 in (36) at each RTO iteration by fixing nmax = 4. The
eigenvalues and variances computed at k =1 are plotted in Fig. 8.
Criterion 1 gives 2 privileged directions at the first RTO iteration
for ADMA. In this example, the two privileged directions found by
DMA and ADMA are the same, which results from the fact that
the model Lagrangian is only a weakly nonlinear function of the
parameters k; and k. Note that these 2 privileged directions are
less privileged at the next iterations since the privileged directions
change with the input Fg(t) from iteration to iteration. However,
since ADMA recomputes the privileged directions at each RTO it-
eration, it is able to always work with the most appropriate set of
privileged directions. The number of privileged directions found at
each RTO iteration using Criterion 1 is plotted in Fig. 10b. The in-
put and output profiles reached upon convergence with MA, DMA
and ADMA are shown in Fig. 9. The evolution of the yield with
the different RTO methods is shown in Fig. 10a. Clearly, DMA ex-
hibits a slight sub-optimality, whereas the MA and ADMA algo-
rithms converge to plant optimality (at least as far as the yield
value is concerned) despite the presence of significant plant-model
mismatch.

The performance of the different RTO methods is compared in
Table 4. MA with full gradient estimation reaches the optimal yield
of 0.5050 moles at the large experimental cost of 208.34 h per
RTO iteration. DMA significantly reduces the experimental cost to
8.34 h per RTO iteration, but reaches a final yield of only 0.5009
moles. In comparison, ADMA nearly reaches optimal yield at an ex-
perimental cost of 8.34-12.5 h. The average computational cost of
ﬁk is 5.43 s. ADMA gives the best performance as it comes very
close to the plant optimum at a relatively low experimental cost.
The computer and software used to perform the simulations are
the same as in the previous case study.
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Fig. 9. Diketene-pyrrole reaction: plant input and output profiles upon convergence with different RTO methods. Top plots: MA. Middle plots: DMA. Bottom plots: ADMA
with A, computed via Algorithm 2.
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Fig. 10. Diketene-pyrrole reaction: batch-to-batch evolution of the optimization strategy.

Table 4
Diketene-pyrrole reaction: comparison of different RTO methods.
RTO method Per RTO iteration Yield (mol)
No. of privileged directions, n; ~ Avg. computational time of sensitivity matrix ~ Experimental cost
MA 50 - 208.34 h 0.5050
DMA 2 0 s (A" computed only once offline) 834 h 0.5009
ADMA 2-3 543 s (Ak computed via Algorithm 2) 8.34-125 h 0.5049
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5. Conclusions

This paper presents a novel methodology for reducing the bur-
den of excessive plant experiments for gradient estimation in MA
schemes. It is proposed to estimate the plant gradients only in a
subspace of the input space. This subspace is found via sensitiv-
ity analysis with respect to parametric uncertainty. A global sen-
sitivity analysis inspired by active subspace theory is used to rank
the input directions in terms of the sensitivity of the directional
derivatives with respect to parametric variations, thus revealing
a set of privileged directions. The effectiveness of the proposed
ADMA scheme is demonstrated on the run-to-run optimization of
two different semi-batch reactors. It is shown that ADMA offers a
nice balance between experimental cost and achieved performance
compared to both MA with full gradient estimation and the DMA
approach based on local sensitivities.
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Appendix B. Diketene-pyrrole reactor model

The first-principles model for the semi-batch reactor reads:

Appendix A. Williams- T r model dc F
ppend ams-Otto reactor mode! A _ _kycacs — Bcs (B.1a)
dt Vv
The model equations are as follows:
dv Fg dCB Fg .
— == Ala —— = —Kkqcacg — 2kyc — kscp — kacgee + — (¢ — ¢ B.1b
dt q ( ) dr 1CALB 2L 3B k4 BLC V( B B) ( )
dmg dc F
—— =-nV Alb =5 = kycac — kacgee — = (c B.1c
T: 1 (A1b) ar 16aCp — KaCpec — 7 (co) (B.1c)
dmg M,, d E
—— =FK- V4RV (Adc) D _ 1,2 — B¢ B.1d
dr My, Q& 265 — ¢/ ( D) (B.1d)
dmc M,, M,
' wc dv
—_ = V- —nrnV-nrnV (A1d) a
At ~ My, My, i = (B.1e)
d M where ¢y, cg, ¢c and cp represent the concentrations of the species
Mg _ Mw; RV (Ale) A, B, C and D, respectively. V is the reactor volume, Fg is the inlet
dt My, flowrate of species B, and c}}' is the concentration of B in the feed.
Table A.5
Reaction parameters and operating conditions for the Williams-Otto semi-batch reactor.
Variable Definition Value
M,, Mg, Mp Molar mass - components A, B, P 100 kg kmol !
Mc, Mg Molar mass - component C, G 200kg kmol~-!
Mg Molar mass - component G 300 kg kmol-!
as Pre-exponential fraction - reaction 3 2.6745-10'2 51
b Activation energy - reaction 3 11111 K
Trer Reference temperature 27315 K
Tin Inlet temperature (B) 308.15 K
AH; Enthalpy - reaction 1 236.8Kk] kg1
AH, Enthalpy - reaction 2 158.3k] kg!
AH; Enthalpy - reaction 3 226.3Kk] kg!
Ao Heat-transfer area 9.2903 m?
Vo Cooling jacket volume 21052 m3
U Heat-transfer coefficient 0.23082k] (m? K s)°!
V(0) Initial reactor volume 2m3
T (0) Initial reactor temperature 338.15 K
ma(0) Initial mass - component A 2000kg
mg(0), mc(0), mp(0), me(0), mg(0)  Initial mass - components B, C, P E, G Okg
G Specific heat capacity 4.184Kk] kg~1 C!
q Fluid density 1000 kg m3?
Pp Price of P 555.4 $ kg~!
Pe Price of E 125.91 $ kg!
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Table B.6
Reaction parameters and operating conditions for the diketene-pyrrole semi-
batch reactor.

Variable  Definition Value

cin Concentration of B in the feed 5mol L~!

V(0) Initial reactor volume 0 1L

ca(0) Initial concentration of A 0.72mol L'

cp(0) Initial concentration of B 0.05mol L1

cc(0) Initial concentration of C 0.08 mol L'

cp(0) Initial concentration of D 0.01 mol L-!

tr Final time 250 min

Fmax Maximal inlet flowrate 2-1073 L min~!

P Maximal concentration of B at final time 0.025mol L'

g Maximal concentration of D at final time  0.15mol L~!

w Weight 10 mol min L2
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