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a b s t r a c t 

Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to 

correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient es- 

timates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), 

the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant 

experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gra- 

dient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input 

subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more 

reactive to changes and robust to large parametric uncertainties. Simulation results performed on the 

run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a 

nice balance between experimental cost and optimality. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Industrial plants target at optimizing process economics, while

respecting operational constraints such as those on product qual-

ity, safety, and environmental regulations. In the presence of plant-

model mismatch and process disturbances, real-time optimization

( RTO ) plays a pivotal role toward operating the plant optimally.

RTO typically relies on the accuracy of the process model and/or

the availability of plant measurements. RTO strategies differ in

the way they exploit the available data and the model to update

the operating point. For instance, the most common RTO strat-

egy proceeds by first adapting the model parameters using exper-

imental data and then optimizing the plant economics over the

adapted model. This iterative approach is known as the two-step

approach ( Chen and Joseph, 1987 ). The two-step approach is in-

tuitive and has become industrial practice in many process indus-

tries ( Naysmith and Douglas, 1995 ). However, this approach typi-

cally converges to a sub-optimal solution in the presence of struc-

tural plant-model mismatch ( Forbes and Marlin, 1996; Marchetti,

2009 ). 
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An alternative RTO strategy consists in adapting the optimiza-

ion problem directly, while keeping the model parameters at their

ominal values. This involves the adaptation of bias terms added

o the constraints of the optimization problem (zeroth-order cor-

ections). This approach, which is known as constraint adaptation

 Chachuat et al., 2008 ), has shown promising results on an ex-

erimental solid-oxide fuel cell setup developed for industrial use

 Bunin et al., 2012 ). In addition to these bias corrections, modifier-

daptation ( MA ) schemes include (first-order) gradient correction

erms in the cost and constraint functions of the optimization

roblem ( Marchetti et al., 2009 ). MA represents an appealing so-

ution in the presence of plant-model mismatch as it guarantees

he satisfaction of the plant first-order Karush–Kuhn–Tucker (KKT)

onditions upon convergence. For the implementation of MA , plant

easurements are expected to be sufficiently rich to allow good

stimates of the plant cost and constraint values and of their gra-

ients. The most straightforward way of estimating gradients is via

nite differences, which requires evaluating the plant outputs at

everal (perturbed) operating points. The required number of per-

urbed points depends on the number of inputs and, as a con-

equence, the experimental cost of gradient estimation increases

ith increasing input dimension. 

In the past years, several methods have been proposed to obtain

radient information. In dual MA ( Marchetti et al., 2010 ), one con-

iders an additional constraint in the RTO problem, which restricts

he location of the next RTO inputs such that reliable gradient in-

ormation can be extracted using the current and previously vis-

ted operating points. Dual ISOPE ( Brdy ́s and Tatjewski, 2005 ) and
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A

he approach proposed by Rodger and Chachuat (2011) also make

se of ‘duality constraints’ so as to simultaneously estimate gradi-

nts and optimize the plant. Recently, Gao et al. (2016) proposed

o combine a quadratic approximation used in derivative-free op-

imization ( Conn et al., 2009 ) and MA to improve the quality of

radient estimates in the presence of noise. Alternatively, instead

f estimating gradients, one can attempt to directly compute the

rst-order correction terms using an additional optimization layer

s proposed by Navia et al. (2015) . We refer to Marchetti et al.

2016) and the references therein for a detailed literature overview

n MA . 

Recently, Costello et al. (2016) proposed a MA approach that re-

uces the burden of gradient estimation by questioning the neces-

ity of correcting in all input directions. The approach, labeled di-

ectional modifier adaptation ( DMA ), proposes to correct the model

radients only in ‘privileged’ directions that span a reduced sub-

pace of the input space. This subspace is computed once offline

y means of a local sensitivity analysis conducted on the gradient

f the Lagrangian function predicted by the model. The sensitivi-

ies are evaluated with respect to variations around the nominal

alues of the model parameters. 

In this paper, we extend the concept of DMA to cover the case

here the parametric uncertainty is not local, but belongs to a

airly large uncertainty set. In this case, we argue that correcting

he gradients only in the privileged directions identified offline via

ocal sensitivity analysis may result in significant sub-optimality.

nstead, we propose here to perform a global sensitivity analysis

sing ideas derived from active subspaces ( Constantine, 2015; Russi,

010 ). The concept of active subspaces has emerged as a set of

echniques for reducing the dimension of the input space. Simi-

ar ideas are used in this paper to develop an active directional

odifier-adaptation (ADMA) algorithm. 

The contribution of this paper is in establishing the theoreti-

al foundations of ADMA via the concepts derived from active sub-

paces. We extend our preliminary work described in Singhal et al.

2017) by providing a formal analysis of optimality upon conver-

ence in ADMA . We discuss the practical aspects of ADMA and we

emonstrate the effectiveness of the algorithm for the run-to-run

ptimization of two different semi-batch reactors. 

The paper is structured as follows. Preliminary material includ-

ng the formulation of the optimization problem, the description

f the MA and DMA schemes, and background elements from ac-

ive subspace theory, are presented in Section 2 . The novel RTO

pproach that deals with large parametric uncertainty is then pro-

osed in Section 3 . In Section 4 , two case studies dealing with

emi-batch reactors are presented. The first case study consid-

rs only parametric uncertainty, while the second study deals

ith structural plant-model mismatch. We conclude the paper in

ection 5 . 

. Preliminaries 

.1. Problem formulation 

The plant optimization problem can be written mathematically

s: 

in 

u 
�p (u ) := φ(u , y p (u )) (1a) 

.t. G p,i (u ) := g i (u , y p (u )) ≤ 0 , i = 1 , . . . , n g , (1b) 

here u ∈ R 

n u is the vector of input variables, y p ∈ R 

n y are the

easured output variables, φ: R 

n u × R 

n y → R is the cost to be

inimized, g i : R 

n u × R 

n y → R , i = 1 , . . . , n g , are the inequality

onstraints. The solution to Problem (1) is denoted u 

� 
p . 

The main challenge in solving this optimization problem stems

rom the fact that the input-output mapping y p ( u ) is unknown.
owever, an approximate process model is assumed to be avail-

ble, which gives the input-output mapping y ( u , θ ), where θ ∈ R 

n θ

re the model parameters. Then, using the model, Problem (1) can

e approximated as: 

in 

u 
�

(
u , θ

)
:= φ

(
u , y 

(
u , θ

))
(2a) 

.t. G i (u , θ) := g i (u , y (u , θ)) ≤ 0 , i = 1 , . . . , n g . (2b) 

The nominal solution u 

� is found by solving Problem (2) for

= θ0 , where θ0 is the vector of nominal model parameters. In the

resence of plant-model mismatch, the model optimum u 

� may

ot be equal to the plant optimum u 

� 
p . The goal of RTO is to find

 

� 

p by iteratively modifying and solving Problem (2) . 

.2. Modifier adaptation 

Modifier adaptation introduces first-order correction terms that

re added to the cost and constraint functions predicted by the

ominal model. At the k th RTO iteration, the next inputs are

omputed by solving the following modified optimization problem

 Marchetti, 2009 ): 

in 

u 
�m,k (u ) := �(u , θ) + ( λ�

k ) 
T u (3a) 

.t. G m,k (u ) := G (u , θ) + ε 

G 
k + ( λG 

k ) 
T (u − u k ) � 0 , (3b) 

here G ∈ R 

n g is the vector of constraints G i , i = 1 , . . . , n g ; ε G k 
∈ R 

n g 

s the vector of zeroth-order modifiers for the constraints; and
�
k ∈ R 

n u and λG 
k ∈ R 

n u ×n g are the first-order modifiers for the cost 

nd constraint functions, respectively. At the k th RTO iteration, the

odifiers are computed as follows: 

 

G 
k = G p (u k ) − G (u k , θ) , (4a) 

( λ�
k ) 

T = ∇ u �p (u k ) − ∇ u �(u k , θ) , (4b) 

( λG 
k ) 

T = ∇ u G p (u k ) − ∇ u G (u k , θ) , (4c) 

here ∇ u ( · ) is the gradient of a scalar-valued function or the Jaco-

ian of a vector-valued function with respect to u . MA guarantees

eeting the plant KKT conditions of Problem (1) upon convergence

 Marchetti et al., 2009 ). Gradient adaptation via first-order modi-

ers plays a key role in meeting the plant KKT conditions. How-

ver, finding reliable plant gradients is a costly task as it requires

dditional plant evaluations. If, for instance, the forward finite-

ifference approach is used, then the number of plant evaluations

t each RTO iteration increases linearly with the dimension of the

nput space. 

.3. Directional modifier adaptation 

The dependency of MA on the knowledge of full plant gradients

an be reduced with the help of a process model. As the model

radients are sensitive to model parameters, the input subspace in

hich the parametric uncertainty has the most influence on the

olution to Problem (2) can be found via local sensitivity analysis.

n Costello et al. (2016) , this subspace is spanned by the so-called

privileged directions’ for the purpose of gradient estimation. DMA

valuates offline the sensitivity of the model Lagrangian gradient

ith respect to local parametric variations that are evaluated at

he model optimum. To this end, the model Lagrangian function is

efined as 

 (u , μ, θ) := �(u , θ) + μT G (u , θ) , (5)

ith μ ∈ R 

n g the vector of Lagrange multipliers. Then, the sensitiv-

ty matrix A 

� ∈ R 

n u ×n θ is computed as follows: 

 

� := ∇ u θL (u 

� , μ� , θ0 ) = 

∂ 2 L 

∂ θ ∂u 

∣∣∣
u � , μ� , θ0 

, (6) 
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where μ� are the Lagrange multipliers corresponding to the nomi-

nal solution u 

� . Singular value decomposition of A 

� gives: 

A 

� = W S V 

T 
, (7)

where W ∈ R 

n u ×n u is an orthonormal matrix whose columns w i ,

i = 1 , . . . , n u , are the left singular vectors of A 

� ; S ∈ R 

n u ×n θ is

a rectangular diagonal matrix whose diagonal elements s i , i =
1 , . . . , n s with n s = min { n u , n θ } , are the singular values of A 

� ; and

 ∈ R 

n θ ×n θ . Through the singular values of A 

� , one can rank the

input directions w i according to their sensitivity with respect to

local parametric perturbations. The reduced matrix W r ∈ R 

n u ×n r ,

with n r < n u , can be constructed as: 

 r = [ w 1 . . . w n r ] : s n r +1 � s n r , (8)

i.e., a large gap between the consecutive singular values is ex-

ploited to construct W r . At each RTO iteration, the directional

derivatives are estimated only in the privileged directions spanned

by the columns of W r . Note that the number of privileged direc-

tions for DMA satisfies the following condition: 

n r ≤ min { n u , n θ } . (9)

Assuming that �p is differentiable at u , the directional derivative

of �p in any direction r contained in the input subspace is defined

as 

∇ W r 
�p (u ) := 

∂�p (u + W r r ) 

∂r 

∣∣∣
r = 0 

, (10)

with ∇ W r 
�p ∈ R 

1 ×n r , and r ∈ R 

n r . Note that 

∇ W r 
�p (u ) = ∇ u �p (u ) W r . (11)

The directional derivatives for the plant constraints G p, i , i =
1 , . . . , n g , are defined in similar fashion. These derivatives can be

estimated by forward finite differences or using a duality con-

straint as done in dual modifier adaptation ( Marchetti et al., 2010 ).

The DMA scheme is summarized in Algorithm 1. 

Past studies have shown a significant reduction in the experi-

mental cost of gradient estimation when DMA is applied. For in-

stance, DMA has been applied to perform RTO on an airbone-wind

energy system ( Costello et al., 2016; 2015 ). Therein, DMA signif-

icantly reduces the input space from 40 to 2 dimensions for the

purpose of gradient estimation. Yet, the optimality loss is only 5

percent despite adapting the gradients in only two directions (in

the other 38 directions, nominal model gradients are used). 

Nevertheless, by no means can it be expected that a local sen-

sitivity analysis will systematically yield a good approximation to

global sensitivities. When this is not the case, then adapting the

gradients in the privileged directions found offline by DMA may

result in significant optimality loss. In order to address this issue,

we propose an online procedure for determining the privileged di-

rections via a global sensitivity analysis carried out at each RTO

iteration. 

2.4. Mathematical preliminaries 

We present a few mathematical tools that are inspired by active

subspace theory ( Constantine, 2015; Russi, 2010 ). 

Consider a twice differentiable function f : U × � → R , where

U ⊆ R 

n u , � ⊆ R 

n θ and � is a bounded and connected set. Let

the probability density function of θ be ρ( θ). Also, consider that

ρ( θ) is strictly positive and bounded for θ ∈ � and ρ( θ) = 0 for

θ 
∈ �, so that the focus is only on the parameter values of in-

terest. Assume that ρ and � are such that the components of

θ are independent with mean zero and scaled according to their

range. Such a normalization ensures that each parameter compo-

nent is given equal importance. In addition, assume that the matrix

∇ u θ f (u , θ) := 

∂ 2 f (u , θ) 
∂ θ ∂u 

∈ R 

n u ×n θ is bounded, that is, 

||∇ u θ f (u , θ) || ≤ L, L > 0 ∀ u ∈ U , θ ∈ �, 
here || · || is the Frobenius norm. 

Next, we define the matrix A k ∈ R 

n u ×n u as: 

 k = 

∫ 
�

(∇ u θ f (u k , θ) 
)(∇ u θ f (u k , θ) 

)T 
ρ d θ. (12)

t follows that each element of A k is the average of the product of

artial double derivatives (which we assume exist): 

 i j,k = 

∫ 
�

n θ∑ 

l=1 

(
∂ 2 f (u , θ) 

∂ θl ∂ u i 

∣∣∣
u k 

)(
∂ 2 f (u , θ) 

∂ θl ∂ u j 

∣∣∣
u k 

)
ρ d θ, 

, j = 1 , . . . , n u , (13)

here a ij, k is the ( i, j ) element of A k ; θ l is the l th element of θ;

nd u i is the i th element of u . The matrix A k is positive semi-

efinite since 

T A k ν = 

∫ 
�

(
νT ∇ u θ f (u k , θ) 

)(
νT ∇ u θ f (u k , θ) 

)T 
ρ d θ

≥ 0 ∀ ν ∈ R 

n u . 

oreover, as A k is symmetric, we can write: 

 k = W k �k W 

T 
k , �k = diag (σ1 ,k , . . . , σn u ,k ) , 

1 ,k ≥ · · · ≥ σn u ,k ≥ 0 , (14)

here W k ∈ R 

n u ×n u is an orthonormal matrix whose columns w i, k ,

 = 1 , . . . , n u , are the normalized eigenvectors of A k . 

emma 2.1. For all u k ∈ U , it holds that 
 

�

∣∣∣∣w 

T 
i,k ∇ u θ f (u k , θ) 

∣∣∣∣2 
ρ d θ = σi,k , i = 1 , . . . , n u , (15)

here σ i, k is the eigenvalue corresponding to the eigenvector w i, k of

 k . 

roof. The definition of σ i, k implies 

i,k = w 

T 
i,k A k w i,k , 

hich can be written as: 

i,k = w 

T 
i,k 

(∫ 
�

(∇ u θ f (u k , θ) 
)(∇ u θ f (u k , θ) 

)T 
ρ d θ

)
w i,k 

= 

∫ 
�

(
w 

T 
i,k ∇ u θ f (u k , θ) 

)(
w 

T 
i,k ∇ u θ f (u k , θ) 

)T 
ρ d θ

= 

∫ 
�

∣∣∣∣w 

T 
i,k ∇ u θ f (u k , θ) 

∣∣∣∣2 
ρ d θ. 

�

It follows from this lemma that, if the eigenvalue σi,k = 0 , then

 

T 
i,k ∇ u θ f (u k , θ) = 0 , ∀ θ ∈ �. (16)

ntegrating (16) with respect to θ, and using the fundamental the-

rem of calculus, gives 

i,k = 0 , ⇒ ∇ u f (u k , θ) w i,k = c , c ∈ R , ∀ θ ∈ �. (17)

n other words, the lemma implies that the directional derivative

f f (with respect to u at u k ) in the direction w i, k is constant re-

ardless of the value of the parameter θ (as long as θ ∈ �). 

The matrix W k can be split into two submatrices, the matrix

 1 ,k ∈ R 

n u ×n r and the matrix W 2 ,k ∈ R 

n u ×(n u −n r ) , whereby W 1, k 

ontains the eigenvectors w i, k corresponding to the n r non-zero

igenvalues and the matrix W 2, k collects the remaining eigenvec-

ors corresponding to the zero eigenvalues: 

W k = 

[
W 1 ,k W 2 ,k 

]
, 

W 1 ,k = [ w 1 ,k . . . w n r ,k ] : σ1 ,k ≥ · · · ≥ σn r ,k > 0 , n r ≤ n u , 

W 2 ,k = [ w n r +1 ,k . . . w n u ,k ] : σn r +1 ,k = · · · = σn u ,k = 0 . 

(18)

Such a construction will let us show that, if at each RTO iter-

tion the cost and constraint gradients of the model are adapted

n the directions corresponding to the matrix W 1, k , then the plant

KT point is reached upon convergence. 



M. Singhal et al. / Computers and Chemical Engineering 115 (2018) 246–261 249 

3

 

c  

r  

g  

b  

s  

i

A

T  

d

ε

w

∇



w  

W  

o  

f  

fi  

3

 

a

A  

s

�

G

 

c  

ρ

A  

i  

t  

c

A  

(

T  

m  

d  

a  

t  

P

P  

t

ε

G

μ

∇

G

μ

∇

∇

I

∇

∇

∇

S  

a

∇

S

∇

U

∇

w

 

L  

t  

a  

p

∇  . 

I

∇

∇

∇
 

u

R  

t  

o  

s  

d  

t  

(18) gives W 1 ,k = W k , and ADMA reduces to standard MA. 
. Active directional modifier adaptation 

Privileged directions should ideally be chosen such that they

apture the maximum variability of the Lagrangian gradient with

espect to parametric perturbations. As parametric perturbations

et large, the local sensitivity analysis conducted in DMA may not

e able to yield such directions. Therefore, we propose to find the

et of privileged directions based on the following global sensitiv-

ty matrix A k : 

 k = 

∫ 
�

(∇ u θL (u k , μk , θ) 
)(∇ u θL (u k , μk , θ) 

)T 
ρ d θ. (19) 

hen, the resulting privileged direction matrix W 1, k is used to up-

ate the modifiers as follows : 

 

G 
k = G p (u k ) − G (u k , θ0 ) , (20a) 

( λ�
k ) 

T = 

̂ ∇ u �p (u k ) − ∇ u �(u k , θ0 ) , (20b) 

( λG 
k ) 

T = 

̂ ∇ u G p (u k ) − ∇ u G (u k , θ0 ) , (20c) 

here the gradients ̂ ∇ u �p (u k ) and 

̂ ∇ u G p (u k ) are updated as: 

̂ 

 u 
p (u k ) = ∇ u 
(u k , θ0 )( I n u − W 1 ,k W 

+ 
1 ,k ) + ∇ W 1 ,k 


p (u k ) W 

+ 
1 ,k , 

∈ { �, G i } , (21) 

here ∇ W 1 ,k 

p (u k ) is the directional derivative of 
p at u k , and

 

+ 
1 ,k 

is the Moore–Penrose pseudo-inverse of W 1, k . For the sake

f simplicity, the filter matrices used in Algorithm 1 are dropped

rom the modifiers in (20) . Updating the modifiers using first-order

lters does not affect the validity of the results presented hereafter.

.1. KKT matching under parametric plant-model mismatch 

Our further developments are based on the following technical

ssumptions. 

ssumption 1 (Parametric plant-model mismatch) . Let θp ∈ � be

uch that 

(u , θp ) = �p (u ) , (22a) 

 (u , θp ) = G p (u ) , (22b) 

θp is the vector of plant parameters, and � is a bounded and

onnected set in which θ lies with the probability density function

. 

ssumption 2 (Exact plant directional derivatives) . At each RTO

teration k , exact plant directional derivatives are available for

he cost and constraint functions in the directions given by the

olumns of the matrix W 1, k . 

ssumption 3 (Exact sensitivity information) . The matrix A k in

19) is perfectly known at each RTO iteration k . 

heorem 3.1 (Optimality upon convergence) . Consider the opti-

ization Problem (3) with the modifiers (20) and the gradient up-

ates (21) with W 1, k satisfying (18) . Let Assumptions 1 –3 hold. Also,

ssume that θ0 ∈ �. If the iterative solution to this problem converges

o the fixed point (u ∞ 

, ε G ∞ 

, λ�
∞ 

, λG 
∞ 

) , with u ∞ 

being a KKT point of

roblem (3) , then u ∞ 

is also a KKT point for the plant Problem (1) . 

roof. The modifiers take the following values upon convergence

o u ∞ 

: 

 

G 
∞ 

= G p (u ∞ 

) − G (u ∞ 

, θ0 ) , (23a) 

( λ�
∞ 

) T = 

̂ ∇ u �p (u ∞ 

) − ∇ u �(u ∞ 

, θ0 ) , (23b) 

( λG 
∞ 

) T = 

̂ ∇ u G p (u ∞ 

) − ∇ u G (u ∞ 

, θ0 ) . (23c) 
The KKT conditions at u ∞ 

for Problem (3) read: 

 m, ∞ 

(u ∞ 

) � 0 , (24a) 

T 
∞ 

G m, ∞ 

(u ∞ 

) = 0 , μ∞ 

� 0 , (24b) 

 u �m, ∞ 

(u ∞ 

) + μ∞ 

∇ u G m, ∞ 

(u ∞ 

) = 0 . (24c) 

From (3), (23) and (24) , one can write: 

 p (u ∞ 

) � 0 , (25a) 

T 
∞ 

G p (u ∞ 

) = 0 , μ∞ 

� 0 , (25b) 

̂ 

 u �p (u ∞ 

) + μT 
∞ 

̂ ∇ u G p (u ∞ 

) = 0 . (25c) 

Next, consider (21) at u ∞ 

: 

̂ 

 u �p (u ∞ 

) = ∇ u �(u ∞ 

, θ0 )( I n u − W 1 , ∞ 

W 

+ 
1 , ∞ 

) 

+ ∇ W 1 , ∞ �p (u ∞ 

) W 

+ 
1 , ∞ 

. 

t follows from (11) that 

̂ 

 u �p (u ∞ 

) = ∇ u �(u ∞ 

, θ0 )( I n u − W 1 , ∞ 

W 

+ 
1 , ∞ 

) 

+ ∇ u �p (u ∞ 

) W 1 , ∞ 

W 

+ 
1 , ∞ 

, 

̂ 

 u �p (u ∞ 

) = ∇ u �(u ∞ 

, θ0 )( W ∞ 

W 

T 
∞ 

− W 1 , ∞ 

W 

+ 
1 , ∞ 

) 

+ ∇ u �p (u ∞ 

) W 1 , ∞ 

W 

+ 
1 , ∞ 

, 

̂ 

 u �p (u ∞ 

) = ∇ u �(u ∞ 

, θ0 )( W 1 , ∞ 

W 

T 
1 , ∞ 

+ W 2 , ∞ 

W 

T 
2 , ∞ 

− W 1 , ∞ 

W 

+ 
1 , ∞ 

) + ∇ u �p (u ∞ 

) W 1 , ∞ 

W 

+ 
1 , ∞ 

. 

ince the matrix W 1, ∞ 

has orthonormal columns, W 

+ 
1 , ∞ 

= W 

T 
1 , ∞ 

,

nd 

̂ 

 u �p (u ∞ 

) = ∇ u �(u ∞ 

, θ0 ) W 2 , ∞ 

W 

T 
2 , ∞ 

+ ∇ u �p (u ∞ 

) W 1 , ∞ 

W 

T 
1 , ∞ 

. (26) 

imilarly, for the constraints, one can write: 

̂ 

 u G p (u ∞ 

) = ∇ u G (u ∞ 

, θ0 ) W 2 , ∞ 

W 

T 
2 , ∞ 

+ ∇ u G p (u ∞ 

) W 1 , ∞ 

W 

T 
1 , ∞ 

. 

(27) 

sing (26), (27) and (25c) gives: 

 u L (u ∞ 

, μ∞ 

, θ0 ) W 2 , ∞ 

W 

T 
2 , ∞ 

+ ∇ u L p (u ∞ 

, μ∞ 

) W 1 , ∞ 

W 

T 
1 , ∞ 

= 0 , 

(28) 

here L p (u ∞ 

, μ∞ 

) = �p (u ∞ 

) + μT ∞ 

G p (u ∞ 

) . 

We know from Lemma 2.1 that the directional derivatives of the

agrangian are constant in the directions given by the columns of

he matrix W 2, ∞ 

, since the corresponding eigenvalues are zero. We

lso know that these directional derivatives are independent of the

arameter values θ ∈ �. Hence, 

 u L (u ∞ 

, μ∞ 

, θ0 ) W 2 , ∞ 

= ∇ u L (u ∞ 

, μ∞ 

, θp ) W 2 , ∞ 

= c ∈ R 

1 ×(n u −n r )

(29) 

t follows from (28), (29) and Assumption 1 that 

 u L p (u ∞ 

, μ∞ 

)( W 2 , ∞ 

W 

T 
2 , ∞ 

+ W 1 , ∞ 

W 

T 
1 , ∞ 

) = 0 , (30a) 

 u L p (u ∞ 

, μ∞ 

)( W ∞ 

W 

T 
∞ 

) = 0 , (30b) 

 u L p (u ∞ 

, μ∞ 

) = 0 . (30c) 

Then, from Equations (25a), (25b) and (30c) , we conclude that

 ∞ 

is a KKT point of the plant Problem (1) . �

emark 1. An implicit assumption in Theorem 3.1 is that the ma-

rix A k has at least one eigenvalue equal to zero. However, most

ften in practice, none of the eigenvalues is exactly zero; in-

tead, some eigenvalues are small compared to others and can be

iscarded without much information loss. Note that, if the ma-

rix A k has no eigenvalues that can be discarded, the partitioning
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2 Note that similar steps have been proposed for computing active subspaces in 

Constantine (2015) . 
3.2. Practical aspects of ADMA 

ADMA requires the knowledge of A k and W k , which are approx-

imated as the estimates ˆ A k and 

ˆ W k . 

3.2.1. Computation of Âk and ˆ W k 

The available process models are often too complex for allowing

the derivation of analytical expressions for the matrices A k and W k .

For these cases, we propose to estimate these matrices from data
sing a sampling-based Monte-Carlo approach. It is recommended

o scale the inputs and parameters so that they lie between −1 and

. The estimates ˆ A k and 

ˆ W k are computed via the following steps: 2 

The sample size N should be chosen such that increasing N has

 negligible effect on the eigenvalues of the matrix ˆ A . 
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Fig. 1. Comparison of the sensitivity matrices A and ˆ A 1 corresponding to DMA and ADMA , respectively. 
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.2.2. Formal difference between DMA and ADMA 

An alternative approach based on singular value decomposition

SVD) can be used to compute the eigenpairs of ˆ A k . Note that we

an write ˆ A k = 

ˆ B k ̂
 B 

T 

k , where the matrix ˆ B k ∈ R 

n u ×n θ N is 

ˆ 
 k = 

1 √ 

N 

[∇ u θL 

(1) 
k 

· · · ∇ u θL 

(N) 
k 

]
. (32) 

pplying SVD to ˆ B k and using the well-known relation of SVD to

igenvalue decomposition gives: 

ˆ 
 k = 

ˆ W k ̂
 S k ̂  V 

T 

k , with 

ˆ S k ̂  S 
T 

k = 

ˆ �k . (33) 

his allows comparing the SVDs performed in DMA and in ADMA .

n the former, SVD is performed on the sensitivity matrix A 

� that

s evaluated for the nominal parameters θ0 . In the latter, SVD is

erformed on the matrix ˆ B k that stacks the local sensitivity matri-

es evaluated at N randomly chosen realizations of the parametric

ncertainty into a single matrix, thereby representing global sensi-

ivity. 

The sensitivity matrix A 

� is local in both the inputs u and the

arameters θ. In contrast, the sensitivity matrix ˆ A k (or ˆ B k ) is local

n the inputs u but global in the parameters θ. If the model La-

rangian is linear in the parameters, then the sensitivity matrices

 

� and 

ˆ A k are equal when computed for the same inputs, that is,

hen computed at (u 

� , μ� ) = (u k , μk ) . 
Numerical example 

To verify whether ˆ A k successfully captures the global sensitivi-

ies with respect to θ, in particular when the model Lagrangian is

 nonlinear function of the parameters, and to compare the perfor-

ance of ˆ A k to that of A 

� , let us consider the following exemplary

agrangian function: 

 (u , θ) = exp (θ1 u 1 + θ2 u 2 ) + θ2 
3 (u 3 + u 4 ) + θ2 (0 . 5 u 3 − u 4 ) , 

(34a) 

1 ≤ u i ≤ 1 , i = 1 , . . . , 4 . (34b) 

Since the constraints are independent of the parameters θ, the

ependency of the Lagrangian on the Lagrange multipliers μ is

mitted in this example. 

Let us assume that all the elements of the vector θ =
 θ1 , θ2 , θ3 ] 

T are uniformly distributed in the interval [ −2 , 0] . The

ensitivity matrix A 

� is constructed from the knowledge of θ0 =
 −0 . 5 , −0 . 5 , −0 . 1] T and u 

� = u 1 = [1 , 1 , 1 , −1] T . The matrix ˆ A 1

s constructed using Algorithm 2 on the basis of N = 10 0 0 Monte-

arlo samples. To compare the two sensitivity matrices, the gra-

ient ∇ u L (u 1 , θ j ) is evaluated for all 10 0 0 Monte-Carlo samples.

ach sampled gradient is then projected onto each of the left sin-

ular vectors of A 

� . The resulting projections are plotted in the

iddle and bottom plots of Fig. 1 a. These plots represent the sen-

itivities of the directional derivatives to parametric perturbations,
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Algorithm 2 Computation of matrices ˆ A k and 

ˆ W k . 

Step 1: Draw N independent samples θ j from � using the proba- 

bility density ρ . 

Step 2: Compute the ( n u × n θ )-dimensional sensitivity matrix of 

the Lagrangian gradient: 

∇ u θL 

( j) 
k 

:= 

∂ 2 L 

∂ θ ∂ u 

( u k , μk , θ j ) , j = 1 , . . . , N. 

Step 3: Compute ˆ A k as follows: 

ˆ A k = 

1 

N 

N ∑ 

j=1 

(∇ u θL 

( j) 
k 

)(∇ u θL 

( j) 
k 

)T 
. (31) 

Step 4: Compute the eigenvalue decomposition of ˆ A k to obtain 

ˆ W k : 

ˆ A k = 

ˆ W k ̂
 �k 

ˆ W 

T 

k . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Variance plot for the sensitivity matrices A � and ˆ A 1 computed for the exam- 

ple (34) . 
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with the vertical width of each plot being a measure of variance.

The squared singular values are plotted in the top plot of Fig. 1 a.

The magnitude of a singular value quantifies the sensitivity of the

corresponding directional derivative to parametric variations, that

is, the larger the singular value s i , the larger the variance along

the left singular vector w i . However, as seen in Fig. 1 a, the singu-

lar vectors w 1 and w 2 do not show this behavior. 

The sampled gradients are also projected onto the eigenvectors

of ˆ A 1 (the left singular vectors of ˆ B 1 ) and the resulting projec-

tions are shown in the middle and the bottom plots of Fig. 1 b. The

eigenvalues of ˆ A 1 are plotted in the top plot of Fig. 1 b. Here, the

eigenvalue magnitude quantifies the parametric sensitivity of ∇ u L
in the direction given by the corresponding eigenvector. One sees

that the eigenvectors of ˆ A 1 are ranked correctly by the correspond-

ing eigenvalues. 

3.2.3. Choice of privileged directions 

The aforementioned analysis indicates that the privileged direc-

tions can also be chosen based on the variance of the directional

derivatives. The variance along the direction d ∈ R 

n u is computed

as 

Var 
(∇ u L k d 

)
= 

1 

N 

N ∑ 

j=1 

∣∣∇ u L 

( j) 
k 

d − m 

∣∣2 
with m = 

1 

N 

N ∑ 

j=1 

∇ u L 

( j) 
k 

d .

(35)

For the numerical example at hand, the variance is computed from

N = 10 0 0 Monte-Carlo samples and plotted in Fig. 2 . One sees that

the variance does not decrease monotonically for the left singular

vectors of A 

� , whereas it decreases monotonically for the eigenvec-

tors of ˆ A 1 . A monotonic variance decrease indicates that the eigen-

values are ranking the eigenvectors in the right order. To determine

the privileged directions, a threshold value on the variance is fixed

at 10 −2 , and the directions that result in a variance larger than

the threshold value are chosen as privileged directions. A variance

smaller than 10 −2 indicates that the parametric changes do not

cause a significant change in the gradients along that direction and,

therefore, the gradient errors along that direction are relatively

small. The global sensitivity matrix ˆ A 1 yields n r = 2 privileged di-

rections, namely ˆ w 1 , 1 and ˆ w 2 , 1 , whereas the local sensitivity ma-

trix A 

� yields n r = 3 privileged directions, namely w 1 , w 2 and w 3 .

Hence, the global sensitivity matrix ˆ A 1 finds a smaller set of priv-

ileged directions, thereby reducing the number of required plant

experiments for gradient estimation. At the same time, ˆ A ensures
1 
hat the gradient errors due to parametric perturbations are small

long the neglected directions. 

Often, one selects the maximal number of privileged directions,

 max , so as to upper-bound the experimental budget per RTO it-

ration. Then, on the basis of the eigenvalues ˆ σi,k , the variance

ar 
(∇ u L k d 

)
and n max , one can choose the number of privileged

irections n r using one of the following two criteria: 

Criterion 1 

n r = min { i, n max } : ˆ σi +1 ,k � ˆ σi,k , (36)

Criterion 2 

n r = min { i, n max } : Var 
(∇ u L k ˆ w i,k 

)
≥ v min and 

Var 
(∇ u L k ˆ w i +1 ,k 

)
< v min (37)

here n max and the threshold variance v min are user-defined pa-

ameters. The matrix of privileged directions ˆ W 1 ,k then becomes:

ˆ 
 1 ,k = [ ̂  w 1 ,k . . . ˆ w n r ,k ] . (38)

.2.4. Evaluation of plant directional derivatives 

In practice, one often relies on finite differences to evaluate

he plant gradients. To reduce the number of plant experiments

or gradient estimation, well-excited plant measurements obtained

t past RTO iterations can be used. To this end, the optimization

bjective and the gradient estimation objective are combined by

nforcing duality constraints at the RTO layer ( Brdys and Tatjew-

ki, 1994; Marchetti et al., 2010 ). Furthermore, estimating gradients

rom noisy measurements can be reliably achieved by quadratic-

pproximation of the plant mapping ( Gao et al., 2016 ). For a com-

arative study of different gradient estimation techniques in RTO ,

e recommend the paper by Mansour and Ellis (2003) . The differ-

nt approaches mentioned here can also be exploited to estimate

he plant directional derivatives defined in (10) . 

.2.5. Structural plant-model mismatch 

Assumption 1 regarding parametric plant-model mismatch may

ot be met in practice. In the case of structural plant-model mis-

atch, ADMA still drives the plant toward optimality in the sub-

pace given by the privileged directions. The following theorem

oes not require Assumption 1 . 

heorem 3.2 (Optimality limited to privileged directions) . Consider

he optimization Problem (3) with the modifiers (20) and the gradient
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u  

I  (
 

u  

c

P

3

4

 

pdates (21) . Also, assume that θ0 ∈ �. Let Assumptions 2 and 3 hold.

f the iterative solution to this problem converges to the fixed point

u ∞ 

, ε G ∞ 

, λ�
∞ 

, λG 
∞ 

)
, with u ∞ 

being the KKT point of Problem (3) , then

 ∞ 

is also a KKT point for the plant in the directions given by the

olumns of the matrix W 1, ∞ 

. 
roof. See Costello et al. (2016) � t
.3. ADMA algorithm 

The proposed ADMA algorithm is summarized in Algorithm 3 . 

. Case studies 

The proposed approach is illustrated next via the simulation of

wo semi-batch reactors. 
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Table 1 

Williams-Otto reactor: plant-model mismatch. 

Parameter Plant value Nominal model value Uncertainty range Probability distribution 

b 1 (K) 60 0 0 6666.7 [5334, 80 0 0] Uniform 

b 2 (K) 8333.3 8750 [7500, 9166] Uniform 

a 1 (s −1 ) 1.6599 · 10 6 1.8259 · 10 6 [1.4109 · 10 6 , 1.9089 · 10 6 ] Uniform 

a 2 (s −1 ) 7.2117 · 10 8 6.8511 · 10 8 [6.1299 · 10 8 , 8.2935 · 10 8 ] Uniform 
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4.1. Williams-Otto semi-batch reactor 

ADMA is applied to the problem of run-to run (batch-to-batch)

optimization of the Williams-Otto semi-batch reactor described in

Würth et al. (2009) and Salau et al. (2014) . The following reactions

take place in the reactor: 

A + B 

k 1 −→ C, C + B 

k 2 −→ P + E, P + C 
k 3 −→ G. 

Reactant A is initially present in the reactor, whereas reactant B

is continuously fed during the batch. As a result of the exother-

mic reactions, the desired products P and E and the side product

G are formed. The heat generated by the exothermic reactions is

removed via a cooling jacket, whose temperature is controlled by

manipulating the cooling water temperature. The model equations

and parameter values are given in Appendix A . 

The objective is to maximize the revenue generated by selling

the products produced at the end of the batch, while respecting

path constraints on the inlet flowrate of reactant B ( F B ), the reac-

tor temperature ( T r ), the reactor volume ( V ) and the cooling water

temperature ( T w 

). The manipulated variables are the time-varying

profiles F B ( t ) and T w 

( t ). The dynamic optimization problem can be

written mathematically as follows: 

max 
F B (t) ,T w (t) 

P P m P (t f ) + P E m E (t f ) (39a)

s.t. model equations (A. 1) (39b)

0 ≤ F B (t) ≤ 5 . 784 kg / s (39c)

 (t) ≤ 5 m 

3 (39d)

20 

◦C ≤ T w 

(t) ≤ 100 

◦C (39e)

60 

◦C ≤ T r (t) ≤ 90 

◦C . (39f)

The batch time t f is fixed at 10 0 0 s. Problem (39) is trans-

formed into a nonlinear program (NLP) via direct single shooting.

This is done by discretizing the problem in time over n cs con-

trol stages. For each time interval, the dynamic input variables are

parametrized using low-order polynomials. We parameterize each

time-varying input using n cs = 40 piecewise-constant values. This

results in the input dimension n u = 80 . 

In this simulation study, the plant is substituted by a simulated

reality. The simulated reality is then treated as a black box and

it is assumed that the concentration measurements of the formed

products are available only at the final batch time t f . This permits

the simulated reality to act as a real system/plant. 

The experimental cost of evaluating the plant gradients via fi-

nite differences is found as follows: 

Experimental cost per RTO iteration 

= Total number of privileged directions × Batch time . 

This implies that the cost to evaluate the full plant gradients is

n u × t f . However, with the DMA and ADMA algorithms, only the

derivatives in the privileged directions need to be evaluated, with

the experimental cost n r × t f . 

Plant-model mismatch is introduced by considering parametric

uncertainty in the values of the activation energies b and b and
1 2 
he pre-exponential factors a 1 and a 2 . The parameter values for the

lant and the nominal model, and the uncertainty ranges are given

n Table 1 . The parameters are assumed to be uniformly distributed

ithin the given uncertainty intervals. 

The optimal input profiles obtained by solving Problem (39) for

oth the nominal model and the plant are shown in the top plots

f Fig. 3 . As seen in the figure, the model and plant solutions are

uite different. The optimal revenue for the plant is 3.14 · 10 6 . How-

ver, upon applying the model solution to the plant, a sub-optimal

evenue of 1.66 · 10 6 is obtained. 

The optimal input profiles for the plant are assumed to be un-

nown. Hence, the goal of the different RTO methods is to improve

pon the sub-optimal revenue resulting from applying the model

ptimal solution. The best RTO method is the one that requires the

inimal experimental effort to reach plant optimality. 

At first, MA with full gradient estimates is implemented. The

op plots in Fig. 5 show the input and output profiles obtained

ith MA upon convergence. Although MA starts from the input se-

uences given by the model solution, it is able to identify the cor-

ect set of constraints that are active at the plant optimum, thereby

eaching the maximal possible revenue. However, MA requires full

radient estimation and, thus, incurs a large experimental cost at

ach RTO iteration, which makes the application of this type of MA

rohibitive in practice. 

To implement the DMA and ADMA algorithms, the sensitivity

atrices A 

� and 

ˆ A k are constructed. The number of Monte-Carlo

amples for constructing ˆ A k is N = 200 . The number of privileged

irections is determined successively based on Criteria 1 and 2 in

36) and (37) . To this end, the values of n max and v min are fixed at

 and 1, respectively. 

Criterion 1. The squared singular values of A 

� and the eigenval-

es of ˆ A 1 at the model solution at k = 1 are plotted in Fig. 4 a. No-

ice that there is a large gap between the second and third singu-

ar values of A 

� . Hence, based on Condition (8) or (36) , the number

f privileged directions for DMA can be fixed at n r = 2 . However,

or the same gap, the number of privileged directions with 

ˆ A 1 is

ore than n max = 4 . Hence, for a fair comparison between DMA

nd ADMA , we fix the number of privileged directions for both al-

orithms at 4. 

Criterion 2. The number of privileged directions can also be de-

ermined on the basis of variance values as described by (37) . The

ariances associated with both the left singular vectors of A 

� and

he eigenvalues of ˆ A 1 are plotted in Fig. 4 b. It is seen that the vari-

nces associated with the left singular vectors of A 

� do not exhibit

 monotonic decrease except for the first few left singular vectors.

n contrast, the variances associated with the eigenvectors of ˆ A 1 

how a monotonic decrease. The median and the minimal value of

he variance for ˆ A 1 are 0.51 and 1 . 1 · 10 −15 , respectively. In com-

arison, the median and the minimal values of the variance for

 

� are 2.3 · 10 8 and 6.7 · 10 5 , respectively. Hence, the eigenvectors

f ˆ A 1 give a much better orthogonal decomposition of the input

pace, which is able to capture most of the global sensitivity in a

elatively low number of directions. The threshold v min = 1 is not

ery useful here as it retains all 80 directions for DMA and 40 di-

ections for ADMA . Hence, Criterion 2 also gives n r = 4 for both

MA and ADMA . In the ADMA algorithm, we then keep the num-

er of privileged directions fixed at 4 for every RTO iteration for
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Fig. 3. Williams-Otto reactor. Shaded area: infeasible region. Top plots: input variables : dashed lines: model optimal solution; solid lines: plant optimal solution. Middle 

plots: constrained output variables : model optimal solution. Bottom plots: constrained output variables : dashed lines: plant at the model optimal solution; solid lines: plant 

at the plant optimal solution. 

Fig. 4. Williams-Otto reactor: comparison of the sensitivity matrices A � and ˆ A 1 . 
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Fig. 5. Williams-Otto reactor. Plant input and output profiles upon convergence with different RTO methods. Top plots: MA . Middle plots: DMA . Bottom plots: ADMA .. 

Table 2 

Williams-Otto reactor: comparison of different RTO methods. 

RTO method Per RTO iteration Revenue · (10 6 ) 

No. of privileged directions, n r Avg. computational time of sensitivity matrix Experimental cost 

MA 80 – 22.23 h 3.14 

DMA 4 0 s ( A � computed only once offline) 1.12 h 2.13 

ADMA 4 90.92 s ( ̂ A k computed via Algorithm 2 ) 1.12 h 3.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Willliams-Otto reactor: Revenue evolution of the plant with different RTO 
the sake of comparison with DMA . The sets of 4 privileged direc-

tions computed by DMA and ADMA at the first RTO iteration are

different as the model Lagrangian is a highly nonlinear function of

the model parameters b 1 and b 2 . Note that the 4 privileged direc-

tions in ADMA change from one iteration to the next due to the

re-computation of ˆ A k at each iteration. 

Upon application of DMA Algorithm 1 , the plant input and out-

put profiles reached upon convergence are shown in the middle

plots of Fig. 5 . Although DMA successfully finds the optimal water

temperature profile, it is unable to find the optimal profile for the

feedrate of B . Obviously, adapting the gradients in the 4 privileged

directions found by DMA is not sufficient to reach plant optimality

as the gradient uncertainty along these directions is not sufficiently

representative. The bottom plots of Fig. 5 show the input and out-

put profiles obtained with the ADMA Algorithm 3 . As seen, ADMA

successfully reaches the plant optimal profiles (see also Fig. 6 ). This

indicates that most of the gradient errors lie along the 4 privileged

directions of ADMA . 

The comparison of the different MA -based RTO methods is

summarized in Table 2 . As MA requires full gradient estimation,

one must have 80 batches to evaluate the plant gradients at each

methods. 
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Table 3 

Kinetic parameters for diketene-pyrrole reaction. 

Parameter Plant value Nominal model value Uncertainty range Probability distribution 

k 1 ( L mol 
−1 

min 
−1 

) 0.053 0.053 [0 . 0424 , 0 . 0636] Uniform 

k 2 ( L mol 
−1 

min 
−1 

) 0.128 0.128 [0 . 1024 , 0 . 1536] Uniform 

k 3 ( min 
−1 

) 0.028 0 – –

k 4 ( L mol 
−1 

min 
−1 

) 0.001 0 – –

Fig. 7. Diketene-pyrrole reaction. Top plots: input profile : dashed line: model optimal solution; solid line: plant optimal solution. Middle plots: output variables that are 

constrained at final time : model optimal solution. Bottom plots: output variables that are constrained at final time : dashed lines: plant response at the model optimal solution; 

solid lines: plant response at the plant solution. Cross, × : terminal constraint threshold. 
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TO iteration. That amounts to 22.23 h of waiting time per RTO

teration. This experimental time is reduced by applying DMA ,

hich requires directional derivatives to be computed in only 4

irections, thus, needing only 4 batches, which reduces the exper-

mental cost to 1.12 h. However, the maximal revenue reached by

MA is only 2.13 · 10 6 . ADMA , on the other hand, gives an optimal

evenue of 3.14 · 10 6 , while incurring the same experimental cost

s DMA . This increase in revenue is made possible by the matrix
ˆ 
 k that requires on average a computational time of 90.92 s per

TO iteration when computed via Algorithm 2 . 3 

.2. Diketene-pyrrole reaction system 

Next, we compare the performance of the different RTO meth-

ds on the run-to-run optimization of the semi-batch reactor given
3 Simulations were conducted on a MacBook Pro with 2.5 GHz intel Core i7 pro- 

essor. The software used is CasADi ( Andersson, 2013 ) version 3.2.3 in MATLAB ver- 

ion R2016a. 

c

c

n Ruppen et al. (1997) or Chachuat et al. (2009) . The reaction sys-

em is the acetoacetylation of pyrrole with diketene and consists

f following reactions: 

 + B 

k 1 −→ C, 2 B 

k 2 −→ D, B 

k 3 −→ E, C + B 

k 4 −→ F . 

he model equations, the initial conditions and the concentra-

ion of B in the feed used in this simulation study are given in

ppendix B . The objective is to maximize the yield of product C ,

hile penalizing large changes in the feedrate F B of reactant B . The

ptimization problem can be written mathematically as: 

ax 
F B (t) 

c C (t f ) V (t f ) − ω 

∫ t f 

0 

F 2 B (t) d t (40a) 

.t. model Eq. ( B . 1 ) (40b) 

 B (t f ) ≤ c max 
B (40c) 

 D (t f ) ≤ c max 
D (40d) 
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Fig. 8. Diketene-pyrrole reaction: comparison of the sensitivity matrices A � and ˆ A 1 . 
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0 ≤ F B (t) ≤ F max 
B . (40e)

The values of the final batch time t f , the maximal inlet flowrate

F max 
B 

, the maximal concentrations of species B and D at final time

and the value of the weight ω are given in Table B.6 . The problem

is formulated as an NLP by using a piecewise-constant discretiza-

tion of the input F B ( t ) comprised of 50 control stages. Hence, the

input dimension is n u = 50 . 

Structural plant-model mismatch is introduced by ignoring the

third and fourth reactions in the model, that is, by taking k 3 = 0

and k 4 = 0 for the model. Also, it is assumed that the model pa-

rameters k 1 and k 2 are uncertain and uniformly distributed within

the ranges corresponding to ± 20% of the nominal values. The mis-

match considered and the uncertainty ranges are given in Table 3 .

The optimal solutions for the model and the plant are shown in

the top plot of Fig. 7 . The two input profiles are quite different

from each other. The evolution of the model c B ( t ) and c D ( t ) at the

model optimal solution is shown in the middle plots of Fig. 7 . The

bottom plots of Fig. 7 show the evolution of the plant c B ( t ) and

c D ( t ) obtained upon application of both the model and the plant

optimal solutions. It is observed that the terminal constraint on

the concentration of reactant B is not at its upper limit for the

plant when the model optimal solution is applied. The model op-

timal solution applied to the plant result in a sub-optimal yield

of 0.3865 moles, whereas the plant optimal yield is 0.5050 moles

( Table A.5 ). 

Since only the two parameters k 1 and k 2 are uncertain, the lo-

cal sensitivity matrix A 

� generates 2 privileged directions as per

Condition (9) . The variances along the left singular vectors of A 

� 

are plotted in Fig. 8 b. It is seen that the variances along the re-

maining 48 directions do not decrease monotonically and, thus,

more privileged directions cannot be selected. To construct ˆ A k via

Algorithm 2 , the number of Monte-Carlo samples is fixed at N =
00 . Here, in contrast to the previous case study, we do not fix

he number of privileged directions in ADMA ; instead, we apply

riterion 1 in (36) at each RTO iteration by fixing n max = 4 . The

igenvalues and variances computed at k = 1 are plotted in Fig. 8 .

riterion 1 gives 2 privileged directions at the first RTO iteration

or ADMA . In this example, the two privileged directions found by

MA and ADMA are the same, which results from the fact that

he model Lagrangian is only a weakly nonlinear function of the

arameters k 1 and k 2 . Note that these 2 privileged directions are

ess privileged at the next iterations since the privileged directions

hange with the input F B ( t ) from iteration to iteration. However,

ince ADMA recomputes the privileged directions at each RTO it-

ration, it is able to always work with the most appropriate set of

rivileged directions. The number of privileged directions found at

ach RTO iteration using Criterion 1 is plotted in Fig. 10 b. The in-

ut and output profiles reached upon convergence with MA , DMA

nd ADMA are shown in Fig. 9 . The evolution of the yield with

he different RTO methods is shown in Fig. 10 a. Clearly, DMA ex-

ibits a slight sub-optimality, whereas the MA and ADMA algo-

ithms converge to plant optimality (at least as far as the yield

alue is concerned) despite the presence of significant plant-model

ismatch. 

The performance of the different RTO methods is compared in

able 4 . MA with full gradient estimation reaches the optimal yield

f 0.5050 moles at the large experimental cost of 208.34 h per

TO iteration. DMA significantly reduces the experimental cost to

.34 h per RTO iteration, but reaches a final yield of only 0.5009

oles. In comparison, ADMA nearly reaches optimal yield at an ex-

erimental cost of 8.34–12.5 h. The average computational cost of
ˆ 
 k is 5.43 s. ADMA gives the best performance as it comes very

lose to the plant optimum at a relatively low experimental cost.

he computer and software used to perform the simulations are

he same as in the previous case study. 
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Fig. 9. Diketene-pyrrole reaction: plant input and output profiles upon convergence with different RTO methods. Top plots: MA . Middle plots: DMA . Bottom plots: ADMA 

with ˆ A k computed via Algorithm 2 . 

Fig. 10. Diketene-pyrrole reaction: batch-to-batch evolution of the optimization strategy. 

Table 4 

Diketene-pyrrole reaction: comparison of different RTO methods. 

RTO method Per RTO iteration Yield (mol) 

No. of privileged directions, n r Avg. computational time of sensitivity matrix Experimental cost 

MA 50 – 208.34 h 0.5050 

DMA 2 0 s ( A � computed only once offline) 8.34 h 0.5009 

ADMA 2–3 5.43 s ( ̂ A k computed via Algorithm 2 ) 8.34–12.5 h 0.5049 
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5. Conclusions 

This paper presents a novel methodology for reducing the bur-

den of excessive plant experiments for gradient estimation in MA

schemes. It is proposed to estimate the plant gradients only in a

subspace of the input space. This subspace is found via sensitiv-

ity analysis with respect to parametric uncertainty. A global sen-

sitivity analysis inspired by active subspace theory is used to rank

the input directions in terms of the sensitivity of the directional

derivatives with respect to parametric variations, thus revealing

a set of privileged directions. The effectiveness of the proposed

ADMA scheme is demonstrated on the run-to-run optimization of

two different semi-batch reactors. It is shown that ADMA offers a

nice balance between experimental cost and achieved performance

compared to both MA with full gradient estimation and the DMA

approach based on local sensitivities. 
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Appendix A. Williams-Otto reactor model 

The model equations are as follows: 

d V 

d t 
= 

F B 
q 

(A.1a)

d m A 

d t 
= −r 1 V (A.1b)

d m B 

d t 
= F B − M w A 

M w B 

r 1 V + r 2 V (A.1c)

d m C 

d t 
= 

M w C 

M w A 

r 1 V − M w C 

M w B 

r 2 V − r 3 V (A.1d)

d m E 

d t 
= 

M w E 

M w 

r 2 V (A.1e)

B fl

Table A.5 

Reaction parameters and operating conditions for the W

Variable Definition 

M A , M B , M P Molar mass - co

M C , M E Molar mass - co

M G Molar mass - co

a 3 Pre-exponential 

b 3 Activation energ

T ref Reference tempe

T in Inlet temperatur

�H 1 Enthalpy - react

�H 2 Enthalpy - react

�H 3 Enthalpy - react

A 0 Heat-transfer are

V 0 Cooling jacket vo

U Heat-transfer co

V (0) Initial reactor vo

T r (0) Initial reactor te

m A (0) Initial mass - co

m B (0), m C (0), m P (0), m E (0), m G (0) Initial mass - co

C p Specific heat cap

q Fluid density 

P P Price of P 

P E Price of E 
d m G 

d t 
= 

M w G 

M w C 

r 3 V (A.1f)

d m P 

d t 
= 

M w P 

M w B 

r 2 V − M w P 

M w C 

r 3 V (A.1g)

d T r 

d t 
= 

H 

V C p 
(A.1h)

c i = m i /V ; i = A, B, C, P, E, G 

k i = a i e 
−b i (T r + T re f ) ; i = 1 , 2 , 3 

 1 = k 1 c A c B ; r 2 = k 2 c B c C ; r 3 = k 3 c C c P 

H = F B C p T in − �H 1 r 1 V − �H 2 r 2 V − �H 3 r 3 V − V 

A 0 

V 0 

U(T r − T w 

) 

ppendix B. Diketene-pyrrole reactor model 

The first-principles model for the semi-batch reactor reads: 

d c A 
d t 

= −k 1 c A c B −
F B 
V 

c A (B.1a)

d c B 
d t 

= −k 1 c A c B − 2 k 2 c 
2 
B − k 3 c B − k 4 c B c C + 

F B 
V 

(c in B − c B ) (B.1b)

d c C 
d t 

= k 1 c A c B − k 4 c B c C − F B 
V 

(c C ) (B.1c)

d c D 
d t 

= k 2 c 
2 
B −

F B 
V 

(c D ) (B.1d)

d V 

d t 
= F B , (B.1e)

here c A , c B , c C and c D represent the concentrations of the species

, B, C and D , respectively. V is the reactor volume, F B is the inlet

owrate of species B , and c in is the concentration of B in the feed. 

B 

illiams-Otto semi-batch reactor. 

Value 

mponents A, B, P 100 kg kmol −1 

mponent C, G 200 kg kmol −1 

mponent G 300 kg kmol −1 

fraction - reaction 3 2.6745 · 10 12 s −1 

y - reaction 3 11111 K 

rature 273.15 K 

e ( B ) 308.15 K 

ion 1 236.8 kJ kg −1 

ion 2 158.3 kJ kg −1 

ion 3 226.3 kJ kg −1 

a 9.2903 m 

2 

lume 2.1052 m 

3 

efficient 0.23082 kJ (m 

2 K s) −1 

lume 2 m 

3 

mperature 338.15 K 

mponent A 20 0 0 kg 

mponents B, C, P, E, G 0 kg 

acity 4.184 kJ kg −1 C −1 

10 0 0 kg m 

3 

555.4 $ kg −1 

125.91 $ kg −1 

https://doi.org/10.13039/501100001711
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Table B.6 

Reaction parameters and operating conditions for the diketene-pyrrole semi- 

batch reactor. 

Variable Definition Value 

c in B Concentration of B in the feed 5 mol L −1 

V (0) Initial reactor volume 0 1 L 

c A (0) Initial concentration of A 0.72 mol L −1 

c B (0) Initial concentration of B 0.05 mol L −1 

c C (0) Initial concentration of C 0.08 mol L −1 

c D (0) Initial concentration of D 0.01 mol L −1 

t f Final time 250 min 

F max 
B 

Maximal inlet flowrate 2 · 10 −3 L min −1 

c max 
B 

Maximal concentration of B at final time 0.025 mol L −1 

c max 
D 

Maximal concentration of D at final time 0.15 mol L −1 

ω Weight 10 mol min L −2 
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