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a b s t r a c t

In this paper we analyze a low-order family of mixed finite element methods for the
numerical solution of the Stokes problem and a second order elliptic problem, in two
space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular
elements, while the velocity is approximated on a triangular mesh obtained by dividing
each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global
spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in
Armentano and Blasco (2010) , is unstable. However, following the ideas given in Bochev
et al. (2006) , a simple stabilization procedure can be applied, when we approximate the
solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are uncondition-
ally stable, and achieve optimal accuracy with respect to solution regularity with simple
and straightforward implementations. Moreover, we analyze the application of our P1Q1
element to the mixed formulation of the elliptic problem. In this case, by introducing the
modified mixed weak form proposed in Brezzi et al. (1993) , optimal order of accuracy can
be obtainedwith our stabilized P1Q1 elements. Numerical results are also presented, which
confirm the existence of the spurious pressuremode for the P1Q0 element and the excellent
stability and accuracy of the new stabilized methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The approximation by mixed finite element methods of the Stokes problem has been widely developed. In some works
the two independent variables, velocity and pressure, are approximated by using spaces of different order of approximation
for each one [1–10]. On the other hand, some stabilized formulations, which consists in modifying the discrete problem by
the addition of new terms which enhance its stability, are introduced in order to use the same order approximation spaces
for the velocity and the pressure (see, for example, [8,9,11–19] and the references therein). In particular, standard C0 finite
element spaces of low polynomial orders remain a popular choice in many engineering applications because, besides their
simplicity, they offer reasonable accuracy and uniform data structures when using equal order interpolation and so the
develop of stabilization procedure is still a focus of the interest.

In [1] we introduce and analyze a new family of mixed finite element methods in which the pressure is interpolated on a
mesh of rectangular elements and the velocity on a triangular mesh obtained by dividing each rectangle into four triangles
by its diagonals. We denote by PkQl the elements in which the velocity is interpolated in each triangle by polynomials of
degree no greater than k and the pressure is interpolated in each rectangle by polynomials of degree in each variable no
greater than l. In that work we proved the existence of a global spurious pressure mode for the P1Q1 element, and that the
cross-grid P2Q1 element satisfies the inf–sup condition getting optimally convergent solutions.
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In the present work we analyze the lowest P1Q0 element, and we show the existence of a global spurious pressure mode,
so that convergence of the pressure does not hold for this element. Then, following the ideas given by Bochev, Dohrmann
and Gunzburger in [11], which we denote by [BDG] procedure, we present a stabilized finite element method for the Stokes
problem to counteract the lack of stability for our P1Q0 and P1Q1 cross-grid elements. The goal of these stabilized methods
is that, in contrast to other stabilization procedures, they are parameter free, always lead to symmetric linear systems and
have simple and straightforward computational implementation.

On the other hand, in themixed formulation of second order elliptic problems, the approximation of the two variables has
to be done taking into account some particular compatibility conditions in order to avoid instabilities (see [2,20,21] and the
references therein). Moreover, the stable finite element approximations could be different from this problem to the Stokes
problem, for example, the mini-elements are stable for the Stokes problem but not for the elliptic (see, for example, [2,22]).
In this work we also analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. It is well
known that in Raviart–Thomas spaces [23] (one of most used approaches for the elliptic problem), typically stable velocity
approximations are continuous only in the normal direction and the most frequent approach RT0P0 has also discontinuous
pressure [21–23]. In [24] the authors propose different approaches to stabilize the P1P1 elements, since the same strategy
applied to the Stokes problem cannot be applied directly to the elliptic. In this paper we use the modified mixed weak
form for the elliptic problem introduced in [20], which allows us to employ finite element spaces similar to those built for
the Stokes problem. In particular, we can successfully apply our stabilized P1Q1 cross-grid elements to this modified mixed
problem in order to obtain optimal equal-order continuous approximations. It is important to point out that the ideas present
in this paper, could be extended to other interesting problems (see, for example, [24–28] and the references therein), with
the purpose to obtain optimal, continuous and economical approximations.

Some numerical results are also presented which confirm the presence of the spurious pressure mode for the P1Q0
element and the successful stabilization procedure for our P1Q0 and P1Q1 cross-grid elements for the Stokes problem.
Moreover, we show a numerical example for the application of our stabilized P1Q1 element to the modified mixed problem
associated to the elliptic, which shows the good performance of our approximation method. Although in the stabilized
procedure provided here we consider only rectangular elements, the methods we have developed can also be applied to
meshes of general quadrilateral elements.

The rest of the paper is organized as follows. In Section 2 we state the Stokes problem, introduce the PkQl mixed finite
element approximations andwe prove the instability of P1Q0, the lowest order case. In Section 3we present the stabilization
procedure for the cross-grid elements P1Q0 and P1Q1. In Section 4we show themodifiedmixed formulation for second order
elliptic equations and the approximation properties utilizing the stabilization method introduced in Section 3. Finally, in
Section 5 we present some numerical examples which show the good performance of the stabilization procedure.

2. Cross-grid PkQl finite element approximation of the Stokes problem

In this section we recall the Stokes problem and the family of cross-grid PkQl mixed finite element methods introduced
in [1] for its numerical approximation.

Let Ω ⊂ R2 be an open, bounded and polygonal domain, the classical Stokes problem is given by: Find the fluid velocity
u and the pressure p such that⎧⎨⎩

−µ∆u + ∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on Γ := ∂Ω ,

(2.1)

where f ∈ (H−1(Ω))2 (the dual space of (H1
0 (Ω))2) is a given body force per unit mass and µ > 0 is the kinematic viscosity,

which we assume constant.
Let V := (H1

0 (Ω))2 and Q := L20(Ω) = {q ∈ L2(Ω) :
∫

Ω
q = 0}. The weak form of (2.1) is given by: Find u ∈ V and p ∈ Q

such that{
a(u, v) + b(v, p) = ⟨f, v⟩V ′×V ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Q ,
(2.2)

where the bilinear forms a(·, ·) and b(·, ·) are defined on V × V and V × Q , respectively, as

a(u, v) = µ

∫
Ω

∇u : ∇v u, v ∈ V ,

b(v, q) = −

∫
Ω

∇ · v q v ∈ V , q ∈ Q .

We denote by ∥ · ∥m,D and |·|m,D the norms and seminorms in Hm(D) or (Hm(D))2 respectively and (·, ·)D denotes the inner
product in L2(D) or (L2(D))2 for any subdomain D ⊂ Ω . The domain subscript is dropped for the case D = Ω .

It is well known that the bilinear form a(·, ·) is coercive in V and there exists a constant β > 0 (see for instance [21]) such
that for all q ∈ Q

sup
0̸=v∈V

b(v, q)
∥v∥1

≥ β∥q∥0.
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According to the general theory of mixed problems [21,22] these conditions ensure that there exists a unique solution of
problem (2.2).

Now, we consider a partition Ch of Ω̄ into rectangular elements K , which we assume to be regular, i.e., there exists a
constant σ > 0, independent of the mesh size h, such that

hK ≤ σρK ∀K ∈ Ch,

where hK denotes the diameter of K and ρK the diameter of the largest ball contained in K .
Then, we divide each rectangle K by its diagonals into four triangles and we call Th the resulting mesh of triangular

elements T .
Throughout the paper, wewill denote by C a generic positive constant, not necessarily the same at each occurrence,which

may depend on the mesh only through the parameter σ .
Using the standardnotationPk for the space of polynomials of degreenot greater than k andQl for the space of polynomials

of the form q(x, y) =
∑

jαjpj(x)qj(y) with pj and qj polynomials of degree less than or equal to l, the cross-grid PkQl mixed
finite element spaces for the approximation of the velocity and the pressure are defined, respectively, as follows:

V k
h = {v ∈ V : v|T ∈ (Pk)2, ∀ T ∈ Th}, (2.3)

Q l
h = {q ∈ Q : q|K ∈ Ql, ∀K ∈ Ch}. (2.4)

The velocity and pressure nodes for the P1Q0 element are shown in Fig. 1 and for the P1Q1 element in Fig. 2.
The standard Galerkin approximation of (2.2) is given by: Find (uh, ph) ∈ V k

h × Q l
h such that:{

a(uh, vh) + b(vh, ph) = ⟨f, vh⟩V ′×V ∀vh ∈ V k
h ,

b(uh, qh) = 0 ∀qh ∈ Q l
h .

(2.5)

In order to have a stable and convergent approximation, the discrete spaces V k
h and Q l

h have to satisfy the well-known
LBB condition, i.e., there should exist a constant β̃ > 0, independent of h, such that for the pair (k, l) we have that

sup
0̸=vh∈V k

h

b(vh, qh)
∥vh∥1

≥ β̃∥qh∥0 ∀qh ∈ Q l
h. (2.6)

Then, if (2.6) holds the theory of mixed finite elementmethods [21,22] states that problem (2.5) has a unique solution which
is stable and optimally convergent, i.e., there exists a positive constant C such that:

∥u − uh∥1 + ∥p − ph∥0 ≤ C{ inf
v∈V k

h

∥u − v∥1 + inf
q∈Q l

h

∥p − q∥0}. (2.7)

The cases of interest are, of course, those for which l ≤ k. For l = k, we have an approximation of the same order for both
variables, although not an equal approximation. For l = k − 1 the orders of the interpolation errors in the error estimate
(2.7) are balanced.

2.1. The cross-grid P1Q0 element

The first thing thatwe have to observewhenwe choose amixed finite element is the relation between dim V k
h and dimQ l

h,
in fact a necessary condition is that:

dim V k
h ≥ dimQ l

h.

Indeed, consider a partition Ch, and the corresponding triangulation Th, of Ω̄ and let us denote by NT the number of
triangles, NR the number of rectangles, vT the number of internal vertices of the triangles, vR the number of internal vertices
of the rectangles, and vB the number of boundary vertices (which is the same for triangles and rectangles).

We shall thus have dim V 1
h = 2vT (since the velocities vanish on the boundary) and dimQ 0

h = NR − 1 because of the
zero mean value of the pressures. We observe that vT = vR + NR. Therefore, dim V 1

h = 2vT = 2vR + 2NR ≥ 2NR ≥ dimQ 0
h

and this element has the chance of being stable. However, our indicator of the instability is the fact that, as the following
lemma shows, the kernel of the operator Bh : Q 0

h → (V 1
h )

′ is nontrivial. Thus, this element does not satisfy the inf–sup
condition (2.6).

Lemma 2.1. Let Ω = (0, 1)× (0, 1) and let Ch be a uniformmesh consisting of N ×N rectangles. Let us consider the PKQl mixed
finite element approximation with k = 1 and l = 0. Then, there exists a global spurious pressure mode q∗

h ∈ Q 0
h \ {0} such that∫

Ω

q∗

h∇ · vh = 0 ∀vh ∈ V 1
h .
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Fig. 1. Velocity and pressure nodes of the cross-grid P1Q0 mixed finite element.

Fig. 2. Velocity and pressure nodes of the cross-grid P1Q1 mixed finite element.

Proof. Let Ki,j = [(i − 1)h, ih] × [(j − 1)h, jh] be the rectangles of the uniform mesh Ch, with h = 1/N , 1 ≤ i, j ≤ N and let
ni,j = (ih, jh), 0 ≤ i, j ≤ N be the nodes of the mesh Ch. Let qh be any function in Q0, we denote by qhKi,j the constant value of
qh in each rectangle Ki,j. Then,∫

Ω

qh∇ · vh =

∑
Ki,j∈Ch

∫
Ki,j

qh∇ · vh =

∑
Ki,j∈Ch

qhKi,j

∫
Ki,j

∇ · vh

=

∑
Ki,j∈Ch

qhKi,j
∑
T⊂Ki,j

∫
T
∇ · vh.

Since vh = (v1, v2) is linear in each T ∈ Th we get that∫
Ω

qh∇ · vh =

∑
Ki,j∈Ch

qhKi,j
∑
T⊂Ki,j

∫
T
∇ · vh =

∑
Ki,j∈Ch

qhKi,j
h2

4

∑
T⊂Ki,j

∇ · vh|T

=

∑
Ki,j∈Ch

qhKi,j
h
2
{v1 i,j−1 − v1 i−1,j−1 + v1i,j − v1i−1,j − v2i,j−1 − v2 i−1,j−1 + v2 i,j + v2 i−1,j}

=
h
2

∑
i,j

v1 i−1,j{−qhKi,j − qhKi,j+1
+ qhKi−1,j+1

+ qhKi−1,j
}

+
h
2

∑
i,j

v2i−1,j{qhKi,j − qhKi,j+1
− qhKi−1,j+1

+ qhKi−1,j
}.
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We can define a global q∗

h ∈ Q 0
h such that:

q∗

hKi,j
=

{
1 if i + j is even

− 1 if i + j is odd

which conduce to a checkerboard pattern and to conclude that∫
Ω

q∗

h∇ · vh = 0 ∀vh ∈ V 1
h . □

3. The stabilization method

In this sectionwepresent the stabilizationmethod for the cross-grid P1Q0 and P1Q1 mixed finite element. Our stabilization
procedure follows the [BDG] procedure introduced in [11].

First, we observe that for both pairs P1Q0 and P1Q1 some weak inf–sup bounds hold. Indeed, we have the following
lemmas.

Lemma 3.1. Let V 1
h and Q 1

h be the spaces defined above. Then, there exist positive constants C1 and C2 such that

sup
0̸=v∈V1

h

∫
Ω
qh∇ · vh
∥vh∥1

≥ C1∥qh∥0 − C2h∥∇qh∥0 ∀qh ∈ Q 1
h .

Proof. see Lemma 2.1 in [11]. □

Lemma 3.2. Let V 1
h and Q 0

h be the spaces defined above. Then, there exist positive constants C1 and C2 such that

sup
0̸=v∈V1

h

∫
Ω
qh∇ · vh
∥vh∥1

≥ C1∥qh∥0 − C2h
1
2 (

∑
ℓ⊂Ch

∫
ℓ

[qh]2)
1
2 ∀qh ∈ Q 0

h ,

where [qh] denotes the jump of qh.

Proof. Since Q 0
h ⊂ L20(Ω) for any qh ∈ Q 0

h there existsw ∈ (H1
0 (Ω))2 and a constant Cd such that∫

Ω
divw qh
∥w∥1

≥ Cd∥qh∥0. (3.8)

Let Ih : V → Vh be the Clément interpolation operator (see [29]). Since the mesh is regular, this operator satisfies that for
T ∈ Th and ℓ ⊂ Th,

∥w − Ihw∥m,T ≤ Chr−m
T ∥w∥r,ωT , r = 0, 1, m = 0, . . . , r

∥w − Ihw∥0,ℓ ≤ C |ℓ|1/2∥w∥1,ωℓ
,

(3.9)

with

ωT :=

⋃
N (T )∩N (T ′)̸=∅

T ′, ωℓ :=

⋃
N (ℓ)∩N (T ′)̸=∅

T ′,

where N (ℓ) and N (T ) denote the set of vertices of ℓ and T respectively. We observe that, in particular, ∥w − Ihw∥m ≤

Ch1−m
∥w∥1, and therefore ∥Ihw∥1 ≤ C∥w∥1. Then, by using these estimations and (3.8) we get

|
∫

Ω
div Ih(w) qh|
∥Ih(w)∥1

≥ C
|
∫

Ω
div Ih(w) qh|
∥w∥1

≥ C
(

|
∫

Ω
divw qh|
∥w∥1

−
|
∫

Ω
div (Ih(w) − w) qh|

∥w∥1

)
≥ C1∥qh∥0 − C

|
∫

Ω
div (Ih(w) − w) qh|

∥w∥1
.

Now, for the second term, integrating by parts and taking into account that, for each K ∈ Ch, the constant value of qh is the
same for the four triangles contained in K , and that the functions in V 1

h are continuous in the triangulations Th we can get,
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by using (3.9), that∫
Ω

div (Ih(w) − w) qh =

∑
K∈Ch

∑
T⊂K

∫
T
div (Ih(w) − w) qh =

∑
K∈Ch

∑
T⊂K

∫
∂T
(Ih(w) − w) · n qh

=

∑
K∈Ch

∫
∂K

(Ih(w) − w) · n qh =

∑
ℓ⊂Ch

∫
ℓ

(Ih(w) − w) · n [qh]

≤ Ch1/2
∥w∥1

∑
ℓ⊂Ch

(
∫

ℓ

[qh]2)
1
2 ,

and we conclude the proof. □

These two lemmas show the inf–sup deficiency of the unstable pairs P1Q1 and P1Q0 respectively. In order to get an
stabilized approach we introduce the following operators:

Let be q ∈ L2(Ω), for each K ∈ Ch we denote by χK the characteristic of K . Then, the operator Π0 : L2(Ω) → Q 0
h is defined

such that∫
Ω

Π0(q)χK =

∫
Ω

qχK , ∀K ∈ Ch.

Thus, for any K ∈ Ch, we have Π0(q)|K =
1

|K |

∫
K q.

On the other hand, for the stabilization of the pair P1Q0, we consider for each vertex v of K the local operator Iv defined
in page 110 of [30], i.e., let ωv :=

⋃
{K ∈ Ch : v is a vertex of K } we define Iv : Q → Q0(ωv) as∫

ωv

Iv(p) q =

∫
ωv

p q for any q ∈ Q0(ωv).

Let {ni}1≤i≤N be the set of the nodes of Ch and let {βi}1≤i≤N be the corresponding nodal bases. Then, the operator
Π1 : L2(Ω) → Q 1

h is defined as:

Π1(q) =

N∑
i=1

Ini (q)βi.

From the interpolation theory (see, [29–31]) we can affirm that, these operators Π0 and Π1 satisfy

∥Πlq∥0 ≤ C∥q∥0 and ∥q − Πlq∥0 ≤ Ch∥q∥1, l = 0, 1.

Moreover, we also have the following result

Lemma 3.3. There exists a positive constant C such that

Ch∥∇qh∥0 ≤ ∥qh − Π0qh∥0 ∀qh ∈ Q1.

Ch
1
2 [qh] ≤ ∥qh − Π1qh∥0 ∀qh ∈ Q0.

Proof. see Lemma 2.3 of [11]. □

Therefore, combining this result, Lemmas 3.1 and 3.2 we can infer that

Corollary 3.1. Let V 1
h and Q l

h, l = 0, 1 be the spaces defined above. Then, there exist positive constants C1 and C2 such that

sup
0̸=v∈V1

h

∫
Ω
qh∇ · vh
∥vh∥1

≥ C1∥qh∥0 − C2∥qh − Πlqh∥0 ∀qh ∈ Q l
h, l = 0, 1.

Now, let be C : V × Q → R the bilinear form defined as:

C((u, p), (v, q)) = a(u, v) + b(p, v) + b(q,u) − G(p, q),

where G(p, q) =
∫

Ω
(p − Πk(p))(q − Πk(q)) with k = 1 for the P1Q0 pair and k = 0 for P1Q1.

Hence, the stabilized problem associated to (2.5) can be written as: Find (uh, ph) ∈ V k
h × Q l

h, with k = 1, l = 0 for the
P1Q0 pair and k = 1, l = 1 for P1Q1 element, such that

C((uh, ph), (vh, qh)) = ⟨f, vh⟩V ′×V . (3.10)

Thus, we have the following theorem which states the stabilization of our P1Q1 and P1Q0 cross-grid elements.
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Theorem 3.1. Let (V k
h , S lh) be the spaces with k = 1, l = 0 or k = 1, l = 1. Then, there exists a positive constant C, independent

of h, such that

sup
(vh,qh)∈Vh×Sh

C((uh, ph), (vh, qh))
∥vh∥1 + ∥qh∥0

≥ C (∥uh∥1 + ∥ph∥0) ∀ (uh, ph) ∈ V k
h × Q l

h.

Proof. It is the same proof of Theorem 4.1 in [11]. □

Now, from the classical mixed finite approximations theory (see, for example, [21]), we are in condition to conclude that:

Corollary 3.2. Assume that (u, p) ∈ V ∩ H2(Ω) × Q ∩ H1(Ω) solves the Stokes problem (2.2) and that (uh, ph) is the solution
of the stabilized mixed problem (3.10) with our P1Q1 or P1Q0 cross-grid elements. Then,

∥u − uh∥1 + ∥p − ph∥0 ≤ Ch(∥u∥2 + ∥p∥1).

4. Cross-grid P1Q1 finite element approximation for second order elliptic equations

In this section we consider one of the simplest second order elliptic problems and its mixed formulation, and we propose
a modification of the problem in order to guarantee the convergence with optimal order for the stabilized P1Q1 cross-grid
elements.

The elliptic problem under consideration is: Find p such that⎧⎨⎩−div(∇p) = f in Ω ,

∂p
∂n

= 0 on Γ := ∂Ω.
(4.11)

Inmany applications the variable of interest isu = −∇p, and so amixed finite elementmethod seems to be appropriate in
order to approximate u and p simultaneously. Indeed, themixed formulation of (4.11) is: Find u ∈ H0(div, Ω) and p ∈ L20(Ω)
such that{

(u, v) + b(v, p) = 0 ∀v ∈ H0(div, Ω) ,

−b(u, q) = (f , q) ∀q ∈ L20(Ω) ,
(4.12)

where H0(div, Ω) = {v ∈ (L2(Ω))2 : div (v) ∈ L2(Ω), v · n = 0 on Γ } with the usual norm:

∥v∥2
H := ∥v∥2

0 + ∥div(v)∥2
0.

This problem involves a different differential operator of the Stokes problem, and it is not surprising that stable finite
element approximations to the Stokes problem could not be appropriate for the elliptic. The main difference is that, while in
Stokes the family of elements has only to satisfy the inf–sup conditions, the elliptic problem under consideration has to fulfill
two conditions. In fact, assuming that we have finite element spaces Vh ⊂ H0(div, Ω) and Qh ⊂ L20(Ω) the mixed discrete
problem is: Find uh ∈ Vh and ph ∈ Qh such that{

(uh, vh) + b(vh, ph) = 0 ∀vh ∈ Vh,

−b(uh, qh) = (f , qh) ∀qh ∈ Qh.
(4.13)

It is well known that in order to guarantee the convergence we need that the discrete spaces satisfy the following two
conditions:

(1) ∃α > 0 : ∥vh∥2
0 ≥ α∥vh∥2

H , ∀vh such that: (div vh, qh) = 0, ∀qh ∈ Qh.
(2) The LBB conditions, i.e., there exists β̂ > 0 such that

sup
0̸=vh∈Vh

(div vh, qh)
∥vh∥H

≥ β̂∥qh∥0 ∀qh ∈ Qh.

Since for any function v ∈ (H1(Ω))2 we have that ∥v∥1 ≥ ∥v∥H , it is clear that, if the family of finite elements satisfies the
inf–sup condition (2.6) these also satisfy the LBB condition (2) but not necessary the condition (1), unless div(Vh) = Qh. Now,
we introduce the modification given in [20] in order to guarantee the convergence, with optimal order, when our cross-grid
stabilized finite element P1Q1 is applied. Hence, since ∇(divu) = ∇f , we have the alternative variational formulation of
(4.12): Find u ∈ H0(div, Ω) and p ∈ L20(Ω) such that{

(u, v) + (divu, div v) + b(v, p) = (f , div v) ∀v ∈ H0(div, Ω),

−b(u, q) = (f , q) ∀q ∈ L20(Ω).
(4.14)
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Now, it is clear that this is a well-posed problem and the corresponding discrete approximation: Find uh ∈ Vh and ph ∈ Qh
such that{

(uh, vh) + (divuh, divvh) + b(vh, ph) = (f , divvh) ∀vh ∈ Vh,

−b(uh, qh) = (f , qh) ∀qh ∈ Qh,
(4.15)

is well-posed too if the spaces Vh and Sh satisfy the LBB condition. Now, we consider the spaces V 1
h and S1h , defined in (2.3)

and (2.4) respectively, with V = H0(div, Ω) and Q = L20(Ω). Then, we define the bilinear form D : V 1
h × Q 1

h → R as:

D((uh, ph), (vh, qh)) = (uh, vh) + (divuh, divvh) + b(vh, ph) + b(uh, qh) − G(ph, qh),

the new stabilized problem is: Find (uh, ph) ∈ V 1
h × Q 1

h such that

D((uh, ph), (vh, qh)) = (f , divvh) − (f , qh), ∀(vh, qh) ∈ V 1
h × Q 1

h . (4.16)

First, we observe that

Lemma 4.1. There exist positive constants C1 and C2 such that

sup
0̸=vh∈V1

h

∫
Ω
div vh qh
∥vh∥H

≥ C1∥qh∥0 − C2h∥∇qh∥0 ∀qh ∈ Q 1
h .

Proof. Although the proof follows similar arguments of the proof of Lemma 2.1 in [11], we include it for the sake of
completeness. We know that given any q ∈ L2(Ω) there exists a function u ∈ H1

0 (Ω) ⊂ H0(div, Ω) and a constant Cd
such that divu = q and ∥u∥1 ≤ Cd∥q∥0 and thus, the following inf–sup holds

sup
0̸=v∈H0(div,Ω)

b(v, q)
∥v∥H

≥ βd∥q∥0.

Therefore, given qh ∈ Q 1
h we have that there exists a functionw ∈ H1

0 (Ω) ⊂ H0(div, Ω) such that∫
Ω
divw qh
∥w∥H

≥ βd∥qh∥0. (4.17)

Letwh ∈ Vh be an interpolator ofw such that

∥w − wh∥0 ≤ Ch∥w∥1 and ∥wh∥1 ≤ ∥w∥1,

which can be normalized such that ∥wh∥H = ∥ph∥0. Hence, integrating by parts and using that (w − wh) · n = 0 on Γ , we
obtain ⏐⏐∫

Ω
divwh qh

⏐⏐
∥wh∥H

≥

⏐⏐∫
Ω
divwh qh

⏐⏐
∥wh∥1

≥

⏐⏐∫
Ω
divwh qh

⏐⏐
∥w∥1

≥

∫
Ω
divw qh
∥w∥1

−

⏐⏐∫
Ω
div (w − wh) qh

⏐⏐
∥w∥1

≥ βd∥qh∥0 −

⏐⏐∫
Ω
(w − wh)∇qh

⏐⏐
∥w∥1

≥ βd∥qh∥0 − Ch∥∇qh∥0,

(4.18)

and the proof concludes. □

Therefore, we can infer the following result

Theorem 4.1. There exists a positive constant C, independent of h, such that

sup
(vh,qh)∈V1

h ×Q 1
h

D((uh, ph), (vh, qh))
∥vh∥H + ∥qh∥0

≥ C(∥uh∥H + ∥ph∥0) ∀ (uh, ph) ∈ V 1
h × Q 1

h .

Proof.
Given any ph ∈ Q 1

h , we can consider a function w such that (4.17) holds, and let wh be its corresponding interpolator
satisfying (4.18). Hence, from Lemma 4.1, for any α ∈ Rwe have that:

D((uh, ph), (uh − αwh, −ph)) = ∥uh∥
2
H − α(uh,wh)H − αb(wh, ph) + G(ph, ph)

≥ ∥uh∥
2
H + ∥(I − Π0)ph∥2

0 − α∥uh∥H∥wh∥H + α(C1∥ph∥0 − C2h∥∇ph∥0)∥wh∥H .

On the other hand, since Π0(ph) is constant on each element we have that

h2
∥∇ph∥2

0 =

∑
K⊂Qh

h2
∥∇(ph − Π0(ph))∥2

0,K ≤ CI

∑
K⊂Qh

∥ph − Π0(ph)∥2
0,K = CI∥ph − Π0(ph)∥2

0,
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Fig. 3. Cavity flow, P1Q0 element: velocity vectors.

where in the last inequality we use the inverse estimate ∥∇qh∥0 ≤ CI
1
h∥qh∥0. Thus, since ∥wh∥H = ∥ph∥0 we have that

D((uh, ph), (uh − αwh, −ph)) ≥ ∥uh∥
2
H + ∥(I − Π0)ph∥2

0 + αC1∥ph∥2
0

− α∥uh∥H∥ph∥0 − αC∥(I − Π0)ph∥0∥ph∥0.

Hence, using the arithmetic–geometric inequality ab ≤
1

2ϵ2
a2 +

ϵ
2b

2 valid for all ϵ > 0, we can write

D((uh, ph), (uh − αwh, −ph)) ≥ (1 − K1α)∥uh∥
2
H + (1 − K2α)∥(I − Π0)ph∥2

0 + αK3∥ph∥2
0,

for some positive constants K1, K2 and K3. Then, we can choose an appropriate α > 0 such that

D((uh, ph), (uh − αwh, −ph)) ≥ C(∥uh∥
2
H + ∥(I − Π0)ph∥2

0 + ∥ph∥2
0)

≥ C(∥uh∥H + ∥ph∥0)2.

On the other hand, since ∥uh − αwh∥H ≤ ∥uh∥H + C∥wh∥H = ∥uh∥H + C∥ph∥0, taking vh = uh − αwh and qh = −ph, we
get

D((uh, ph), (vh, qh))
∥vh∥H + ∥qh∥0

≥ C(∥uh∥H + ∥ph∥0),

and the result follows. □

Therefore, by similar arguments to those given above for the Stokes problem, we can infer that

Corollary 4.1. Assume that (u, p) ∈ V ∩ H2(Ω) × Q ∩ H1(Ω) solves the elliptic problem (4.12) and that (uh, ph) is the solution
of the stabilized mixed problem (4.16). Then,

∥u − uh∥H + ∥p − ph∥0 ≤ Ch(∥u∥2 + ∥p∥1).

Remark 4.1. Let us notice that for cross-gridmeshes our P1Q1 stabilized element has the same optimal order of convergence
as the P1P1 stabilized element, with the advantage that our element requires one less pressure node in each rectangle.

5. Numerical results

5.1. The Stokes problem

We present in this section some numerical results obtained with the P1Q0 and the P1Q1 cross-grid mixed finite elements
on two test cases of the Stokes problem.

The first example is the classical lid-driven cavity flow problem in Ω = (0, 1) × (0, 1) with constant velocity u = (1, 0)
in the top lid {y = 1 , 0 < x < 1} and homogeneous Dirichlet conditions in the rest. In this flow problemwe consider f = 0,
and we took µ = 0.1.

We solved this problem first with the P1Q0 and the P1Q1 mixed elements (which are unstable) and then with P1Q0 and
P1Q1 stabilized. Both elements, with and without stabilization, produced correct velocity solutions, which are plotted in
Figs. 3 and 4.
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Fig. 4. Cavity flow, P1Q1 element: velocity vectors.

Fig. 5. Cavity flow, P1Q0 element: 3D view of the pressure.

Fig. 6. Cavity flow, P1Q0 element with stabilization: 3D view of the pressure.

As we proved in Lemma 4.1 of [1], a clear nodal checkerboard mode phenomenon can be seen in the solution of the P1Q1
element (see Figures 7 and 9 in [1]). Likewise, Fig. 5 presents a three-dimensional view of the pressure solution in the P1Q0
case, which shows the nodal nature of the spurious pressure mode as we predicted by Lemma 2.1.
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Fig. 7. Cavity flow, P1Q1 element with stabilization: 3D view of the pressure.

Table 1
Errors for the approximation of the solution (u, p) by P1Q0 and P1Q1 stabi-
lized elements (second example).

N P1Q0 P1Q1

∥u − uh∥1 ∥p − ph∥0 ∥u − uh∥1 ∥p − ph∥0

10 1.6726 0.3001 1.6285 0.3878
15 1.0978 0.2012 1.0938 0.2162
20 0.8239 0.1801 0.8239 0.1298
25 0.6626 0.1514 0.6736 0.0788
30 0.5749 0.1021 0.5521 0.0541

Fig. 8. P1Q0 element: 3D view of the pressure (second example).

Table 2
Errors in the approximation of the solution (u, p) by P1Q1 stabilized elements
for the modified elliptic problem.

N P1Q1

∥u − uh∥1 ∥p − ph∥0

10 0.8446 0.5812
15 0.5628 0.3578
20 0.4216 0.2250
25 0.3373 0.1357
30 0.2810 0.0652

On the other hand, the pressure solutions obtained with our stabilization procedure, for the two elements P1Q0 and P1Q1,
are shown in Figs. 6 and 7 respectively, where we can observe that stability has been reached.
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Fig. 9. P1Q0 element with stabilization: 3D view of the pressure (left)—velocity vectors (right) (second example).

Fig. 10. P1Q1 element: 2D view of the pressure (second example).

Fig. 11. P1Q1 element with stabilization: 3D view of the pressure (left)—velocity vectors (right) (second example).

The second example is given by taking Ω = (0, 1)× (0, 1), u = (20xy3, 5x4 −5y4) and p = 12x2y−4y3 −1 and replacing
them in the Stokes equations (2.1) in order to obtain the source f. The purpose of this second example, in which we know
the analytical solution, is, in particular, to estimate convergence rates. As an example, we show the figures corresponding
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Fig. 12. P1Q0 element: log(∥u − uh∥1) (right) and log(∥p − ph∥0) (left) versus log(h) (second example).

Fig. 13. P1Q1 element: log(∥u − uh∥1) (right) and log(∥p − ph∥0) (left) versus log(h) (second example).

Fig. 14. P1Q1 element: velocity vectors for the elliptic problem.

to a uniform mesh of 25 × 25 rectangular elements for the pressure approximation. Again, a typical nodal checkerboard
mode phenomenon can be seen in Fig. 8 when the cross-grid P1Q0 elements are used. The velocity vector and the pressure
for the P1Q0 stabilized approximation are shown in Fig. 9. Analogous behavior can be observed for the P1Q1 approximation,
see Figs. 10 and 11.
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Fig. 15. P1Q1 element for the elliptic problem (4.13), 3D view of the pressure.

Fig. 16. P1Q1 element for the modified elliptic problem (4.14), 3D view of the pressure: without (left) and with (right) stabilization.

Fig. 17. P1Q1 element: log(∥u − uh∥1) (right) and log(∥p − ph∥0) (left) versus log(h).

Moreover, with the objective of estimating the rates of convergence we solve this problem for N = 10, 15, 20, 25, 30,
where N denotes the number of subdivisions of each boundary used in order to construct the quadrilateral mesh. The
corresponding P1Q0 and P1Q1 errors, for the velocity in H1 norm and the pressure in L2 norm, are shown in Table 1. We
observe that the error ∥u − uh∥1 for the continuous P1Q1 and discontinuous P1Q0 pressure elements are almost the same.
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Fig. 12(a) and (b) shows plots of log(∥u − uh∥1) and log(∥p − ph∥0) versus log(h), where h =
1
N , for the P1Q0 stabilized

method. The numerical order, obtained by means of least-squares fitting, for the velocity error in H1 norm is 0.99 and 0.91
for the L2 error of the pressure. On the other hand, Fig. 13(a) and (b) shows plots of log(∥u−uh∥1) and log(∥p− ph∥0) versus
log(h), for the P1Q1 stabilized method. The numerical order for the velocity error in H1 norm is in this case 0.99 and 1.89 for
the L2 error of the pressure.

5.2. The elliptic problem

In this section we show a numerical example of the application of our P1Q1 stabilized cross-grid mixed finite elements to
the mixed problem (4.14).

In this example we take Ω = (0, 1) × (0, 1) and p(x, y) = cos(πx) cos(πy), i.e., f = 2π2 cos(πx) cos(πy), and solve the
problems (4.13) and (4.15) using a uniform grid of 25 × 25 elements. The velocity, which is correct in all approximations
under consideration, is shown in Fig. 14. The behavior of the pressure for the original problem (4.13) is shown in Fig. 15. On
the other hand, the pressures obtained for the modified problem (4.15), without and with stabilization, are shown in Fig. 16
(left) and (right) respectively.

We also solve this problem for N = 10, 15, 20, 25, 30. The corresponding errors in H1 norm for the velocity and in L2
norm the pressure, are shown in Table 2. Fig. 17(a) and (b) shows plots of log(∥u − uh∥1) and log(∥p − ph∥0) versus log(h),
where h =

1
N , for the P1Q1 stabilizedmethod. The numerical order, obtained bymeans of least-squares fitting, for the velocity

error in H1 norm is 1.01 and 1.91 for the L2 error of the pressure.
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