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Carlos Héctor Daniel Alliera1 and Pablo Amster1, 2

1Departamento de Matemática, FCEyN - Universidad de Buenos Aires, Pabellón I, Ciudad
Universitaria, Buenos Aires, Argentina. E-mails: pamster@dm.uba.ar calliera@dm.uba.ar

2IMAS-CONICET

Abstract

Using topological degree theory, we prove the existence of positive periodic solutions of a system of
delay differential equations for models with feedback arising on regulatory mechanisms in which self-
regulation is relevant, e.g. in cell physiology. We study different models based on the cycle of testosterone
and generalizations. The method in the present work allows to analyze and extend known results from
a different perspective, shortening proofs and giving an alternative approach for the study of complex
models.

Keywords: Systems of DDEs; Periodic solutions; Models with feedback.

1 Introduction

Figure 1: A system with feedback

Self-regulatory models are common in nature, as de-
scribed e.g. in [8, 11, 13]. To fix ideas, let us
consider a system made up of a number of glands
as a motivation. Each gland secretes a hormone
that allows secretion in the next gland, which suc-
cessively generates another hormone to stimulate the
next one and so on. In the end, a final hor-
mone is released which, by increasing its concen-
tration, inhibits the secretion of previous hormones
that allowed the production process. This gen-
erates the decay of the hormone to a minimum
threshold that re-activates the cycle again. A sim-
ilar behavior can be observed in other biochemi-
cal processes, such as enzymatic or bacterial mod-
els.
In many of these processes, it makes sense to con-
sider the existence of delays in time. For exam-
ple in [3], a model is proposed that establishes in
relation to the hours of response between an in-
crease in GnRH (Gonadotropin-releasing hormone) se-
cretion and a pituitary FSH (Follicle-stimulating hor-
mone) response under dietary treatment or minutes
for responses to sociosexual signs as we can see in
[7].

The existence of periodic solutions is an important issue
in a large number of biological problems, e.g. population
dynamics. There exists a wide literature providing different methods of analysis [8, 9, 11, 2]. Here, we shall make use
of the Brouwer topological degree in order to obtain sufficient conditions for the existence of periodic solutions in a
model that generalizes a hormonal cycle. Specifically, our result arises on the fact that the feedback structure of the
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model induces, when the system is autonomous, the existence of a positive equilibrium. We shall prove that if the
parameters of the model are not necessarily constant but periodic functions with a fixed period, then the system has
a positive solution with the same period.

Brouwer’s topological degree is a useful tool to find zeros of a continuous function f defined over the closure of a
bounded open subset of the n-dimensional space; in particular, it can be used to obtain equilibria in a wide variety of
models with constant parameters. Its extension for compact perturbations of the identity, i. e. f(x) := x−K(x) with
K compact, is due to Leray and Schauder and, as we shall see, it can be employed to prove the existence of periodic
solutions of some of the mentioned models.
In this work, we study the existence of periodic solutions for a general model with feedback, namely the following
system of delay differential equations:

dx0
dt

= F (t, xn(t− τ0))− b0(x0(t)),

dxj
dt

= Gj(t, xj−1(t− εj), xn(t− τj))− bj(xj(t)), 1 ≤ j ≤ n− 1

dxn
dt

= H(t, xn−1(t− εn))− bn(xn(t))

. (1)

Here τi and εj , with 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n are fixed non negative delays in time.

Throughout this paper, it shall be assumed that the model satisfies the following features:

1. F,H : R × [0,+∞) → [0,∞) and Gj : R3 → [0,∞) with j = 1, . . . , n − 1 are continuous and θ−periodic in the
first coordinate for some fixed period θ > 0.

2. bi : [0,+∞)→ [0,+∞) is a strictly increasing function with bi(0) = 0 for i = 0, . . . , n.

3. F is nonincreasing in its second coordinate with F (t, x) > 0 for all x ≥ 0 and Im(F ) ⊆ Im(b0).

4. H is nondecreasing in its second coordinate with H(t, x) > 0 for all x > 0 and Im(H) ⊆ Im(bn).

5. Gj is nondecreasing in its second coordinate and nonincreasing in its third coordinate, with Gj(t, x, y) > 0 for
x > 0 and Im(Gj) ⊆ Im(bj), for j = 1, . . . , n− 1.

Our main result reads:

Theorem 1. Assume that the previous conditions 1-5 hold. Then system (1) has at least one θ−periodic solution
u = (x0, x1, ..., xn) such that xk(t) > 0 for all t and all k.

The paper is organized as follows. In the next section, we introduce a general setting of the abstract problem in the
context of topological degree theory and give a proof of our main theorem. Moreover, we present an example based on
a model of testosterone secretion in which the abstract result applies. In section 3, we present two alternative models
for which our main theorem cannot be applied, so the method is adapted in order to prove the existence of periodic
solutions. Finally, in the last section we summarize the results of this paper and discuss possible generalizations and
future lines of research.

2 Existence of positive periodic solutions

We shall apply the continuation method in the positive cone

K := {u ∈ Cθ : x0, x1, ..., xn ≥ 0},

where Cθ is the Banach space of continuous θ− periodic functions

Cθ := {u ∈ C(R,Rn+1) : u(t) = u(t+ θ) for all t}

equipped with the standard uniform norm. Consider the linear operator L : C1 ∩ Cθ → Cθ given by Lu := u′ and the
nonlinear Nemiskii operator N : K → Cθ defined as the right-hand side of system (1).

For convenience, the average of a θ-periodic function u, namely u := 1
T

∫ T
0
u(t) dt, shall be denoted by u. Also, we shall

employ the notation umax and umin to refer to its absolute maximum and minimum values respectively. Identifying
Rn+1 with the subset of constant functions of Cθ, we may define the function φ : [0,+∞)n+1 → Rn+1 given by
φ(x) := Nx, that is:

2



φ(x0, x1, ..., xn) =

(
1

θ

∫ θ

0

F (t, xn) dt− b0(x0),
1

θ

∫ θ

0

G1(t, x1, xn) dt− b1(x1), . . . ,
1

θ

∫ θ

0

H(t, xn−1) dt− bn(xn)

)
.

The following continuation theorem can be easily deduced from the standard topological degree methods (see e.g. [1]).

Theorem 2. Assume there exists Ω ⊂ K◦ open and bounded such that:

a) The equation Lu = λNu has no solutions on ∂Ω for 0 < λ < 1.

b) φ(u) 6= 0 for all u ∈ ∂Ω ∩ Rn+1.

c) deg(φ,Ω ∩ Rn+1, 0) 6= 0, where ‘deg’ denotes the Brouwer degree.

Then (1) has at least one solution in Ω.

Proof of Theorem 1

In order to apply the continuation theorem, let us firstly obtain a priori bounds for the solutions of the system
Lu = λNu with λ ∈ (0, 1]. These bounds will yield an appropriate choice of a subset Ω containing all possible
solutions; thus, the degree computation below and Theorem 2 will imply that a solution effectively exists for λ = 1.
For convenience, we shall employ the notation t∗ (resp. t∗) to express the values in which an absolute maximum (resp.
minimum) of each of the different functions is achieved.
To this end, let u = (x0, x1, ..., xn) ∈ K be such a solution and suppose, in the first place, that x0 achieves its absolute
maximum x0max at some value t∗. Then x′0(t∗) = 0 and hence

b0(x0max) = F (t∗, xn(t∗ − τ0)) ≤ F (t∗, 0).

Fixing a constant M0 > maxt∈R b
−1
0 (F (t, 0)), we conclude that x0max <M0. Next, denote again by t∗ the value for

which the absolute maximum of x1 is achieved, then

b1(x1max) = G1(t∗, x0(t∗ − ε1), xn(t∗ − τ1)) ≤ G1(t∗, x0max, 0) ≤ G1(t∗,M0, 0).

Thus, we may fix a constant M1 > maxt∈R b
−1
1 (G1(t,M0, 0)) and hence x1max < M1. In the same way, for j =

2, . . . , n− 1 we fix constantsMj > maxt∈R b
−1
j (Gj(t,Mj−1, 0)) so xj(t) <Mj for all t. For the last equation, suppose

that xn achieves its absolute maximum at some t∗, then

bn(xnmax) = H(t∗, xn−1(t∗ − εn)) ≤ H(t∗,Mn−1).

Thus we may fix a constant Mn > maxt∈R b
−1
n (H(t,Mn−1)) and conclude that xnmax <Mn.

In order to obtain lower bounds, assume firstly that x0 achieves its absolute minimum x0min at some t∗, then as before
x′0(t∗) = 0, which implies:

b0(x0min) = F (t∗, xn(t∗ − τ0)) ≥ F (t∗,Mn) > 0.

Then, choosing a positive constant m0 < mint∈R b
−1
0 (F (t,M0)) it is seen that x0min > m0. In the same way, we fix

mj > 0 is such that mj < b−1
j (Gj(t,mj−1,Mn)) for all t and conclude that xj(t) > mj for all t and 1 ≤ j ≤ n − 1.

Finally, fix a positive constant mn such that mn < b−1
n (H(t,mn−1)) for all t, then xn(t) > mn for all t.

In other words, the first condition of the continuation theorem is satisfied over the set

Ω := {(x0, x1, ..., xn) ∈ K : m0 < x0(t) <M0, ...,mj < xj(t) <Mj , ...,mn < xn(t) <Mn for all t, 1 ≤ j ≤ n− 1}.

On the other hand, observe that Q := Ω ∩ Rn+1 = (m0,M0)× . . .× (mn,Mn), so we shall study the behaviour of the
mapping φ over the faces of Q.
Let x ∈ Q and suppose x0 = m0, then there exists t̂ such that

φ0(x) =
1

θ

∫ θ

0

F (t, xn) dt− b0(m0) = F (t̂, xn)− b0(m0) > F (t̂, xn)− F (t̂,Mn) ≥ 0.

Similarly, if x0 =M0, then

φ0(x) =
1

θ

∫ θ

0

F (t, xn) dt− b0(M0) = F (t̃, xn)− b0(M0) < F (t̃, xn)− F (t̃, 0) ≤ 0.

In the same way, for all j = 1, .., n− 1 if xj = mj or xj =Mj then

φj(x) =
1

θ

∫ θ

0

Gj(t, xj−1, xn) dt− bj(mj) = Gj(t̂, xj−1, xn)− bj(mj) ≥ G(t̂,mj−1,Mn)− bj(mj) > 0,
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φj(x) =
1

θ

∫ θ

0

Gj(t, xj−1, xn) dt− bj(Mj) = G(t̃, xj−1, xn)− bj(Mj) ≤ G(t̃,Mj−1, 0)− bj(Mj) < 0

respectively. Finally,

φn(x0, . . . , xn−1,mn) =
1

θ

∫ θ

0

H(t, xn−1) dt− bn(mn) = H(t̂, xn−1)− bn(mn) ≥ H(t̂,mn−1)− bn(mn) > 0,

and

φn(x0, . . . , xn−1,Mn) =
1

θ

∫ θ

0

H(t, xn−1) dt− bn(Mn) = H(t̃, xn−1)− bn(Mn) ≤ H(t̃,Mn−1)− bn(Mn) < 0.

We deduce that the second condition of the continuation theorem is fulfilled. Moreover, if we consider the homotopy
h : Q× [0, 1]→ Rn+1 given by

h(x, λ) := (1− λ)(p− x) + λφ(x)

where

p :=

(
M0 + m0

2
, . . . ,

Mn + mn
2

)
then h 6= 0 on ∂Q × [0, 1]. Indeed, if h(x, λ) = 0 for some x = (x0, x1, ..., xn) ∈ ∂Q, then suppose for example that
x0 =M0. Hence

0 = h0(x, λ) = (1− λ)

<0︷ ︸︸ ︷
m0 −M0

2
+ λ

<0︷ ︸︸ ︷
φ0(M0, x1, ..., xn) < 0,

a contradiction. The other cases follow similarly. By the homotopy invariance of the Brouwer degree, we conclude that

deg(φ,Q, 0) = deg(p− Id,Q, 0) = (−1)n+1

and the proof is complete. �

Remark 1. The previous proof does not depend on the choice of the delays; in particular, the result is also true for the
non-delayed case. Observe also that, when the system is autonomous, the assumptions imply the existence of a positive
equilibrium, which is a solution in K. Thus, roughly speaking, the previous result shows that certain conditions, which
imply the existence of a positive equilibrium for the autonomous case, also imply the existence of θ-periodic solutions,
provided that the constant parameters of the model are replaced by θ-periodic functions. In the autonomous case, it is
known that the presence of delays may cause the appearance of non-constant periodic solutions; thus, it is expected that
extra solutions for the non-autonomous case might be obtained under appropriate relations between θ and the delays.

2.1 Example: Model of Testosterone Secretion

As a motivation, let us consider the following system described in [14] and [6], which is based on a model proposed by
Smith [15] and motivated the general abstract model developed in this work.

Let us consider the model shown in Figure 2 for the cycle of the

Testosterone hormone (see [13]), where the different variables

denote the concentrations at time t of the Luteinising Hormone

(LH), which is represented by R(t), from hypothalamus,

Luteinising Hormone Releasing Hormone (LHRH), represented

by L(t), from Pituitary gland and Testosterone Hormone (TH)

from Testes in man, represented by T (t).

A general autonomous model describing the biochemical

interaction of the hormones LH, LHRH and TH in the male

is presented.

The model structure consists of a negative feedback sys-

tem of three delay differential equations. It is worthy to notice

that high levels of T affect the concentration of R and L. Figure 2: Hormone Testosterone cycle
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dR

dt
= F (t, T (t− τ0))− b0(R(t)),

dL

dt
= g1(R(t− τ1), T (t− τ2))− b1(L(t)),

dT

dt
= g2(L(t− τ3))− b2(T (t)).

(2)

This model has the form (1) and conditions 1-5 are satisfied if bi, F and gj are positive continuous functions for
i = 0, 1, 2 and j = 1, 2 with g1 nondecreasing in its first variable and nonincreasing in the second one, g2 nondecreasing,
the delays τi ≥ 0 are constant and F is θ-periodic in t and strictly decreasing in T with

F (t, 0) ≤ lim
x→+∞

b0(x), lim
x→+∞

gi(x) ≤ lim
x→+∞

bi(x) i = 1, 2.

With this structure, Murray [13] proposed in 1989 a simpler non-delayed autonomous system, with:

bi(x) = βix, βi > 0, g1(x, y) = α1x, g2(x) = α2x, αj > 0, F (x) =
κ1

κ2 + xm
, m ∈ N, τi = 0

where κj > 0 are constants. The functions gj are related to the rates for productions of L and T and bi are the
respective decay rates in the blood stream. It is assumed that each of these hormones is cleared from blood stream
according to first order kinetics (see [6]). Here, the existence of a (unique) positive equilibrium is trivially proved.
Our result implies that if κ1 and κ2 are replaced by θ-periodic positive functions, then at least one θ-periodic solution
necessarily exists for arbitrary positive delays.

3 Alternative models

In what follows, we shall analyse non-autonomous versions of two models proposed by Greenhalgh [10] and Liu [12]
respectively. Slight differences with respect to the model presented in the previous section imply that our main existence
result is not directly applicable; however, we will find suitable conditions in order to prove the existence of θ-periodic
solutions.

3.1 A new concentration: Leydig cells

In 1990, Liu and Deng [12] proposed the following 4-dimensional model taking into account the number of interstitial
Leydig cells, which produce testosterone in the presence of luteinizing hormone:

dR

dt
=

a0 + a1R(t) + a2R(t)2

1 + b1T (t) + b2T (t)2 + c1R(t) + c2R(t)2
− d0R(t),

dL

dt
=

a3 + a4R(t)

1 + b3T (t) + c3R(t)
− d1L(t),

dT

dt
= k1 + k2L(t) +

k3 + k4L(t)

1 + k5L(t)
G(t)− d2T (t),

dG

dt
=

k6L(t)

1 + k7L(t) + qR(t)T (t)
− d3G(t).

(3)

Here, G is the number of effective Leydig cells. Because of its small rate of proliferation, G is considered in [12] as
a quasi-steady state so the system is reduced to a 3-dimensional system, although this assumption shall not be made
in the present work. According to [12], this model does not require any delay because experiments had shown that
hormone interactions are immediate; however, our proof can be adapted for the delayed case as well. As before, we
shall replace the constant parameters by positive θ−periodic functions.

Proposition 1. Assuming that the parameters of (3) are θ−periodic positive continuous functions, then the system
has a θ−periodic positive solution.

Proof. If Lu = λNu with u = (R,L, T,G) and 0 < λ < 1, then we obtain, for R(t∗) = Rmax,

d0(t∗)Rmax ≤
a0(t∗) + a1(t∗)Rmax + a2(t∗)R2

max

1 + c1(t∗)Rmax + c2(t∗)R2
max

< CR (4)
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for some positive constant CR, so we may consider R :=
CR
d0min

.

Moreover, if G reaches its maximum value at some t∗, then from the last equation we obtain:

d3(t∗)Gmax <
k6(t∗)

k7(t∗)
,

that is,

Gmax < G :=

(
k6
k7d3

)
max

.

In the same way, we obtain bounds for L from the second equation, denoting again by t∗ the value in which Lmax is
achieved:

d1(t∗)Lmax <
a3(t∗) + a4(t∗)R(t∗)

1 + c3(t∗)R(t∗)
≤ CL,

for some CL depending on the parameters, that is,

Lmax < L :=
CL
d1min

.

Regarding T , we employ the third equation:

d2(t∗)Tmax ≤ k1(t∗) + k2(t∗)L(t∗) +
k3(t∗) + k4L(t∗)

1 + k5(t∗)L(t∗)︸ ︷︷ ︸
≤KT

G(t∗) < k1max + k2maxL+KTG := CT .

In other words,

Tmax < T :=
CT

d2 min

Lower bounds are obtained similarly. Starting from the second equation, assume that L reaches a minimum at some
t∗ > 0, then

d1(t∗)Lmin >

(
a3

1 + b3T + c3R

)
min

:= cL.

Thus,

Lmin > l :=
cL

d1max

.

In the same way, from the third equation we deduce:

Tmin > t :=

(
k2
d2

)
min

l +

(
k1
d2

)
min

.

Next, suppose that G achieves its minimum value at some t∗, then

d3(t∗)Gmin >
k6(t∗)l

1 + k7(t∗)L+ q(t∗)RT
,

which implies

Gmin > g :=

(
k6l

d3(1 + k7L+ qRT )

)
min

.

Finally, a lower bound for R is obtained from the first equation:

Rmin >

(
a0

d0(1 + b1T + b2T 2 + c1R+ c2R2)

)
min

.

Direct computation shows that if φ and Q are defined as in the preceding section, then

deg(φ,Q, 0) = ±1

and the continuation theorem applies.
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Models (2) and (3) were proposed to improve a different system which had been considered by Cartwright-Husein [5],
according to which, when concentration of LH decays, the rate of testosterone production declines. When concentrations
of LH and T decay below a certain level, the production of LHRH from hypothalamus is switched on again. In order
to describe this mechanism, the referred paper [5] employed a Heaviside step function for their system,; however, in a
later work, Liu and Deng questioned the validity of this model because ‘it is hard to give a physical or physiological
meaning to the Heaviside step function in the above models, because there are two negative terms in the argument of
the step function, we find it hard to imagine that they represent the threshold value of negative feedback.’ (see [12]. The
model is also discussed and criticized in [10]).
A more realistic situation is presented in the next example.

3.2 A more realistic model

To describe the population dynamics of testosterone cycle, Greenhalgh-Khan [10] introduced a model based on exper-
imental evidence:

dR

dt
=

b1R(t)

(L(t) + b3T (t))k
− b2R(t),

dL

dt
=

c1R(t)kL(t)

R(t)k + b5T (t)k
− c2L(t),

dT

dt
= (b6L(t− τ)− b4)T (t).

(5)

Here, we shall assume that the parameters of (5) are θ−periodic positive continuous functions.

Proposition 2. Assume that k, bi and cj are strictly positive continuous θ−periodic functions with

c1(t) > c2(t) and

∫ θ

0

c2(t) dt+ ln

(
b4
b6

)
max

<
1

k
ln

(
b1
b2

)
min

.

Then the system admits at least one positive θ−periodic solution.

Proof. In the abstract setting of Theorem 2 observe that if Lu = λNu for u := (R,L, T ) ∈ K◦ and λ ∈ (0, 1) then

R′(t) > −b2(t)R(t), L′(t) > −c2(t)L(t), T ′(t) > −b4(t)T (t).

By periodicity, we may fix t∗ < t∗ with t∗ − t∗ < θ such that R(t∗) = Rmin and R(t∗) = Rmax. Integrating the
inequality (lnR)′(t) > −b2(t) between t∗ and t∗ we deduce:

Rmax < eB2Rmin

where B2 :=
∫ θ
0
b2(t) dt. Similarly we obtain:

Lmax < eC2Lmin, Tmax < eB4Tmin

with

C2 :=

∫ θ

0

c2(t) dt, B4 :=

∫ θ

0

b4(t) dt.

Moreover, taking a critical point ξ of the function T , it is seen from the third equation that

L(ξ − τ) =
b4
b6

(ξ)

and hence:

Lmin ≤
(
b4
b6

)
max

and Lmax ≥
(
b4
b6

)
min

.

Consequently,

Lmax < eC2Lmin ≤ eC2

(
b4
b6

)
max

:= L

and

Lmin > e−C2Lmax ≥ e−C2

(
b4
b6

)
min

:= l
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In the same way, observe from the first equation that, for some value (which we call again ξ),(
b1(ξ)

b2(ξ)

)1/k

= L(ξ) + b3(ξ)T (ξ).

Thus we deduce:

Tmax < eB4Tmin ≤ eB4


(
b1
b2

)1/k
− l

b3


max

:= T

Tmin > e−B4Tmax ≥ e−B4


(
b1
b2

)1/k
− L

b3


min

:= t

We remark that t > 0, because
b1
b2

(t) > Lk for all t. Finally, take the second equation and observe as before that, for

some ξ,
c1(ξ)R(ξ)k

R(ξ)k + b5(ξ)T (ξ)k
= c2(ξ),

that is
(c1(ξ)− c2(ξ))R(ξ)k = c2(ξ)b5(ξ)T (ξ)k.

Since c2(t) < c1(t) for all t, it follows that

Rmax < eB2Rmin ≤ eB2

(
c2b5
c1 − c2

)1/k

max

T := R,

Rmin > e−B2Rmax ≥ e−B2

(
c2b5
c1 − c2

)1/k

min

t := r > 0.

In order to complete the proof, let us proceed as we did in the proof of our main theorem. Define φ as before over the
set

Q := {(R,L, T ) ∈ R3 : r ≤ R ≤ R, l ≤ L ≤ L, t ≤ T ≤ T }.
It is directly verified that

φ3(R,L, T ) =
1

θ

∫ θ

0

T (b6(t)L − b4(t)) dt = T

(
b6e

C2

(
b4
b6

)
max

− b4
)
> 0

because, in virtue of Cauchy’s mean value theorem, there exists ξ such that b4
b6

= b4(ξ)
b6(ξ)

≤
(
b4
b6

)
max

. In the same way,

it is deduced that

φ3(R, l, T ) =
1

θ

∫ θ

0

T (b6(t)l− b4(t)) dt = T

(
b6e
−C2

(
b4
b6

)
min

− b4
)
< 0.

Next, we verify that

φ1(R,L, T ) =
R

θ

∫ θ

0

(
b1(t)

(L+ b3(t)T )k
− b2(t)

)
dt <

R

θ

∫ θ

0

(
b1(t)

(l + b3(t)T )k
− b2(t)

)
dt;

thus, enlarging T if necessary we conclude that φ1(R,L, T ) < 0. On the other hand, since
b1
b2

(t) > Lk we deduce, by

letting t be smaller if necessary, that

φ1(R,L, t) >
R

θ

∫ θ

0

(
b1(t)

(L+ b3(t)t)k
− b2(t)

)
dt > 0.

Finally, let us analyse the second coordinate for (R,L, T ) ∈ Q

φ2(R,L, T ) =
L

θ

∫ θ

0

(c1(t)− c2(t))Rk − c2(t)b5(t)T k

Rk + b5(t)T k
dt.

Since the bounds for T are already fixed and c1(t) > c2(t) for all t, it is seen that

φ(R,L, T ) > 0 for R� 0

and
φ(R,L, T ) < 0 for R� 1.

This means that we may make R larger and r smaller if necessary, and the proof follows as in Theorem 1.
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4 Summary and Discussion

Topological degree was used for proving existence of stable equilibrium in a generic model of glandular cycle. This the-
ory allowed to demonstrate the existence of positive periodic solutions when parameters are replaced by fixed periodic
functions. It is observed that the results are also valid in the absence of delays; however, the study of delayed systems
is of great interest because as shown in [7], in many cases delayed models fit experimental data better, particularly
when feedback is present.

The relevance of finding periodic solutions in biological models like the ones studied in this work relies mainly on the
fact that periodic functions represent natural cycles, such as hormonal processes.
In the literature, there exist many works that study the cycle of testosterone with different models based on experimental
data. We show that topological degree can be successfully applied to find positive periodic orbits for some of these
models in the non-autonomous case. It is worthy mentioning that, for diverse biological cycles, the behaviour is
characterized by models with periodic parameters; thus, the present paper provides a useful mathematical tool to
understand such models.
As mentioned, the existence of θ-periodic solutions in this paper does not depend on the delay but only on the θ-
periodicity of the parameters. When the parameters are constant, the fact that the degree is equal to ±1 implies
the existence of a positive equilibrium which, in particular, is a solution of the problem in the space Cθ. Thus the
method, at this stage, does not give any clue about the existence of (non-constant) periodic solutions. It would be
interesting to prove the existence of such periodic solutions for the autonomous case and investigate the role of the
delay. At first sight topological degree methods might still be effective for these situations, so this might be the topic
of future research. Also, it would be interesting to consider a more general situation, in which the parameters are not
periodic but almost-periodic functions, which attracted the attention of many researchers in the last decades. Here,
the topological degree cannot be used anymore because of the lack of compactness of the associated operator; thus, a
different approach is required, such as the use of fixed points in cones under monotonicity conditions that avoid the
compactness assumption.
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