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a b s t r a c t

The purpose of work presented here was to calibrate and validate a mathematical model based on a
quantitative structure-property relationship for modeling the retention indices (I) of 137 volatile organic
compounds (VOCs) measured in the headspace of rice using a Divinylbenzene-Carboxen-
Polydimethylsiloxane (DVB-CAR-PDMS) fiber in the solid-phase microextraction-gas chromatography-
mass spectrometry (SPME-GC-MS) analysis. The dataset was split into training, validation and test sets
according to the Balanced Subsets Method (BSM). The study was divided into three different steps. In the
first step, 1753 conformation-independent descriptors were considered for modeling. In the second step,
1145 conformation-dependent descriptors were taken into account to obtain a model. Finally, in the last
step both conformation-independent and conformation-dependent descriptors were used to build the
model. A three-descriptor model was retained as the optimal one in all cases. Conformation-dependent
descriptors led to models with no appreciable improvement over those obtained with conformation-
independent descriptors. The final conformation-independent QSPR model was used as a tool for the
quality control of volatile contaminants of rice by predicting the retention indices in a set of 46 rice
contaminants.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Rice (Oriza sativa L.) is one of the cereal grain most produced
around the world, and it is a staple food in several countries
(Fukuda et al., 2014). For this reason, it is necessary to improve the
quality control of crops in order to ensure the optimal organoleptic
characteristics of rice to make it acceptable by consumers (Grimm
et al., 2002). In fact, in cooked rice, it has been observed that
small variations in the sensory properties, especially aroma, pro-
duces changes in the consumers' acceptance (Fukuda et al., 2014).

The aromatic profile of rice is produced by the presence of
different fragrance compounds even in low concentrations. Sensory
studies demonstrated that consumers were able to discriminate
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between different kinds of rice as a function of their aroma (Bryant
and McClung, 2011). Desirable fragrances are produced by strong-
smelling organic chemicals, which elicits a common characteristic
of a pleasant odor. A fragrance substance is usually used as a food
additive to enhance the aromatic profile of processed foods. Among
the rice fragrances, 2-acetyl-1-pyrroline (2-AP) is the main com-
pound generated during the growth of the plant. However, during
post-harvest and storage, the concentration of 2-AP decreases and
the aromatic profile of rice changes (Bryant and McClung, 2011).

Since rice fragrances are volatile organic compounds (VOCs),
that determine its aromatic profile and therefore, its sensory
quality, researchers have focused on the analytical identification of
such compounds. To this end, solid-phase microextraction (SPME)
in conjunction with gas chromatography-mass spectrometry (GC-
MS) has been proven to be an efficient method for analyzing the
aromatic profiles of different varieties of rice (Bryant and McClung,
2011; Grimm et al., 2002). In fact, the SPME-GC-MS technique is
generally used for quantitative determination of the aromatic
profile and impurities of fragrances, as well as for quality control in
order to provide details of aromatic profiles in fewminutes (Bryant
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and McClung, 2011). Fragrances exhibiting high molecular weight
are better retained on fibers containing polydimethylsiloxane
(PDMS) as a stationary phase, while a stationary phase containing
Carboxen (CAR) or divinylbenzene (DVB) is better for the retention
of smaller VOCs. Thus, the fiber containing the DVB-CAR-PDMS
combination has been proved to be adequate for analyzing com-
plex components or fragrances with different polarities, as well as
to deal with high temperatures in the SPME-GC-MS analysis
(Bryant and McClung, 2011; Grimm et al., 2011).

Since the first pioneering studies of the applications of the
quantitative structure-property relationships (QSPR) to chromato-
graphic retention indices (I), there has been an increasing interest
of researchers to use the approach known as Quantitative Struc-
ture-(Chromatographic) Retention Relationships (QSRR) (Kaliszan,
2007). The QSRR models have been proven to be useful to: (1)
predict the retention index of un-evaluated and un-synthesized
compounds and to select drug candidates; (2) prepare chroma-
tography experiments and to optimize the separation of complex
mixtures; (3) understand the molecular mechanism of retention
phenomena; and, (4) design in a rational way new phases with pre-
defined properties (Kaliszan, 2007).

Recently, Fatemi and Malekzadeh (2014) had developed a QSRR
model to predict the I values of 96 volatile compounds identified in
three glutinous rice varieties during four different cooking stages.
Retention indices had been measured by combined GC-MS with a
modified headspace solid-phase microextraction method using the
DB Wax capillary column. The SMILES string notation and a
graphical molecular representation had been used to calculate
molecular descriptors and to perform a linear model with the
CORAL software. The data set was split into training set (n ¼ 70,
R2 ¼ 0:972 and RMSD ¼ 79:5), calibration set (n ¼ 13, R2 ¼ 0:971
and RMSD ¼ 125:6) and test set (n ¼ 13, R2 ¼ 0:952 and
RMSD ¼ 191:6). Moreover, the model was also validated by means
of the leave-one-out cross-validation procedure (R2loo ¼ 0:932), the

Y-randomization procedure (0:0003 � R2 � 0:271), and some other
criteria.

Therefore, the aim of this work was to build a quantitative
structure-property relationship by using the retention indices of
137 VOCs observed in the headspace of rice, keeping in mind the
five principles defined by the Organization for Economic Co-
operation and Development (OECD) to make it applicable
(Organisation for Economic Co-operation and Development, 2007).
To the best of our knowledge, there is no available a retention
index-based QSPR model for the quality control of rice as well as its
use as a tool for predicting the I of contaminants of raw rice. Mo-
lecular geometries were optimized by means of the PM7 semi-
empirical method. Subsequently, the replacement method (RM)
variable subset selection was used to search for an optimal QSPR
model. Moreover, both internal and external validation procedures
were carried out in order to guarantee the predictive capability of
the model, and its applicability domains (AD) were properly
defined. Finally, an explanation of the chemical information of each
molecular descriptors in modeling the I is presented.
2. Materials and methods

2.1. Dataset description and data filtering

Experimental retention indices for 138 main volatile organic
compounds were retrieved from the literature (Grimm et al., 2002).
Among these compounds, some of them do not really belong to the
aromatic profile of rice and are contaminants adsorbed in con-
tainers during the rice storage. Experimental retention indices
were measured by solid-phase microextraction-gas
chromatography-mass spectrometry (SPME-GC-MS) using the
Divinylbenzene-Carboxen-Polydimethylsiloxane (DVB-CAR-PDMS)
fiber for dealing with high temperatures.

The chemical name, CAS number and the retention index of
VOCs were merged using KNIME (Berthold et al., 2008). Subse-
quently, the SMILES (simplified molecular input line entry system)
strings were obtained from both the CAS number and chemical
name using the Chemical Identifier Resolver node. SMILES struc-
tures were verified for the correct match between CAS and struc-
ture. Compounds exhibiting different SMILES were manually
checked on public databases: PubChem, ChemSpider and NIST
Chemistry WebBook.

During the filtering of the dataset, the compound 2,2,4-
trimethylheptane (Cas Number 14720-74-2) was identified as a
duplicate with trimethylheptane. Therefore, the trimethylheptane
compound was excluded and the average I of 878.5 was used as the
retention index for 2,2,4-trimethylheptane. Consequently, 137
compounds were used to build the QSPR model. Details for the
filtering dataset are given in Table A.1.

2.2. Molecular representation and geometry optimization

Compounds were initially optimized by means of the molecular
mechanics force field (MMþ) which was subsequently refined us-
ing the PM7 semiempirical method as implemented in the MOPAC
package (Stewart, 2016). Geometries were considered optimized
when the maximum element of the gradient vector of the total
energy with respect to the atomic coordinates became less than
1 kcal (Å mol)�1.

2.3. Molecular descriptors

Molecular descriptors are used as the structural representation
of optimized molecules in order to develop the QSPR model. De-
scriptors are the final result of a logical and mathematical pro-
cedure that transforms chemical information encoded within a
symbolic representation of a molecule into a numerical quantity or
into the result of some standardized experiment (Todeschini and
Consonni, 2009). Thus, 5239 molecular descriptors were calcu-
lated by means of Dragon software (2016). Such descriptors were
grouped into twenty nine blocks: constitutional indices, functional
group counts, atom-centered fragments, molecular properties, ring
descriptors, topological indices, walk and path counts, connectivity
indices, information indices, 2D matrix-based descriptors, 2D au-
tocorrelations, Burden eigenvalues, P VSA-like descriptors, edge
adjacency indices, CATS2D, 2D atom pairs, atom-type E-state
indices, ETA indices, Randi�c molecular profiles, geometrical de-
scriptors, RDF descriptors, 3D-MoRSE descriptors, WHIM de-
scriptors, GETAWAY descriptors, charge descriptors, 3D matrix-
based descriptors, 3D autocorrelations, 3D atom pairs, and CATS3D.

2.4. Model development

2.4.1. Molecular descriptor selection in MLR
A crucial step in QSPRmodeling is the selection of an optimal set

of molecular descriptors to construct the mathematical multivar-
iate model. The supervised methods of molecular descriptor se-
lection aim to search the most informative descriptors among
thousands of them in order to facilitate the interpretation and
prediction of QSPR models. In this work, the replacement method
(RM) (Duchowicz et al., 2006) variable subset selectionwas used. In
brief, RM is a sequential method that generates d subsets of de-
scriptors from a D pool containing thousands of descriptors. This
selection of descriptors was performed in order to minimize
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(optimize) the root-mean-square deviation (RMSD) in multiple
linear regression (MLR) models.

2.4.2. Model validation
The QSPR model was validated in order to determine its pre-

dictive ability by using a validation set as well as by predicting the
retention index of compounds in a test set. The split of a dataset
should be done in order to achieve similar structure-property re-
lationships in the three sets, that is, molecules in the training set
should be representative of both validation and test set com-
pounds. In this work, the split of the dataset was carried out by
means of the Balanced Subsets Method (BSM) (Rojas et al., 2015a)
based on the k-means cluster analysis (k-MCA). This procedure has
been applied elsewhere under similar situations (Rojas et al., 2015a,
b). In brief, k-MCA creates k-clusters or groups of compounds in
terms of distance metrics (e.g. Euclidean distance), in such a way
that compounds in the same cluster are very similar, and com-
pounds in different clusters are very different. The BSM partition
considerers the experimental property and conformation-
independent molecular descriptors only (after the exclusion of
the linearly correlated descriptors). This was done in order to
consider conformation-independent structure-property relation-
ships during the clustering procedure and to avoid geometry
optimization biases. The steps involved in the BSM partition were:

a) prepare a matrix (C1) that included the experimental
retention indices for the 137 VOCs and the 1753 con-
formationeindependent molecular descriptors.

b) remove the linearly dependent descriptors from C1. The new
size of the reduced matrix C2 was 137 � 136.

c) standardize matrix C2 for centering and scaling its matrix
elements.

d) create N0
train clusters with the 137 compounds through the

keMCA method, for which the C2 standardized matrix was
used together with the Euclidean metrics, and 5000 runs for
optimizing (i.e., minimizing the Euclidean distance) the
keMCA algorithm. This step calculated N0

train cluster centroid
locations with dimensions of 1 � 136.
N0
train ¼ Ntrain � Nmin max, where Ntrain was the number of

molecules in the training set and Nmin max was the number of
compounds having the maximum or minimum retention
index.

e) the training set (Ntrain) was designed by including one
compound per cluster (i.e., the nearer molecule to the
centroid in each cluster). The Nmin max molecules were also
included in the training set in order to avoid model
extrapolations.

f) Create Nval clusters with the remaining N � Ntrain molecules
through the keMCAmethodwith same numerical conditions
as described above. This step calculated Nval cluster centroid
locations.

g) the validation set (Nval) was designed by including one
molecule per cluster (i.e., the nearer compound to the
centroid in each cluster).

h) Finally, the test set (Ntest) included the remainingN � Ntrain �
Nval VOCs.

During the RM variable selection procedure, molecules in the
training set were used to calibrate the model, whereas the valida-
tion set was used for the cross-validation of the model in order to
avoid the presence of overfitting. Finally, the predictive ability of
the selected QSPR model was checked by predicting the retention
index of compounds in the test set.

The QSPRmodel was also validated through the cross-validation
technique of leave-one-out (loo) and leave-many-out (lmo). In the
leave-one-out cross-validation technique, each molecule was
excluded from the model at a time, and then the model was con-
structed and used to predict its property. On the other hand, in the
leave-many-out approach a user-defined percentage of the mole-
cules (20%) are randomly excluded, and the remaining molecules
(80%) are used to calibrate the model and then used to predict the
property of the removedmolecules. The leave-many-out procedure
is based on 50000 iterations.

The Y-randomization approach (Rücker et al., 2007) was applied
in order to evaluate the risk of chance correlation in themodel. This
approach depends on randomly scrambling the experimental
property values in such a way that they do not correspond to the
respective compounds. After analyzing a certain number of cases
(e.g. 10000) of Y-randomization, the quality of the model (R2rand or

RMSDrand) must be of lower quality than model parameters (R2train
or RMSDtrain).

2.4.3. Applicability domain assessment
The merit of a QSPR model is related to the reliability of its

predictions. The applicability domain (AD) is defined as a theoret-
ical space that depends on the nature of the molecular descriptors
and the experimental properties of the molecules (Gramatica,
2007). In other words, the model is confined to a chemical space,
which is defined by the chemical information provided by the
molecules of the training set. The applicability of such a model to
molecules in the test set is then restricted to those compounds that
are structurally similar to compounds present in the training set.
The best way to characterize the AD of a MLR model is the leverage
approach (Eriksson et al., 2003), which is based on the calculation
of a leverage value (hi) for each ith compound, and then to compare
its value to a theoretical warning leverage (h*) value. Consequently,
only molecules falling within this theoretically space are consid-
ered reliable predictions or model interpolations (hi � h*); other-
wise, retention indices of the molecules are considered model
extrapolations or unreliable predictions (hi > h*).

2.4.4. Descriptor interpretation
Another important issue to be addressed in QSPR studies is how

descriptors included in a MLR model are related in their properties.
Since MLR models provide numerical coefficients for each jth
descriptor, the degree of contribution of the selected descriptors
was found by standardizing their regression parameters (bsj ).

Consequently, the larger the absolute value of bsj for a given

descriptor, the greater the importance of such a descriptor in
modeling the experimental property (Draper and Smith, 1981).

2.5. Software

Open Babel (O'Boyle et al., 2011) was used to handle molecular
file formats, while a KNIME workflow (Berthold et al., 2008) was
used for data filtering. The MOPAC package (Stewart, 2016) was
used for the optimization of structures, and molecular descriptors
were computed using Dragon version 7 (2016). Partition of the data
set by means of the BSM, variable selection was accomplished
through the RM approach, and model fitting along with validation
were carried out in MatLab (The MathWorks Inc.), by using tool-
boxes and functions written by the authors.

3. Results and discussion

In order to evaluate the contribution of conformational de-
scriptors in modeling the I property, three datasets were con-
structed. The first dataset contained conformation-independent
descriptors, the second dataset included only conformation-
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dependent descriptors, and the third dataset included both
conformation-independent and conformation-dependent de-
scriptors. Initially, non-informative molecular descriptors were
excluded; that is, descriptors with constant values (descriptors
with all values equal), descriptors with near-constant values (de-
scriptors with only one value different from the remaining ones),
and descriptors affected by missing values.

The BSMwas used to split the original dataset of 137 compounds
into a training set with 46 molecules, a validation set with 46
compounds, and a test set formed by 45 molecules. This partition
guarantees a balanced structure-property design in each of the
three groups. Subsequently, the supervised RM variable subset
selection explored a pool containing (a) 1753 conformation-
independent molecular descriptors, (b) 1145 conformation-
dependent molecular descriptors, and (c) 2898 descriptors that
combined both conformation-dependent and conformation-
independent descriptors.

In the three datasets, the RM procedure explored descriptor
pools for models containing from 1 to 6 molecular descriptors, and
the selection of the optimal model was done by optimizing RMSD in
the validation set, as well as by keeping the model's size as small as
possible according to the principle of parsimony (Ockham's razor)
(Hoffmann et al., 1996). Thus, a three-parametric quantitative
structure-property relationship was retained as the optimal one in
each dataset.

It was found that the parameters for training and validation sets
exhibited a negligible variation among the models of the same size
(d). In fact, when the conformation-dependent and the
conformation-independent descriptors were analyzed together
(see Table A.2), the optimal model became identical to the best
conformation-independent model (see Table 1). In addition, the
best conformation-dependent QSPR model (see Table A.3) did not
reflect any further improvement with respect to the conformation-
independent model. In fact, it was demonstrated elsewhere that
the retention indices measured in non-polar and polar stationary
phases was well predicted by models that include conformation-
independent descriptors only (Rojas et al., 2015a, b). This fact can
be considered an important finding since conformation-
independent QSPR models avoid ambiguities generated by incor-
rect geometry selection of the molecules that exist in various
conformations. Thus, the following three-parametric conforma-
tion-independent QSPR model was selected as the best one for
modeling the I of volatile organic compounds presented in the
headspace of rice:

I ¼ 729:9� 826:1 X0Avþ 29:6 XMODþ 492:2MATS1p (1)

Ntrain ¼ 46; d ¼ 3; R2train ¼ 0:98; RMSDtrain ¼ 67:3; R2ij max

¼ 0:32

Nval ¼ 46; R2val ¼ 0:97; RMSDval ¼ 79:9
Table 1
The best conformation-independent QSPR models selected by the RM variable subset se

d R2train RMSDtrain R2
val

RMSDva

1 0.95 97.9 0.94 99.8
2 0.97 83.3 0.95 90.2
3 0.98 67.3 0.96 79.9
4 0.98 60.7 0.96 78.2
5 0.99 55.4 0.96 81.5
6 0.99 49.9 0.96 78.7
Ntest ¼ 45; R2test ¼ 0:97; RMSDtest ¼ 80

oð3 SÞ ¼ 1; R2loo ¼ 0:97; RMSDloo ¼ 74; R2lmo ¼ 0:98; RMSDlmo

¼ 86; RMSDrand ¼ 353:8

The goodness-of-fit of the present model for the training, vali-
dation and test sets was 98%, 96% and 97%, respectively. Moreover,
the model exhibited good stability in cross-validation leave-one-
out (97%) and leave-many-out, after 50000 iterations for random
data removal (97%). The similar performance in calibration, cross-
validation and prediction indicated the absence of overfitting in
the QSPR model. In addition, the Y-randomization procedure
demonstrated the absence of change correlation in the model
(RMSDrand < RMSDtrain). Other recommended validation criteria
(Golbraikh and Tropsha, 2002) were also evaluated in order to
thoroughly validate the model and to avoid the proposal of an
overoptimistic and perhaps erroneous, “predictive” QSPR model:

R2loo >0:5 ð0:97Þ and R2test >0:6 ð0:97Þ

1� R20
.
R2test <0:11 ð0:000Þ or 1� R

02
0

.
R2test <0:1 ð0:000Þ

0:85 � kð1:03Þ � 1:15 and 0:85 � k
0 ð0:97Þ � 1:15

R2m >0:5 ð0:95Þ
All these parameters are defined in Table A.4, and indicate that a

stable and predictive MLR was achieved for the I of VOCs presented
in the headspace of rice. Numerical data of the predicted retention
indices provided by Eq. (1) are shown in Table A.1, while descriptor
values for the training, validation and test sets are provided in
Table A.5. Fig.1 shows the predicted retention index calculatedwith
Eq. (1) as a function of the experimental I. Moreover, Fig. 2 presents
the dispersion plot between the residuals of the calculated and
experimental retention indices. Both figures indicate that a quan-
titative structure-property relationship with good predictive power
was achieved.

Compound 2-Hexyl-1-octanol exhibited a residual greater than
the limiting value of three standard deviations. After a careful
control of both the chemical structure and the I value from the
source, we are confident that this information is correct. Conse-
quently, the irregular behavior of this outlier may be attributed to
the wide chemical diversity of the VOCs considered in the present
dataset, as well as to specific analytical aspects during the retention
index measurement. For example (Rojas et al., 2015b), the nature of
the sample (e.g. chemical properties, preparation and mechanism
to introduce it in the equipment); the interaction between the
analyzed volatile organic compound and the wall interfaces of the
fiber; the equipment characteristics (e.g. sensitivity, stationary
phase properties and conditions used to measure the I value); and
data processing (e.g. variations associated with peak integration
lection. The optimal model appears in bold.

l R2ij max
molecular descriptors

0.00 SpPos_B(m)
0.04 XMOD, AVS_B(e)
0.32 X0Av, XMOD, MATS1p
0.18 X1sol, SM3_B(s), VE2sign_B(s), MATS1v
0.80 Psi_i_t, X1sol, Xindex, VE2_Dz(Z), MATS1p
0.54 nR06, X1sol, Xindex, BIC0, ATSC1s, nFuranes



Fig. 1. Experimental versus predicted retention indices for VOCs in the headspace of rice. Training molecules are marked with black circles, molecules of the validation set are
marked with white circles, and triangles indicate molecules of the test set.

Fig. 2. Dispersion plot of residuals for the QSPR model. Training molecules are marked with black circles, molecules of the validation set are marked with white circles, and triangles
indicate molecules of the test set.
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and reproducibility of the data).
Eq. (1) shows that the model is described by two connectivity

index descriptors (XMOD and X0Av) and a 2D autocorrelation
descriptor (MATS1p). The maximum coefficient of determination
(R2ij max ¼ 0:32) between X0Av andMATS1p shows a low correlation,

indicating that those descriptors are not collinear and each one
describes different aspects of the retention index mechanism.
Moreover, the contribution of each descriptor in predicting the I of
VOCs in the DVB/CAR/PDMS fiber was evaluated by standardizing
the regression coefficients of the three descriptors: 0.95
(XMOD) > 0.19 (X0Av) > 0.13 (MATS1p).

The modified Randi�c index (XMOD) is a descriptor calculated by
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means of a Randi�c-like formula on an H-depleted graph, which
considers valence electrons and connectivity (Lohninger, 1993). The
Randi�c connectivity index measures the degree of branching and
compactness of molecules and has been shown to be well-
correlated with chromatographic retention times (Rojas et al.,
2015b). Thus, compounds containing a high degree of branching
(i.e., compacted molecules) are related to larger values of XMOD
(synergistic effect). This relationship was previously described by
Yan et al. (2013). On the other hand, the average valence connec-
tivity index of order 0 (X0Av) describes the presence of heteroatoms
in compounds as well as double and triple bonds. This descriptor
has an antagonistic influence on the prediction of the retention
index, and consequently, the I decreases when increasing the
presence of heteroatoms or double and triple bounds in the
molecule. This inverse relationship between X0Av and I was also
described by Riahi et al. (2008). Finally, the Moran autocorrelation
of lag 1 weighted by polarizability (MATS1p) is a descriptor calcu-
lated by applying the Moran coefficient (Moran, 1950) to the H-
filled molecular graph weighted by atomic polarizabilities (p). This
descriptor provides information regarding the distribution of
polarizability along the topological structure of the volatile organic
compounds. In other words, high retention indices are related to
positive values of the Moran coefficient (positive spatial autocor-
relations), that is, VOCs containing atoms with similarly polariz-
ability at lag 1. Fig. 3 shows the distribution of the volatile organic
compounds within the chemical space defined by three molecular
descriptors and the relationship with the retention index property.

The applicability domain assessment provides information
regarding the limitation of the proposed QSPR model; that is, the
limitations of the three molecular descriptors and the retention
index space. Therefore, predictions of the retention index are
restricted only for chemicals exhibiting a leverage value below the
warning leverage of the model (h* ¼ 0.130). There are no test
molecules with leverage values above the warning leverage of the
model, and therefore their predicted retention index can be
Fig. 3. Distributions of VOCs detected in the headspace of rice in the chemical space res
relationship with the retention index property.
considered reliable.
During the analysis of VOCs in the headspace of rice, some

contaminants are detected, such as plasticizer (phthalic acid esters)
and antioxidants (e.g. BHA), which may migrate from the packing
materials used during rice transportation (Grimm et al., 2002).
Other common contaminants detected during rice analysis are the
polycyclic aromatic hydrocarbons (PAHs) (Escarrone et al., 2014; Liu
and Korenaga, 2001; Tao et al., 2006), which are chemicals origi-
nated from an incomplete combustion of fossil fuels. Since PAHs are
widely distributed in the air, soil and water (environmental pollu-
tion), it is inevitable the human exposure to PAHs; particularly in
diet (e.g. cereals and vegetables). In addition, we consider pesti-
cides used in rice cultivars, particularly pyrethroid and carbamate
derivatives (Berg, 2001). Thus, we use the QSPR developed here in
order to predict the retention index of 46 common volatile con-
taminants of rice (see Table 2).

There are 14 compounds exhibiting leverage values higher than
the warning leverage, and consequently lying outside the applica-
bility domain (i.e., they are considered as extrapolations of the
QSPR model). Such compounds are: Tetrachloroethylene, DEHP
plasticizer, three PAHs (Indeno[1,2,3-cd]pyrene, Dibenz[a,h]anthra-
cene, Benzo[g,h,i]perylene), two fungicides (Validamycin A, Propico-
nazole), two herbicides (Fenoxaprop-P-Ethyl, Pyrazosulfuron Ethyl),
and five insecticides (lambda-cyhalothrin, Deltamethrin, Alpha-
methrin, Fipronil, Etofenprox). On the other hand, 32 contaminants
belong to the AD of the model, i.e., their predicted retention indices
are reliable, and could be used in order to identify such contami-
nants in rice samples by means of the GC technique using the DVB-
CAR-PDMS fiber. For instance, if we have I ¼ 2137.4, we could
suspect the presence of either Perylene or Benzo[b]fluoranthene
PAHs. Finally, the developed QSPR model could support chroma-
tographers as a fast identification tool for other contaminants for
which their experimental retention indices are not available and
their molecular structures are known.
ulting from the molecular descriptors involved in the QSPR model (Eq. (1)) and the



Table 2
Common contaminants detected in rice: name, CAS number, source, predicted retention index and leverage values.

Name CAS number Source Predicted I hi Reference

Tetrachloroethylene 127-18-4 Unknown 678.1 0.297a (Grimm et al., 2002)
oxime, methoxy-phenyl- not available 1360.4 0.055
1,4-dichlorobenzene 106-46-7 1077.1 0.016
Diethyl Phthalate 84-66-02 Plasticizer 1690.4 0.052
Dibutyl Phthalate 84-74-2 2044.1 0.080
DEHP 117-81-7 2715.4 0.195a

BHA 25013-16-5 Antioxidant 2443.0 0.129
Acenaphthylene 208-96-8 PAHs 1422.7 0.077 (Escarrone et al., 2014; Liu and Korenaga, 2001; Tao et al., 2006)
Fluorene 86-73-7 1502.0 0.071
Phenanthrene 85-01-8 1594.7 0.075
Anthracene 120-12-7 1591.7 0.075
Fluoranthene 206-44-0 1782.8 0.089
Pyrene 129-00-0 1779.8 0.089
Benz[a]anthracene 56-55-3 1949.0 0.096
Chrysene 218-01-9 1952.0 0.096
Perylene 198-55-0 2137.4 0.117 (Liu and Korenaga, 2001; Tao et al., 2006)
Benzo[b]fluoranthene 205-99-2 2137.4 0.117 (Escarrone et al., 2014; Tao et al., 2006)
Benzo[k]fluoranthene 207-08-9 2134.4 0.117
Benzo[a]pyrene 50-32-8 2134.4 0.117
Indeno[1,2,3-cd]pyrene 193-39-5 2316.6 0.140a

Dibenz[a,h]anthracene 53-70-3 2304.9 0.134a

Benzo[g,h,i]perylene 191-24-2 2316.6 0.140a

Naphthalene 91-20-3 1230.6 0.067 (Escarrone et al., 2014)
Validamycin A 37248-47-8 Fungicides 3549.9 0.439a (Berg, 2001)
Propiconazole 60207-90-1 2386.0 0.137a

Hexaconazole 79983-71-4 2199.0 0.088
Isoprothiolane 50512-35-1 2063.1 0.070
Iprodione 36734-19-7 2252.1 0.109
Cyproconazole 94361-06-5 2150.9 0.086
2,4-D 94-75-7 Herbicides 1630.2 0.044
Pretilachlor 51218-49-6 2171.3 0.100
Fenclorim 3740-92-9 1667.4 0.036
Fenoxaprop-P-Ethyl 71283-80-2 2602.0 0.190a

MCPA 94-74-6 1528.8 0.037
Pyrazosulfuron Ethyl 93697-74-6 2989.2 0.385a

Butachlor 23184-66-9 2171.3 0.100
Propanil 709-98-8 1555.4 0.027
Fenobucarb 3766-81-2 Insecticides 1562.4 0.029
Cartap hydrochloride 15263-52-2 1753.8 0.058
lambda-cyhalothrin 91465-08-6 3129.0 0.291a

Deltamethrin 52918-63-5 3168.3 0.303a

Buprofezin 69327-76-0 2135.8 0.084
Isoprocarb 2631-40-5 1467.6 0.025
Alphamethrin 67375-30-8 2905.8 0.229a

Fipronil 120068-37-3 3014.9 0.262a

Etofenprox 80844-07-1 2753.7 0.198a

a Molecules with leverage value above the warning leverage (h* ¼ 0.130).
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4. Conclusions

The retention indices of volatile organic compounds detected by
the DVB-CAR-PDMS fiber in the headspace of rice are described and
predicted by a conformation-independent QSPR model obtained in
this work. The use of the Replacement Method allows for the se-
lection of an optimal subset of three topological and constitutional
Dragon descriptors. This model is based on a reduced number of
molecular descriptors and could be useful for chromatographers
working on the aromatic profile of rice, as well as its quality control
based on the GC technique. Moreover, when modeling gas-
chromatographic retention indices, the use of the conformation-
independent QSPR approach represents an efficient alternative to
develop models based on topological and constitutional molecular
aspects of chemicals.
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