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SPACES WHICH INVERT WEAK HOMOTOPY EQUIVALENCES

JONATHAN ARIEL BARMAK †

Abstract. It is well known that if X is a CW-complex, then for every weak homotopy
equivalence f : A → B, the map f∗ : [X,A] → [X,B] induced in homotopy classes
is a bijection. For which spaces X is f∗ : [B,X] → [A,X] a bijection for every weak
equivalence f? This question was considered by J. Strom and T. Goodwillie. In this note
we prove that a non-empty space inverts weak equivalences if and only if it is contractible.

We say that a space X inverts weak homotopy equivalences if the functor [−,X] inverts
weak equivalences, that is, for every weak homotopy equivalence f : A → B, the induced
map f∗ : [B,X] → [A,X] is a bijection. As usual [A,X] stands for the set of homotopy
classes of maps from A to X. This property is clearly a homotopy invariant. In [1] Jeff
Strom asked for the characterization of such spaces. Tom Goodwillie observed that if X
inverts weak equivalences and is T1 (i.e. its points are closed), then each path-component
is weakly contractible (has trivial homotopy groups) and then contractible. His idea was
to use finite spaces weak homotopy equivalent to spheres. A map from a connected finite
space to a T1-space has a connected and discrete image and is therefore constant. This
is one of the many interesting applications of non-Hausdorff spaces to homotopy theory.
Goodwillie also proved that if a space inverts weak equivalences, then it must be connected.
In this note we follow his ideas and give a further application of non-Hausdorff spaces to
obtain the expected characterization:

Theorem 1. A non-empty space X inverts weak homotopy equivalences if and only if it

is contractible.

Lemma 2 (Goodwillie). Suppose that X inverts weak homotopy equivalences and is weakly

contractible. Then it is contractible.

Proof. Just take the weak homotopy equivalence X → ∗. �

Proposition 3 (Goodwillie). Let X be a space which inverts weak homotopy equivalences.

Then it is connected.

Proof. We can assume X is non-empty. Suppose that X0 and X1 are two path-components
of X. Let x0 ∈ X0 and x1 ∈ X1. Let A = N0 be the set of nonnegative integers with
the discrete topology and B = {0} ∪ { 1

n
}n∈N ⊆ R with the usual topology. The map

f : A → B which maps 0 to 0 and n to 1
n
for every n, is a weak homotopy equivalence.

Take g : A → X defined by g(0) = x0 and g(n) = x1 for every n ≥ 1. By hypothesis there
exists a map h : B → X such that h(0) ∈ X0 and h( 1

n
) ∈ X1 for every n ≥ 1. Since 1

n
→ 0,

X0 intersects the closure of X1. Thus X0 and X1 are contained in the same component of
X. �
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Lemma 4. Let X be a space which inverts weak equivalences and let Y be a locally compact

Hausdorff space. Then the mapping space XY , considered with the compact-open topology,

also inverts weak equivalences.

Proof. This follows from a direct application of the exponential law and the fact that a
weak equivalence f : A → B induces a weak equivalence f × 1Y : A× Y → B × Y . �

By Lemmas 2 and 4 it only remains to show that a map that inverts weak equivalences
is path-connected. If we require a slightly different property, this is easy to prove using
only Hausdorff spaces. The following result is not needed for the proof of Theorem 1.

Proposition 5. Let (X,x0) be a pointed space such that for every weak homotopy equiv-

alence f : A → B between Hausdorff spaces and every a0 ∈ A, the induced map

f∗ : [(B, f(a0)), (X,x0)] → [(A, a0), (X,x0)]

is a bijection. Then X is path-connected.

Proof. Let X0 be the path-component of x0. Let X1 be any path-component of X and let
x1 ∈ X1. Let A,B, f, g be as in Proposition 3. Let a0 = 0 ∈ A. By hypothesis there exists
h : (B, 0) → (X,x0) such that hf ≃ g rel {0}. In particular h(1) ∈ X1. Define h′ : B → X

by h′(0) = x0 and h′( 1
n
) = h( 1

n+1
) for n ≥ 1. The continuity of h′ follows from that of

h. Since h′( 1
n
) = h( 1

n+1
) ∈ X1 and h( 1

n
) ∈ X1 for every n ≥ 1, there exists a homotopy

H : A × I → Y from f∗(h′) to f∗(h). Moreover we can take H to be stationary on
0 ∈ A. Since f∗ : [(B, 0), (X,x0)] → [(A, 0), (X,x0)] is injective, there exists a homotopy
F : B × I → X, F : h′ ≃ h rel {0}. The map F gives a collection of paths from h( 1

n+1
) to

h( 1
n
). We glue all these paths to form a path from x0 to h(1). That is, define γ : I → X

by γ(0) = x0 and γ(t) = F ( 1
n
, ( 1

n
− 1

n+1
)−1(t − 1

n+1
)) if t ∈ [ 1

n+1
, 1
n
]. Note that γ is

continuous in t = 0 for if U ⊆ X is a neighborhood of x0, then {0} × I ⊆ F−1(U), and by
the tube lemma there exists n0 ≥ 1 such that { 1

n
} × I ⊆ F−1(U) for every n ≥ n0. Then

[0, 1
n0
] ⊆ γ−1(U). Hence, x0 and h(1) lie in the same path-component, so X0 = X1. �

Note that if a contractible space X satisfies the hypothesis of Proposition 5 for some
point x0, then by taking A = B = X, a0 = x0 and f the constant map x0, one obtains
that {x0} is a strong deformation retract of X. Conversely, a based space (X,x0) such
that {x0} is a strong deformation retract of X, clearly satisfies the hypothesis of the
proposition.

The following result is the key lemma for proving Theorem 1 and in contrast to the
previous result, the proof provided uses non-Hausdorff spaces.

Lemma 6. Let X be a space which inverts weak homotopy equivalences. Then X is

path-connected.

Proof. We can assume X is non-empty. Let X0 and X1 be path-components of X. Let B
be a set with cardinality #B > α = max{#X, c}. Here c denotes the cardinality #R of
the continuum. Consider the following topology in B: a proper subset F ⊆ B is closed
if and only if #F ≤ α. Note that the path-components of B are the singletons, for if
γ : I → B is a path, then its image has cardinality at most α, so it is connected and
discrete and then constant. Let A be the discretization of B, i.e. the same set with the
discrete topology. Then the identity id : A → B is a weak homotopy equivalence. Let b0
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and b1 be two different points of B. Define g : A → X in such a way that g(b0) ∈ X0

and g(b1) ∈ X1 (define g arbitrarily in the remaining points of A). Then g is continuous.
Since the identity id∗ : [B,X] → [A,X] is surjective, there exists a map h : B → X such
that h ◦ id ≃ g. In particular h(b0) ∈ X0 and h(b1) ∈ X1. Since #B > α ≥ #X and
B =

⋃

x∈X

h−1(x), there exists x ∈ X such that #h−1(x) > α. Let U ⊆ X be an open

neighborhood of h(b0). Then h−1(U c) ⊆ B is a proper closed subset, so #h−1(U c) ≤ α.
Thus, h−1(x) is not contained in h−1(U c) and then x ∈ U . Since every open neighborhood
of h(b0) contains x, there is a continuous path from x to h(b0), namely t 7→ x for t < 1
and 1 7→ h(b0). In particular x ∈ X0. Symmetrically, x ∈ X1. Therefore X0 = X1. �

Proof of Theorem 1. It is clear that a contractible space inverts weak equivalences.
Suppose X 6= ∅ is a space which inverts weak equivalences. By Lemma 4, XSn

inverts
weak equivalences for every n ≥ 0 and then it is path-connected. Therefore πn(X) is
trivial for every n ≥ 0 and by Lemma 2, X is contractible.
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