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Abstract A lion and a manmove continuously in a space X . The aim of the lion is to capture
his prey while the man wants to escape forever. Which of them has a strategy? This question
has been studied for different metric domains. In this article we consider the case of general
topological spaces.

Keywords Lion and man problem · Continuous pursuit-evasion · Non-metric spaces ·
Axiom of choice

Mathematics Subject Classification 91A24 · 49N75 · 54F05 · 54G15

The original version of this problem is attributed to Rado who posed it 90 years ago: there
is a lion and a man in a circular arena. They can move with the same maximum speed. The
aim of the lion is to capture the man, while the man wants to escape. Which of them has
a strategy? The players can look at each other at all times, each of them is considered as a
point in the circle, and the lion captures the man only if the two points are in the exact same
position. It is clear that if we replace the domain by the whole plane, the man can always
escape, but what happens in the two dimensional disk D2? Despite our intuition that the
boundary should favor the lion, Besicovitch showed in 1952 that, even though the lion can
get arbitrarily close, the man can escape forever by following certain polygonal. His beautiful
argument is explained by Littlewood in [8].
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What does it mean for the man to have a strategy in D2? It means that for any path
β : [0,+∞) → D2 the lion follows with maximum speed M (that is, β is Lipschitz with
Lipschitz constant M), the man will be able to follow another path S(β) : [0,+∞) → D2

with maximum speed M such that S(β)(t) �= β(t) for every t ≥ 0. But since the man
cannot take a look into the future, we require that his position at time t is determined by
the path β|[0,t), meaning that if β ′ : [0,+∞) → D2 is another path for the lion such that
β ′|[0,t) = β|[0,t), then S(β ′)|[0,t] = S(β)|[0,t]. A strategy for the lion is defined in a similar
way. This natural interpretation of the word strategy was considered by Bollobás, Leader
and Walters in [4]. The paradoxical drawback (and advantage!) of this definition is that there
exist spaces in which both players have a strategy [4, Theorems 8 and 9]. Our belief that
we can put both strategies to play one against the other is wrong: in order to determine the
position of the man for some t > 0 we need to know the position of the lion for each t ′ < t ,
but these in turn are determined by the positions of the man for t ′ < t . Since [0,+∞) is not
well-ordered, this recursion does not yield a path for the man.

There are many variants of Rado’s original problem. Some of them include pursuits in
discrete time, in which the players take turns to play [11], other versions introduce the
notion of capture radius [2,5], and the players are not regarded as points anymore. Some
add restrictions to the paths [7], consider several pursuers chasing a unique evader or allow
different maximum speeds. The regions where the game takes place go from subspaces of
Euclidean spaces [6], surfaces, CAT(0) spaces [2,5], graphs and general metric spaces [4].
The motivations of the problem vary from Robotics, Computer Science to PureMathematics.

In this paper we will study the lion andman problem in non-necessarily metric topological
spaces. Of course, in this context the notion of speed makes no sense. The plethora of spaces
in the non-Hausdorff zoo will make up for the lack of speed to produce interesting examples.
The tools used in this article are completely elementary.

Let X be a topological space. Letm, l ∈ X denote the starting positions of the man and the
lion respectively. Given x ∈ X denote by Px (X) the set of continuous maps γ : [0,+∞) →
X with starting point γ (0) = x . Given γ ∈ Px (X) and t ∈ [0,+∞), we denote by γ<t and
γ≤t the restrictions γ |[0,t) and γ |[0,t]. A strategy for the man is a function S:Pl(X) → Pm(X)

with the following properties:

i. For each β ∈ Pl(X) and each t ≥ 0, S(β)(t) �= β(t).
ii. If β, β ′ ∈ Pl(X) and t ≥ 0 are such that β<t = β ′

<t , then S(β)≤t = S(β ′)≤t .

The second requirement is known in [4] as the no-lookahead rule.
A strategy for the lion is a function S:Pm(X) → Pl(X) with the following properties:

i. For each α ∈ Pm(X) there exists t ≥ 0 such that S(α)(t) = α(t).
ii. If α, α′ ∈ Pm(X) and t ≥ 0 are such that α<t = α′

<t , then S(α)≤t = S(α′)≤t .

The following easy observation shows that a metric turns this game into a trivial pursuit.

Proposition 1 Let X be a path-connected Hausdorff space and let m, l ∈ X. Then the lion
has a strategy.

Proof Define S:Pm(X) → Pl(X) as follows. Choose first any path γ from l to m. Let
α ∈ Pm(X). Let S(α)(t) = γ (2t) for t ≤ 1

2 , S(α)(t) = α(2t − 1) for 1
2 ≤ t ≤ 1 and

S(α)(t) = α(1) for t ≥ 1. Then S(α) ∈ Pl(X) and S(α)(1) = α(1). The map S satisfies the
no-lookahead rule since 2t − 1 < t for t < 1 and S(α)(1) = α(1) is determined by α<1 by
the Hausdorff hypothesis. 	

Proposition 2 Let X be a Hausdorff space which admits a fixed-point-free map f : X → X.
Then the man has a strategy for some m, l ∈ X.
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Proof Let l ∈ X be any point and take m = f (l). Define S:Pl(X) → Pm(X) by S(β)(t) =
f (β(t)). Once again, the Hausdorff axiom guarantees that S satisfies the no-lookahead rule.

	

For example in S1, for antipodal (or any two different) starting points, both the lion and

the man have strategies.
We turn now to non-Hausdorff spaces.

Proposition 3 Let X be an indiscrete space. Then the lion has a strategy.

Proof Letm, l ∈ X . Define in Pm(X) the following relation: α ∼ α′ if there exists t > 0 such
that α<t = α′

<t . This is clearly an equivalence relation. Denote by α the class (germ) of α.
With the Axiom of Choice we choose for each class c a representative r(c) ∈ Pm(X). Define
S:Pm(X) → Pl(X) by S(α)(0) = l and S(α)(t) = r(α)(t) for t > 0. Since X is indiscrete,
S(α) is continuous. If α<t = α′

<t for some t > 0, then α = α′, so the no-lookahead rule is
fulfilled. Moreover, S(α) and α coincide in an interval (0, t). 	


It is easy to find spaceswhere theman does not have a strategy. For instance if in X = [0, 1]
the lion moves in a path β that passes through 0 and 1, then any other path will coincide with
β for some t ≥ 0. The previous results seem to give evidence that the lion has a strategy
in every space. However, we will show that the Axiom of Choice can be against the lion in
some examples.

Theorem 4 There exists a space X in which the lion does not have a strategy for some initial
points m, l ∈ X.

Proof We imitate the classical construction of the uncountable well-ordered set in which
each proper section is countable [10, Lemma 10.2, Theorem 10.3]. Let c be the cardinality
of the continuum R. We construct a non-empty well-ordered set X without maximum such
that every subset Y ⊆ X with cardinality #Y ≤ c is bounded above. For this take any
well-ordered set Z with maximum and cardinality greater than c and consider the smallest
element z ∈ Z such that the section Z<z has cardinality greater than c. Then X = Z<z does
not have a maximum and if Y ⊆ X is such that #Y ≤ c, then #(

⋃
y∈Y X<y) ≤ c.c = c so⋃

y∈Y X<y �= X and then Y has an upper bound in X .
Now consider the Alexandroff topology in X whose proper open sets are the sections X<x

for x ∈ X [1]. This is not the usual order topology (in which a basis is given by intervals
(a, b)). X is path-connected since the partial order in X is a total order. Concretely, given
x ≤ y ∈ X , γ (t) = x for t < 1 and γ (1) = y defines a path from x to y (cf. [9,12]).

Let l be the minimum of X and m the second element of X . Suppose that S:Pm(X) →
Pl(X) is a strategy for the lion.

If we take α0 ∈ Pm(X) to be the constant map m, then S(α0) ∈ Pl(X). Since {l} =
X<m ⊆ X is open, there is an interval [0, t0) in which S(α0) is smaller thanm (constant l). Let
l1 = S(α0)(t0) and let m1 > l1. Redefine α0 for t ≥ t0 as follows: Let α1 ∈ Pm(X) coincide
with α0 in [0, t0) and be constant m1 for t ≥ t0. By the no-lookahead rule, S(α1)(t0) = l1.
Moreover, since X<m1 is open, there is an interval [t0, t1) in which S(α1) is smaller than m1

and so S(α1) and α1 do not coincide at any t ∈ [0, t1). By repeating this idea, we can push the
ti further away. In order to formalize this, we will define an order in certain subset of Pm(X),
prove the existence of a maximal element μ using Zorn’s Lemma and get a contradiction by
finding a greater element.

Let A be the set of those α ∈ Pm(X) for which there exists tα ∈ [0,+∞) with the
following properties
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1168 J. A. Barmak

• α(t) < α(tα) for every t < tα ,
• α(t) = α(tα) for every t ≥ tα ,
• S(α)(t) �= α(t) for each t < tα .

Note that the element tα is uniquely determined by α ∈ A. Also A �= ∅ since the constant
map m is in A (tα = 0).

We define an order in A as follows: α � α′ if tα ≤ tα′ and α≤tα = α′≤tα . Clearly � is
reflexive, transitive and antisymmetric.

Let C = {αi }i∈I be a chain in A. We want to prove it has an upper bound. Define
α ∈ Pm(X) as follows. Given t ≥ 0, if there exists i ∈ I with tαi > t , define α(t) = αi (t).
This is well-defined since C is a chain. Moreover, α is continuous in [0, tαi ) for every i ∈ I .
If the set {tαi }i∈I ⊆ [0,+∞) is unbounded, α is defined and continuous in all [0,+∞).
Moreover, since α<ti = (αi )<ti , then S(α)≤ti = S(αi )≤ti and therefore S(α)(t) �= α(t) for
every t < ti . Hence S(α)(t) �= α(t) for every t ∈ [0,+∞), contradicting the definition of
strategy. Thus, {tαi }i∈I is bounded. Let T = sup{tαi }i∈I . If T = tαi for some i , then αi is
an upper bound for C . Assume then that T > tαi for every i . The set Y = {αi (tαi )} ⊆ X
has cardinality at most c since {tαi }i∈I ⊆ R and tαi = tα j implies αi = α j . Therefore Y has
an upper bound xα ∈ X . Recall that α was already defined and continuous in each interval
[0, tαi ) and then in [0, T ). Define α(t) = xα for each t ≥ T . We claim that α ∈ A and that it
is an upper bound for C .

We will prove that α is continuous. Note first that if t < T , there exists i with tαi > t ,
so α(t) = αi (t) < αi (tαi ) ≤ xα . Now take a proper open set of X , that is a section X<x .
If x > xα , α−1(X<x ) = [0,+∞) is open. If x ≤ xα , α−1(X<x ) = α−1

<T (X<x ) ⊆ [0,+∞)

is open since α<T is continuous and [0, T ) is open. It is easy to see then that α ∈ A with
tα = T and that αi � α for every i ∈ I .

By Zorn’s Lemma, A has a maximal elementμ. Nowwe apply the idea of the beginning to
push tμ further away. Let x = S(μ)(tμ) ∈ X . Since X does not have a maximum, there exists
y ∈ X such that y > max{μ(tμ), x}. Define μ′ ∈ Pm(X) in the following way. μ′(t) = μ(t)
for t < tμ and μ′(t) = y for t ≥ tμ. Since μ′

<tμ = μ<tμ , S(μ′)≤tμ = S(μ)≤tμ and then

S(μ′) and μ′ do not coincide in [0, tμ]. Since X<y is open, S(μ′)−1(X<y) ⊆ [0,+∞) is an
open set which contains tμ. Therefore, there exists t ′ > tμ such that S(μ′)(t) �= μ′(t) for
every t < t ′. Finally, define ν ∈ Pm(X) to be equal toμ′ for t < t ′ and constant xν for t ≥ t ′,
where xν ∈ X is any element greater than y. Then ν ∈ A, with tν = t ′, and it is strictly
greater than μ, a contradiction. 	

Remark 5 In the space X constructed in Theorem 4, the man does not have a strategy,
independently of the starting points. Suppose S:Pl(X) → Pm(X) is a strategy. Letβ ∈ Pl(X)

be a path that goes from l to x0 = min(X) in the interval [0, 1
2 ] and is constant x0 for t ≥ 1

2 .
Define β ′ ∈ Pl(X) to equal to β in [0, 1) and constant S(β)(1) in [1,+∞). This map is
continuous. However, S(β ′)(1) = S(β)(1) = β ′(1), a contradiction. Therefore, no player
has a strategy in this space for a particular choice of the starting points.

Of course, the same argument shows that theman does not have a strategy in any indiscrete
space.

One important class of non-Hausdorff spaces is given by A-spaces, which model up to
weak homotopy equivalence every CW-complex (see [3,9]). An A-space is a space in which
arbitrary intersections of open sets are open. For instance, any finite topological space is an
A-space. If X is an A-space, the open hull of a subspace Y is the intersection of all the open
sets containing Y . The open hull of a point x ∈ X will be denoted byUx . Clearly the open hull
of Y ⊆ X is

⋃
y∈Y Uy . Given an A-space X , we can define a preorder (reflexive and transitive
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Lion and man in non-metric spaces 1169

relation) in X by x ≤ y if Ux ⊆ Uy . Conversely, given a preorder ≤ in a set X , the subsets
X≤x for x ∈ X are a basis for a topology on X . This establishes a correspondence between
A-spaces and preordered sets. An A-space X is path-connected if and only if the preorder is
connected, that is for every x, y ∈ X there is a sequence x = x0 ≤ x1 ≥ x2 ≤ . . . xn = y.
The T0 axiom is equivalent to the preorder being antisymmetric, that is, an order. Given an
A-space X its dual is the A-space with the same underlying set, but whose open sets are the
closed sets of X (this corresponds to the dual preorder). Therefore, the dual of a separable
A-space is an A-space X which contains a countable subset Y whose open hull is X . In terms
of the preorder this is equivalent to having a countable subset Y such that any element of X
is smaller than or equal to some element of Y . Any indiscrete space satisfies this property.
Thus the following result is a generalization of Proposition 3.

Theorem 6 Let X be a path-connected A-space which contains a countable subset Y whose
open hull is X. Then for any starting points the lion has a strategy. In particular in any
path-connected finite space the lion has a strategy.

Proof Letm, l ∈ X be the starting points. Let (yn)n∈N be a sequence of points of Y such that
every y ∈ Y appears infinitelymany times in the sequence. Let (tn)n∈N be a strictly increasing
sequence in (0, 1) which converges to 1. Since X is path-connected there exists a continuous
curve β : [0, 1) → X starting in l such that β(tn) = yn for every n ∈ N. Let α ∈ Pm(X). We
claim that there exists n ∈ N such that α(tn) ∈ Uyn . Indeed, since limn→∞ α(tn) = α(1),
then α(tn) ∈ Uα(1) for n big enough. Since X = ⋃

y∈Y Uy , α(1) ∈ Uy for some y ∈ Y and
then Uα(1) ⊆ Uy . Take n big enough and such that yn = y. Then α(tn) ∈ Uyn . For each
α ∈ Pm(X) define nα to be the smallest n ∈ N such that α(tn) ∈ Uyn .

We define now an equivalence relation in Pm(X). Say that α ∼ α′ if nα = nα′ and
there exists t > tnα such that α|(tnα ,t) = α′|(tnα ,t). With the Axiom of Choice take for every
equivalence class c a representative r(c). Given α ∈ Pm(X) define S(α) ∈ Pl(X) as follows.
S(α)(t) = β(t) for t ≤ tnα and S(α)(t) = r(α)(t) for t > tnα . The path S(α) is continuous
since r(α)(tnα ) ∈ Uβ(tnα ). Moreover, S:Pm(X) → Pl(X) satisfies the no-lookahead rule. If
α<t = α′

<t for some t ∈ [0,+∞) and tnα ≥ t , then S(α) and S(α′) coincide with β in [0, t].
If tnα < t , then α ∼ α′ so S(α) = S(α′). Finally, for any α ∈ Pm(X), the paths S(α) and α

coincide in (tnα , t) for some t > tnα . This shows that S is a strategy for the lion. 	

So far we have constructed spaces in which both players have a strategy (like S1), where

none of them has a strategy (the space in Theorem 4) or where only the lion has a strategy
(any indiscrete space). We will show now that there are spaces where the man is the only
player with a strategy.

Lemma 7 Let X be a topological space and let r : X → A be a retraction onto a subspace
A ⊆ X. Let m ∈ A and l ∈ X. Then

(a) If the man has a strategy in A for initial points m, r(l) ∈ A, then it also has a strategy
in X for initial points m, l ∈ X.

(b) If the lion has a strategy in X for initial points m, l ∈ X, then it also has a strategy in
A for initial points m, r(l) ∈ A.

Proof Let S:Pr(l)(A) → Pm(A) be a strategy for the man in A. Define S̃ : Pl(X) → Pm(X)

by S̃(β) = S(rβ). Clearly S̃ satisfies the no-lookahead rule. We must check that S̃(β)(t) =
S(rβ)(t) �= β(t) for every t . If β(t) /∈ A, this is obvious since S(rβ)(t) ∈ A. If β(t) ∈ A,
then S(rβ)(t) �= rβ(t) = β(t).
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For the second part, suppose S:Pm(X) → Pl(X) is a strategy for the lion. It is easy to
check that the map S : Pm(A) → Pr(l)(A) defined by S(α)(t) = r(S(α)(t)) provides a
strategy for the lion in A. 	

Proposition 8 There exists a path-connected space Y and starting points m, l ∈ Y for which
only the man has a strategy.

Proof Let X be the space constructed in Theorem 4, x0 ∈ X its minimum and x1 ∈ X its
second element. Recall than the lion does not have a strategy if he starts at x0 and the man
starts at x1. Let Y = X ∨ S1 ∨ X be the space obtained from two copies X and X ′ of X
and one of S1 by identifying the point x1 ∈ X with a point p ∈ S1 and the corresponding
point x ′

1 ∈ X ′ with the antipodal point q ∈ S1 of p. Define m = x1 = p and l = x ′
0. There

is a retraction Y → X which maps X ′ to X with the identity and maps S1 to m. By the
previous lemma, the lion does not have a strategy in Y for those starting points. There is
another retraction Y → S1 which maps X to m and X ′ to x ′

1 = q . By the lemma, the man
has a strategy in Y . 	


To finish, we go back to the start. Recall that in Rado’s original problem lion and man
moved in a circular arena with the same maximum speed. For 25 years the lion was believed
to be the one with a strategy. This “strategy” consisted in keeping the lion in the radius
determined by the man. The argument used the wrong assumption that the best thing for the
man was to stay in the boundary of the circle. Besicovitch showed that the man can always
escape from the lion but staying in the interior of the arena. Proposition 1 says in particular
that in our version of the problem, the lion has a strategy in D2. What about the man? We
cannot use Proposition 2 by the Brouwer Fixed Point Theorem. In fact, [4, Theorem 7] shows
that there is no continuous strategy for the man (considering Pl(D2) with a topology that
makes the inclusion i : D2 → Pl(D2) continuous, where i(x) is the straight path from l to x ,
and considering Pm(D2) with any topology that makes the evaluation ev : Pm(D2) → D2

in 1 continuous, like the compact-open topology). Already escaping from a unique lion
β ∈ Pl(D2) does not seem simple. How can the man escape a Peano lion which fills the
disk?

We will prove that given any curve β ∈ P0(D2), there exists a path S(β) ∈ P1(D2)

which escapes from β. Moreover, we will prove that S can be constructed satisfying the
no-lookahead rule. In other words, Besicovitch’s result also holds in our setting. Surprisingly
enough, in our strategy the man stays all the time in the boundary of the disk.

We recall for the non-expert the statement of a very particular case of the lifting lemma
[10, Lemma 79.1]. Suppose that J ⊆ R is an interval and that f : J → S1 is a continuous
map. Then there exists a lifting of f to the universal cover of S1, that is a continuous map
f̃ : J → R such that p f̃ = f , where p : R → S1 ⊆ C is defined by p(t) = e2π i t .
Moreover, if x0 ∈ J and t0 ∈ R are such that f (x0) = p(t0), then there exists a unique lifting
f̃ of f such that f̃ (x0) = t0.

Theorem 9 Let l = 0 ∈ D2 ⊆ C be the center of the disk and let m = 1 ∈ D2. Then the
man has a strategy. Moreover, he can keep on the boundary of the disk during the whole
pursuit.

Proof The idea is the following. While the lion is inside the concentric circle of radius 1
2 , the

man stays in the pointm. When the lion goes outside that circle, the man moves continuously
in S1 in such a way that, when the lion reaches the boundary of D2, the man is in the antipodal
point. If β ∈ Pl(D2), then β(t) = ρ(t)e2π iω(t) for some ρ : [0,+∞) → R≥0 continuous
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and some ω : [0,+∞) → R continuous in β−1(D2
� {0}). We define α ∈ Pm(D2) as

follows: α(t) = e2π iθ(t) with θ(t) = 0 if ρ(t) ≤ 1
2 and θ(t) = (2ρ(t) − 1)(ω(t) + 1

2 ) if
ρ(t) ≥ 1

2 . This is well defined and continuous, and allows the man to escape the curve β.
However, to turn this into a strategy for the manwemust show thatω can be chosen satisfying
the no-lookahead rule.

Given a ∈ [0,+∞), define an equivalence relation in the set of continuous maps with
values in S1 defined in an interval (a, b) for some b > a. We say that f : (a, b) → S1 and
g : (a, c) → S1 are a-equivalent if there exists t ∈ (a, b) ∩ (a, c) such that f |(a,t) = g|(a,t).
For each a and each equivalence class choose a representative f : (a, b) → S1 and choose
a lifting f̃ : (a, b) → R to the universal cover of S1.

Now, let β ∈ Pl(D2). Let r : D2
� {0} → S1 be the radial (or any other continuous)

retraction. Then the composition rβ|β−1(D2�{0}) : β−1(D2
� {0}) → S1 is well-defined and

continuous. Since β−1(D2
� {0}) ⊆ [0,+∞) is open and does not contain the origin 0, it

is a disjoint union of open intervals (ai , bi ). We can lift rβ|(ai ,bi ) to a map (ai , bi ) → R

by considering the representative of the ai -class and its chosen lifting. Concretely, if the
chosen representative of rβ|(ai ,bi ) is f : (ai , c) → S1 and rβ|(ai ,t) = f |(ai ,t) for some
t ∈ (ai , bi ) ∩ (ai , c), then the chosen lifting f̃ : (ai , c) → R restricts to a lifting of f |(ai ,t)
and this extends to a lifting of rβ|(ai ,bi ). The family of maps (ai , bi ) → R determines a
continuous lifting ω : β−1(D2

� {0}) → R of rβ|β−1(D2�{0}). Now define S(β) ∈ Pm(D2)

as explained above: S(β)(t) = e2π iθ(t) where θ(t) = 0 if the norm ‖β(t)‖ ≤ 1
2 and θ(t) =

(2 ‖β(t)‖ − 1)(ω(t) + 1
2 ) if ‖β(t)‖ ≥ 1

2 . Then S(β) is continuous. Moreover, if ‖β(t)‖ =
1, then θ(t) = ω(t) + 1

2 , so S(β)(t) = −e2π iω(t) = −rβ(t) = −β(t). In particular
S(β)(t) �= β(t) for every t ≥ 0. We verify the no-lookahead rule. Suppose β<t = β ′

<t
for some β, β ′ ∈ Pl(D2) and t > 0. If β(t) = β ′(t) = 0, then t does not belong to any
of the intervals (ai , bi ) in the decomposition of β−1(D2

� {0}) nor the intervals (a′
j , b

′
j )

in the decomposition of (β ′)−1(D2
� {0}). Moreover, the intervals (ai , bi ) with bi < t

and the intervals (a′
j , b

′
j ) with b′

j < t are the same, so ω : β−1(D2
� {0}) ∩ [0, t) → R

coincides with ω′ : (β ′)−1(D2
� {0}) ∩ [0, t) → R and then S(β)≤t = S(β ′)≤t . Suppose

now that β(t) = β ′(t) �= 0, then t belongs to an interval (ai , bi ) and to another (a′
j , b

′
j )

with ai = a′
j . The intervals at the left of ai are the same in both decompositions. By

assumption rβ|(ai ,bi ) and rβ ′|(a′
j ,b

′
j )
are ai -equivalent. Then the liftings (ai , bi ) → R and

(a′
j , b

′
j ) → R of both maps coincide in an interval (ai , t ′), and therefore also in (ai , t]. Thus

ω = ω′ : β−1(D2
� {0}) ∩ [0, t] and then S(β)≤t = S(β ′)≤t . 	


Theorem 9 can be used together with Lemma 7 to show that the man has a strategy in a
large class of examples, like manifolds of dimension n ≥ 2.

Corollary 10 Suppose X is a normal space and m ∈ X is such that there is a subspace
U � m of X homeomorphic to an open 2-dimensional disk. Then for any l ∈ X different
from m, the man will have a strategy.

Proof By hypothesis there exists a closed subspace of X homeomorphic to D2, which we
will identify with D2, and such that m = 1 ∈ D2 ⊆ C while l /∈ D2. Since D2 is an
absolute retract, there exists a retraction r : X → D2. Since X is normal, there exists a
map f : X → [0, 1] such that f (l) = 0 and f (D2) = {1}. Define r ′ : X → D2 by
r ′(x) = f (x)r(x). Note that r ′|D2 is the identity and r ′(l) = 0 ∈ D2. By Theorem 9 and
Lemma 7, the man has a strategy. 	


123



1172 J. A. Barmak

Acknowledgements I want to thank Charly di Fiore for showing me how to use AC to save prisoners with
colored hats many years ago.

References

1. Alexandroff, P.S.: Diskrete räume. MathematiceskiiSbornik (N.S.) 2, 501–518 (1937)
2. Alexander, S., Bishop, R.L., Ghrist, R.: Pursuit and evasion in non-convex domains of arbitrary dimension.

In: Proceedings of Robotics: Science and Systems, Philadelphia (2006)
3. Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes in

Mathematics, vol. 2032. Springer, Berlin, xviii+170 pp (2011)
4. Bollobás, B., Leader, I., Walters, M.: Lion and man—can both win? Israel J. Math. 189, 267–286 (2012)
5. Bramson,M., Burdzy, K., Kendall,W.: Shy couplings, CAT(0) spaces, and the lion andman. Ann. Probab.

41, 744–784 (2013)
6. Bramson, M., Burdzy, K., Kendall, W.: Rubber bands, pursuit games and shy couplings. Proc. Lond.

Math. Soc. 109, 121–160 (2014)
7. Croft, H.T.: Lion and man: a postscript. J. Lond. Math. Soc. 39, 385–390 (1964)
8. Littlewood, J.E.: A Mathematician’s Miscellany. Methuen and Co., Ltd, London, vii+136 pp (1953)
9. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. DukeMath.

J. 33, 465–474 (1966)
10. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Englewood Cliffs (2000)
11. Sgall, J.: A solution of David Gales lion and man problem. Theor. Comput. Sci. 259, 663–670 (2001)
12. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325–340 (1966)

123


	Lion and man in non-metric spaces
	Abstract
	Acknowledgements
	References




