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Abstract. We obtain improved fractional Poincaré and Sobolev–Poincaré inequalities includ-

ing powers of the distance to the boundary in bounded John, s-John, and Hölder-α domains, and

discuss their optimality.

1. Introduction

Poincaré and Sobolev–Poincaré inequalities in non-Lipschitz domains have been
the object of extensive study. They can be seen as special cases of the following
larger family of so-called improved Poincaré inequalities:

(1.1) inf
c∈R

‖f − c‖Lq(Ω) ≤ C‖∇f‖Lp(Ω,db)

where d(x) denotes the distance of x to the boundary of Ω, Lp(Ω, db) is the Lp-space
with measure db(x) dx, and b, p and q satisfy appropriate restrictions. The usual
assumption for these inequalities to hold is that the domain Ω in R

n belongs to
the class of John or β-John domains, see Section 2 for a precise definition. In the
case of John domains, a partial converse is also true in the following sense: if Ω has
finite measure and satisfies a separation property, then the validity of the Sobolev–
Poincaré inequality implies the John condition (see [5]). A possibly incomplete list
of references on improved Poincaré inequalities and their generalizations to weighted
settings and measure spaces includes [6, 7, 8, 9, 13, 14, 18, 19, 22, 23].

More recently, some authors have turned their attention to fractional general-
izations of Poincaré and Sobolev–Poincaré inequalities, where a fractional seminorm
appears instead of the norm in W 1,p(Ω). Indeed, in [20] the following inequalities
were introduced for bounded John domains:

(1.2) inf
c∈R

‖f − c‖Lq(Ω) ≤ C

{
ˆ

Ω

ˆ

Ω∩Bn(x,τ dist(x,∂Ω))

|f(z)− f(x)|p
|z − x|n+sp

dz dx

}1/p

with 1 ≤ p ≤ q ≤ np
n−sp

and s, τ ∈ (0, 1).

The seminorm appearing on the RHS of (1.2) can be seen to be equivalent on
Lipschitz domains to the usual seminorm in W s,p(Ω), that is, integrating over Ω×Ω
(see [11, equation (13)]), but it can be strictly smaller than the usual seminorm for
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general John domains (see [12, Proposition 3.4]). Moreover, it is easy to see that,
unlike the classical Poincaré inequality, the inequality

(1.3) inf
c∈R

‖f − c‖Lp(Ω) ≤ C

{
ˆ

Ω

ˆ

Ω

|f(z)− f(x)|p
|z − x|n+sp

dy dx

}1/p

holds for any bounded domain Ω and s ∈ (0, 1) (see [3, Lemma 3.1]), while the
stronger inequality

(1.4) inf
c∈R

‖f − c‖Lp(Ω) ≤ C

{
ˆ

Ω

ˆ

Ω∩Bn(x,τ dist(x,∂Ω))

|f(z)− f(x)|p
|z − x|n+sp

dy dx

}1/p

may fail for general domains, for instance, for certain β-John domains if β is suffi-
ciently large (see Theorem 4.3).

Regarding the Sobolev–Poincaré inequality, it was proved in [26, Theorem 1.2]
that

(1.5) inf
c∈R

‖f − c‖
L

np
n−sp (Ω)

≤ C

{
ˆ

Ω

ˆ

Ω

|f(z)− f(x)|p
|z − x|n+sp

dy dx

}1/p

holds for the class of Ahlfors n-regular domains, which is larger than that of the
John domains, but if we turn to the inequality with the stronger seminorm, there
are Ahlfors n-regular domains for which the inequality fails (see [12, Theorem 3.1]).
On bounded John domains, as mentioned before, the Sobolev–Poincaré inequality
holds with the stronger seminorm and, moreover, it was proved in [12, Theorem 6.1]
that a partial converse also holds: if a fractional Sobolev–Poincaré inequality with
the stronger seminorm holds on a domain Ω with finite measure which satisfies the
separation property, then Ω must satisfy the John condition.

In this paper, we study generalizations of (1.2) which include—on both sides—
weights that are a power of the distance to the boundary. More precisely, we obtain
improved inequalities of the form

(1.6) inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

{
ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)bdzdx

}1/p

where d(x) := dist(x, ∂Ω), δ(x, z) := min{d(x), d(z)}, Ω in R
n is a bounded John or

β-John domain and the parameters satisfy appropriate restrictions. The reader will
remark that the domain of integration on the left corresponds to the choice τ = 1

2
in

the notation of (1.2); this is to simplify notation, we could have chosen any τ ∈ (0, 1)
as it will be clear from the proof. We also remark that the term “improved” used in
[12] refers to the use of the stronger seminorm as in (1.4), while in this paper we use
it to emphasize the presence of powers of the distance to the boundary as weights,
as it is customary in the integer case.

Our technique consists in extending the arguments used in our work [9] to the
fractional case. The key starting point in that paper was the estimate

|f(y)− f̄ | ≤ C

ˆ

|x−y|≤C1d(x)

|∇f(x)|
|x− y|n−1

dx

where Ω is a bounded John domain, f ∈ C∞(Ω) and f̄ is an appropriate average of
f . The idea of recovering f from its gradient to prove Sobolev–Poincaré inequalities
is present in several authors, for instance, [23, 18, 13, 15, 16], but it is essential for
our argument in [9] that the fractional integral of the gradient be restricted to the
region |x−y| < C1d(x), a fact that we believe is not exploited in other proofs. In this
paper we give a generalization of this representation to the fractional case in the case
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of bounded John and β-John domains, that can also be of independent interest. We
also consider separately the case of Hölder-α domains, which belong to the class of
β-John domains with β = 1/α but are known to have better embedding properties,
see e.g. [4, 22].

To the best of our knowledge, the fractional inequalities for bounded β-John
domains are new even in the unweighted case, and the weighted inequalities are new
even in the case of Lipschitz domains. Indeed, although the generalization to weighted
norms on both sides of the inequality is quite natural and along the lines of the results
for improved Poincaré inequalities involving the gradient found in [7, 8, 14, 22], we
believe that the only antecedent of these weighted fractional inequalities is found
in [1, Proposition 4.7], where (1.6) is obtained in a star-shaped domain in the case
p = q = 2, a = 0 and b < 2s (their proof remains unchanged for bounded John
domains but does not cover the case b = 2s where the inequality also holds, see [1,
Remark 4.8] and Theorem 3.1 below). Moreover, the results we obtain are sharp in
the case of bounded John domains and Hölder-α domains, and almost sharp (except
at the endpoint) for bounded β-John domains, and we provide counterexamples to
support this statement.

The rest of the paper is as follows: in Section 2 we recall some necessary def-
initions and preliminaries; in Section 3 we obtain the fractional representation in
bounded John domains and use it to obtain the improved inequalities; in Section 4
we obtain the fractional representation in bounded β-John domains and use it to ob-
tain the improved inequalities, and we discuss their optimality; finally, in Section 5
we consider the special case of Hölder-α domains, also discussing the optimality of
our result.

2. Notation and preliminaries

Throughout the paper, Ω in R
n (n ≥ 2) will be a bounded domain and d(x) will

denote the distance of a point x ∈ Ω to the boundary of Ω. We will assume, without
loss of generality, that 0 ∈ Ω. As it is customary, C will denote a positive constant
that may change even within a single string of inequalities, and functions f defined
in Ω will be extended by zero outside Ω whenever needed.

We will use the following definition of bounded β-John domains:

Definition 2.1. A bounded domain Ω in R
n is a β-John domain (β ≥ 1) if there

exists a family of rectifiable curves given by γ(t, y), 0 ≤ t ≤ 1, y ∈ Ω, and positive
constants λ < 1, K and C such that,

(1) γ(0, y) = y, γ(1, y) = 0,
(2) d(γ(t, y)) ≥ λtβ ,
(3) |γ̇(t, y)| ≤ K,
(4) for all x, y ∈ Ω and r ≤ 1

2
d(x), there holds l(γ(y)∩B(x, r)) ≤ Cr, where γ(y)

denotes the curve joining 0 with y, and l the length.

When β = 1, we will simply refer to John domains, instead of 1-John domains.

Remark 2.1. The above definition is not the usual one, which includes only
properties (1), (2) and (3). However, it can be seen that the curves can be chosen to
make property (4) hold (see [10, Section 2]).

3. The case of John domains

In this section we obtain a representation that allows us to estimate f in terms
of its fractional derivative and use it to obtain the inequalities in bounded John
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domains. These inequalities are split in two theorems, since the case p = 1 requires
a “weak implies strong” argument that we develop separately. The inequalities are
sharp (as will be seen in Theorem 4.3) and, to the best of our knowledge, they are
new even in the case of Lipschitz domains.

Proposition 3.1. Given s ∈ (0, 1), 1 ≤ p <∞, and f ∈ C∞(Ω) we have

|f(y)− f̄ | ≤ C

ˆ

|y−x|≤C1d(x)

h(x)

|x− y|n−s
dx

where f̄ is a constant and

h(x) :=

(
ˆ

|x−w|≤d(x)/2

|f(w)− f(x)|p
|w − x|n+sp

dw

) 1
p

for y ∈ Ω, h ≡ 0 outside Ω, and C and C1 are positive constants depending only on

n and Ω.

Proof. Take ϕ ∈ C1
0(B(0, λ/4)) such that

´

ϕ = 1 and define

u(x, t) = (f ∗ ϕt)(x)

and

η(t) = u(γ(t, y) + tz, t).

Observe that the curve γ(t, y)+ tz is contained in Ω whenever z ∈ B(0, λ/4). Indeed,
in this case |γ(t, y) + tz − γ(t, y)| ≤ tλ/4 < d(γ(t, y)).

Then,

f(y)− (f ∗ ϕ)(z) = u(y, 0)− u(z, 1) = η(0)− η(1) = −
ˆ 1

0

η′(t) dt

= −
ˆ 1

0

∇u(γ(t, y) + tz, t) · (γ̇(t, z) + z) + ut(γ(t, y) + tz, t) dt

Multiplying by ϕ(z), integrating in z and defining f̄ =
´

(f ∗ ϕ)(z)ϕ(z)dz we have

f(y)− f̄ =

ˆ

Rn

(f(y)− (f ∗ ϕ)(z))ϕ(z) dz

= −
ˆ

Rn

ˆ 1

0

∇u(γ(t, y) + tz, t) · (γ̇(t, y) + z)ϕ(z) dtdz

−
ˆ

Rn

ˆ 1

0

∂u

∂t
(γ(t, y) + tz, t)ϕ(z) dtdz

= −(I + II)

Making the change of variables γ(t, y) + tz = x and using the fact that

∇u = f ∗ ∇(ϕt)

and

∇(ϕt)(x) =
1

tn+1
∇ϕ
(x
t

)

we obtain

I =

ˆ 1

0

ˆ

Rn

ˆ

Rn

f(w)

tn+1
∇ϕ
(x− w

t

)
dw ·

(
γ̇(t, y) +

x− γ(t, y)

t

)
ϕ
(x− γ(t, y)

t

)
dx
dt

tn
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Observe that, since the support of ϕ is contained in B(0, λ/4), the integrand
vanishes unless |x− γ(t, y)| ≤ λt/4 which implies

(3.7) |x− y| ≤ |x− γ(t, y)|+ |γ(t, y)− y| ≤ λt

4
+
√
nKt.

Then we can restrict the integral to t > c|x − y| with a constant c depending only
on K, λ and n.

On the other hand, using that
ˆ

1

tn+1
∇ϕ
(x− w

t

)
dw = 0

we can subtract f(x) in the integral with respect to w. Then, changing the order of
integration between t and x and using that

∣∣∣∣γ̇(t, y) +
x− γ(t, y)

t

∣∣∣∣ ≤ K +
λ

4
,

we obtain

I ≤ C

ˆ

Rn

ˆ 1

c|x−y|

ˆ

|x−w|≤λt/2

|f(w)− f(x)|
tn+1

∣∣∣∣∇ϕ
(x− w

t

)∣∣∣∣

∣∣∣∣ϕ
(x− γ(t, y)

t

)∣∣∣∣ dw
dt

tn
dx

with a constant C depending only on K and λ.
Now observe that

d(γ(t, y)) ≤ |γ(t, y)− x|+ d(x) ≤ λt

4
+ d(x) ≤ d(γ(t, y))

4
+ d(x)

and so

|x− w| ≤ λt

4
≤ d(γ(t, y))

4
≤ d(x)

3
<
d(x)

2
.

In particular λt/4 ≤ d(x)/2 which combined with (3.7) gives

|x− y| ≤ C1d(x)

with a constant C1 depending only on K, λ and ‖ϕ‖∞. Consequently,

I ≤ C

ˆ

|x−y|≤C1d(x)

ˆ 1

c|x−y|

ˆ

|x−w|≤d(x)/2

|f(w)− f(x)|
|w − x|np+s

1

t
n+ n

p′
+1−s

∣∣∣∣∇ϕ
(x− w

t

)∣∣∣∣ dw dt dx

≤ C

ˆ

|x−y|≤C1d(x)

ˆ 1

c|x−y|

(
ˆ

|x−w|≤d(x)/2

|f(w)− f(x)|p
|w − x|n+sp

dw

) 1
p

·
(
ˆ

Rn

∣∣∣∣∇ϕ
(x− w

t

)∣∣∣∣
p′

dw

) 1
p′

1

t
n+ n

p′
+1−s

dt dx

where we have used |x− w| ≤ λt/4 to bound the integrand.
Therefore, since

(
ˆ

Rn

∣∣∣∣∇ϕ
(x− w

t

)∣∣∣∣
p′

dw

) 1
p′

= ‖∇ϕ‖p′t
n
p′

we conclude that

I ≤ C

ˆ

|x−y|≤C1d(x)

ˆ 1

c|x−y|

h(x)
1

tn+1−s
dt dx ≤ C

ˆ

|x−y|≤C1d(x)

h(x)

|x− y|n−s
dx

where the new constant depends also on ‖∇ϕ‖p′.
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To estimate II we proceed in a similar way. Indeed, since
´

ϕt(x) dx = 1 for all

t, we have
´

∂ϕt

∂t
(x) dx = 0. Moreover, a straightforward computation shows that

∂ϕt

∂t
(x) =

1

tn+1
ψ
(x
t

)

where ψ := −nϕ−x ·∇ϕ. Therefore, repeating the arguments that we used to bound
I we obtain,

II ≤ C

ˆ

|x−y|≤C1d(x)

ˆ 1

c|x−y|

ˆ

|x−w|≤d(x)/2

|f(w)− f(x)|
tn+1

∣∣∣∣ψ
(x− w

t

)∣∣∣∣ dw
dt

tn
dx

and consequently

II ≤ C

ˆ

|x−y|≤C1d(x)

h(x)

|x− y|n−s
dx. �

In the proof of the next theorem we will make use of the following well known
result [17, Lemma (a)].

Lemma 3.1. Let Mg be the Hardy–Littlewood maximal function of g. Given

0 < σ < n there exists a positive constant C, depending only on n and σ, such that,

for any ε > 0,
ˆ

|y−x|≤ε

|g(y)|
|x− y|n−σ

dy ≤ CεσMg(x)

Theorem 3.1. Let Ω in R
n be a bounded John domain, 1 < p ≤ q <∞, a ≥ 0,

b ≤ (n+a)p
q

+ sp − n and, additionally, q ≤ np
n−sp

when p < n
s
. Then, given s ∈ (0, 1)

and f ∈ C∞(Ω) we have

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

[
ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx

]1/p

where δ(x, z) := min{d(x), d(z)}.
Proof. We proceed by duality. Let g ∈ Lq′(Ω, da) such that ‖g‖Lq′(Ω,da) =

‖gd
a
q′ ‖Lq′ (Ω) = 1. Interchanging the order of integration and using Proposition 3.1

we have
ˆ

Ω

|f(y)− f̄ |g(y) d(y)a dy ≤ C

ˆ

Ω

ˆ

|y−x|≤C1d(x)

|g(y)|
|x− y|n−s

d(y)
a
q
+ a

q′ dy h(x) dx

≤ C

ˆ

Ω

ˆ

|y−x|≤C1 d(x)

|g(y)|
|x− y|n−s

d(y)
a
q′ dy h(x) d(x)

a
q dx(3.8)

where we have used that d(y) ≤ |x − y| + d(x) ≤ (C1 + 1) d(x) in the region of
integration.

Now we consider separately the cases p = q and p < q. If p = q, it is clear that
it suffices to prove the statement for b = a + sp. Using Lemma 3.1 we have that

ˆ

Ω

|f(y)− f̄ |g(y) d(y)a dy ≤ C

ˆ

Ω

d(x)s+
a
pM(gd

a
p′ )(x)h(x) dx

≤ C‖ds+ a
ph‖Lp(Ω)‖M(gd

a
p′ )‖Lp′(Ω)(3.9)

But,

h(x)p =

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

dz
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and then,

‖ds+ a
ph‖pLp(Ω) =

ˆ

Ω

d(x)sp+a

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

dzdx

but in the domain of integration d(x) ≤ 2d(z) and, therefore,

‖ds+ a
ph‖pLp(Ω) ≤ C

ˆ

Ω

ˆ

|x−z|≤d(x)/2

δ(x, z)sp+a |f(z)− f(x)|p
|z − x|n+sp

dz dx.

Replacing this estimate in (3.9) we conclude the proof using the boundedness of the
maximal operator in Lp′ and the choice of g.

If p < q, assume first that (n+a)p
n+b−sp

≤ np
n−sp

. Then, for fixed p, a, b it suffices to prove

the theorem for q = (n+a)p
n+b−sp

. If we define η = b
p
− a

q
it follows from our assumptions

that 0 ≤ η < s (the first inequality using that (n+a)p
n+b−sp

≤ np
n−sp

and the second one

using that p < (n+a)p
n+b−sp

). Therefore, by (3.8) and using that |x− y| ≤ C1d(x) we have

ˆ

Ω

|f(y)− f̄ |g(y) d(y)a dy ≤ C

ˆ

Ω

d(x)
b
p Is−η(gd

a
q′ )(x)h(x) dx

≤ C‖d b
ph‖Lp(Ω)‖Is−η(gd

a
q′ )‖Lp′ (Ω)(3.10)

where Iγg(x) =
´ g(y)

|x−y|n−γ dy is the fractional integral (or Riesz potential) of order

γ of g, provided 0 < γ < n. Observe that, indeed, 0 < s − η < n holds because
0 ≤ η < s and s ∈ (0, 1).

As before,

‖dη+ a
q h‖pLp(Ω) ≤ C

ˆ

Ω

ˆ

|x−z|≤d(x)/2

δ(x, z)ηp+
ap
q
|f(z)− f(x)|p
|z − x|n+sp

dz dx

= C

ˆ

Ω

ˆ

|x−z|≤d(x)/2

δ(x, z)b
|f(z)− f(x)|p
|z − x|n+sp

dz dx.

Using this estimate in (3.10) we conclude the proof using the boundedness of the
fractional integral Is−η : L

q′ → Lp′ for 1
q
= 1

p
− s−η

n
and the choice of g.

It remains to consider the case p < q, (n+a)p
n+b−sp

> np
n−sp

. In this case, for fixed p, a, b

it suffices to consider q = np
n−sp

. Then, we may bound

ˆ

Ω

|f(y)− f̄ |g(y) d(y)a dy ≤ C

ˆ

Ω

Is(gd
a
q′ )(x)h(x) d(x)

a
q dx

≤ C‖d a
q h‖Lp(Ω)‖Is(g d

a
q′ )‖Lp′(Ω)

and conclude by using the boundedness of Is : L
q′ → Lp′ for 1

q
= 1

p
− s

n
and the fact

that ‖d a
q h‖Lp(Ω) ≤ C‖d b

ph‖Lp(Ω) because, under our assumptions, b
p
≤ a

q
. �

For the case p = 1 we will make use of the following “weak implies strong” result.
It is proved in [12, Theorem 4.1] in the case µ = ν, but the reader can easily check
that the same proof holds for two different measures.

Lemma 3.2. Let µ and ν be positive Borel measures on an open set Ω in R
n,

such that µ(Ω) < ∞, ν(Ω) < ∞, let 0 < s < 1 and 1 ≤ p ≤ q < ∞. Then the

following conditions are equivalent:
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(1) There is a constant C1 > 0 such that the inequality

inf
c∈R

sup
t>0

µ({x ∈ Ω: |f(x)− c| > t})tq

≤ C1

(ˆ

Ω

ˆ

|x−y|<d(x)/2

|f(y)− f(z)|p
|y − z|n+sp

dν(z) dν(y)
) q

p

for any f ∈ C∞(Ω).
(2) There is a constant C2 > 0 such that the inequality

inf
c∈R

ˆ

Ω

|f(x)− c|q dµ(x) ≤ C2

(ˆ

Ω

ˆ

|x−y|<d(x)/2

|f(y)− f(z)|p
|y − z|n+sp

dν(z) dν(y)
) q

p

holds, for every f ∈ C∞(Ω).

Theorem 3.2. Let Ω in R
n be a bounded John domain, 1 ≤ q ≤ n

n−s
, a ≥ 0,

and b ≤ (n+a)
q

− n + s. Then, given s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|
|z − x|n+s

δ(x, z)b dz dx

where δ(x, z) := min{d(x), d(z)}.
Proof. If q = 1 the result follows as in the previous proof.

If q > 1, it is clear that it suffices to prove our statement for b = (n+a)
q

− n + s.

For this purpose, we will prove a weak inequality first. Hence, we let E = {y ∈
Ω: |f(y)− f̄ | > t} and consider the measure µ such that dµ(x) = d(x)a dx. Then,

µ(E) ≤ C

ˆ

E

ˆ

|x−y|<C1d(x)

h(x)

t|x− y|n−s
dx d(y)a dy

≤ C

ˆ

Ω

h(x)

t

ˆ

E∩B(x,C1d(x))

d(y)a

|x− y|n−s
dy dx

= I1 + I2

where I1 corresponds to the region where |x− y| < d(x)
2

and I2 to its complement.

Observe that when |x− y| < d(x)
2

, we have that d(x)
2

≤ d(y) ≤ 3
2
d(x), so that

I1 ≤ C

ˆ

|x−y|<d(x)/2

h(x)

t

ˆ

E∩B(x,C1d(x))

1

|x− y|n−s
dy d(x)a dx

≤ C

ˆ

|x−y|<d(x)/2

h(x)

t
|E ∩ B(x, C1d(x))|

s
n d(x)a dx

≤ C

ˆ

|x−y|<d(x)/2

h(x)

t

(ˆ

E∩B(x,C1d(x))

χ(y)d(y)a dy
) s

n
d(x)a(1−

s
n
) dx

= C

ˆ

|x−y|<d(x)/2

h(x)

t
µ(E ∩B(x, C1d(x)))

s
n d(x)a(1−

s
n
) dx

≤ C

ˆ

|x−y|<d(x)/2

h(x)

t
µ(E)

θs
n µ(B(x, C1d(x)))

(1−θ)s
n d(x)a(1−

s
n
) dx

for any 0 ≤ θ ≤ 1, where in the second step we have used a well-known result (see,
e.g., [21, formula (7.2.6)]).
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Now, if we set θ = n
sq′

and use that µ(B(x, C1d(x))) ≤ d(x)n+a we have

I1 ≤ Cµ(E)
1
q′

ˆ

Ω

h(x)

t
d(x)b dx.

So we only need to check that 0 ≤ n
sq′

≤ 1, that holds because 1 ≤ q ≤ n
n−s

.

We proceed now to I2. Using that |x− y| ≥ d(x)
2

we have

I2 ≤ C

ˆ

Ω

h(x)

t

ˆ

E∩B(x,C1d(x))

d(y)a

d(x)n−s
dy dx

= C

ˆ

Ω

h(x)d(x)s−n

t
µ(E ∩ B(x, C1d(x))) dx

≤ C

ˆ

Ω

h(x)d(x)s−n

t
µ(E)θµ(B(x, C1d(x)))

(1−θ) dx

≤ Cµ(E)
1
q′

ˆ

Ω

h(x)

t
d(x)b dx

where this time we have chosen θ = 1
q′

, that clearly satisfies 0 ≤ θ ≤ 1.
Finally, we arrive at

µ(E)
1
q t ≤ C

ˆ

Ω

h(x) d(x)b dx

and this in turn implies, by Lemma 3.2 with dν = d(x)
b
2 dx, the strong inequality

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

ˆ

Ω

ˆ

|x−y|≤d(x)/2

|f(y)− f(x)|
|y − x|n+s

δ(x, y)b dx dy

where we have used that d(x)
2

≤ d(y) ≤ 3
2
d(x) to replace each of these distances by

Cδ(x, y). �

4. The case of β-John domains

In this section we obtain a representation analogous to that of Proposition 3.1
in the case of bounded β-John domains, for β > 1. Observe that, although the
estimate also holds for β = 1, it is not only more complicated but also slightly
worse than that of Proposition 3.1 in the case p > 1, since it includes the restriction

b < sp − p + 1 − n + p−1
β

+ p(n+a)
qβ

. For this reason the weighted inequalities inherit
this restriction, although we believe they should hold also in the case of equality. An
example at the end of the Section shows that our results are sharp except at this
endpoint.

To simplify calculations, throughout this section we assume, as we may by dilat-
ing Ω, that d(0) = 15.

Proposition 4.1. Given s ∈ (0, 1), a ≥ 0 and f ∈ C∞(Ω) we have

|f(y)− f̄ | ≤ C

ˆ

|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

(ˆ

|x−y|<C2d(x)
1
β

h(x)p d(x)b−
(n+a)p

βq dx
) 1

p

where b < sp− p+ 1− n+ p−1
β

+ p(n+a)
qβ

if p > 1, and b = s− n+ (n+a)
βq

if p = 1, f̄ is

a constant and

h(x) :=

(
ˆ

|x−w|≤d(x)/2

|f(w)− f(x)|p
|w − x|n+sp

dw

) 1
p
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for y ∈ Ω, h ≡ 0 outside Ω, and C, C1 and C2 are positive constants depending only

on n and Ω.

Proof. It suffices to prove the result for b close enough to the endpoint value. We
consider ϕ ∈ C1

0 (B(0, λ/2)) such that
´

ϕ = 1, and set

u(x, t) = (f ∗ ϕt)(x)

Then, following [10], we define

τ(y) = inf{t : γ(t, y) ∩ B(y, d(y)/2) = ∅}
and

ρ(t, y) =

{
ξ|y − γ(t, y)| if t ≤ τ(y),
1
15
d(γ(t, y)) if t > τ(y),

where ξ is chosen so that ρ(·, y) is a continuous function, that is,

ξ =
2

15

d(γ(τ(y), y))

d(y)
.

Notice that 1
15

≤ ξ ≤ 1
5

since

d(γ(τ(y), y)) ≤ |γ(τ(y), y)− y|+ d(y) =
d(y)

2
+ d(y) =

3

2
d(y)

and
d(y) ≤ |y − γ(τ(y), y)|+ d(γ(τ(y), y)) =⇒ d(y) ≤ 2d(γ(τ(y), y)).

Also, remark that ρ(0, y) = 0 and ρ(1, y) = 1 and that γ(t, y)+ρ(t, y)z ∈ Ω for every
t ∈ [0, 1] and z ∈ B(0, λ/2) (see [10] for details). Hence, if we define

η(t) = u(γ(t, y) + ρ(t, y)z, ρ(t, y))

we have that

f(y)− (f ∗ ϕ)(z) = u(y, 0)− u(z, 1) = η(0)− η(1) = −
ˆ 1

0

η′(t) dt

= −
ˆ 1

0

∇u(γ(t, y) + ρ(t, y)z, ρ(t, y)) · (γ̇(t, y) + ρ̇(t, y)z)

− ∂u

∂t
(γ(t, y) + ρ(t, y)z, ρ(t, y)) · ρ̇(t, y) dt

Then, if f̄ =
´

(f ∗ ϕ)(z)ϕ(z) dz, we have

f(y)− f̄ = −
ˆ

Rn

ˆ 1

0

∇u(γ + ρz, ρ) · (γ̇ + ρ̇z)ϕ(z) dt dz

−
ˆ

Rn

ˆ 1

0

∂u

∂t
(γ + ρz, ρ)ρ̇ϕ(z) dt dz

= −(I + II).

To estimate I, we make the change of variables

γ(t, y) + ρ(t, y)z = x, dz =
dx

ρn(t, y)

and use the definition of u and the support of ϕ (i.e., that the integrand vanishes
unless |x− w| < λ

2
ρ(t, y)) to arrive at

I =

ˆ

Rn

ˆ 1

0

ˆ

|x−w|<λρ/2

f(w)
1

ρn+1
∇ϕ
(x− w

ρ

)
dw
(
γ̇ +

(x− γ

ρ

)
ρ̇
)
ϕ
(x− γ

ρ

) dt
ρn
dx.
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Now, observe that
´

1
ρn+1∇ϕ

(
x−w
ρ

)
dw = 0 (since ϕ is a compactly supported smooth

function), and so we may subtract f(x) in the integral with respect to w, to obtain

I =

ˆ

Rn

ˆ 1

0

ˆ

|x−w|<λρ/2

(f(w)−f(x)) 1

ρn+1
∇ϕ
(x− w

ρ

)
dw
(
γ̇+
(x− γ

ρ

)
ρ̇
)
ϕ
(x− γ

ρ

) dt
ρn
dx.

Now, using that |x− w| < λ
2
ρ(t, y), and that |x− γ(t, y)| ≤ λ

2
ρ(t, y) (because of

the support of ϕ), and also that |ρ̇| ≤ |γ̇| (because ρ̇(t, y) = ∇d(γ(t, y)) · γ̇(t, y)), we
may bound

I ≤ C

ˆ

Rn

ˆ 1

0

ˆ

|x−w|<λρ/2

|f(w)− f(x)|
|x− w|np+s

1

ρ
n
p′

∣∣∣∇ϕ
(x− w

ρ

)∣∣∣ dw|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx.

Now, we claim that λρ(t, y) < d(x). Indeed, when t ∈ [0, τ(y)], we have that

ρ(t, y) = ξ|y − γ(t, y)| ≤ ξ

2
d(y)

because γ is inside B(y, d(y)/2). But,

d(y) ≤ |x− y|+ d(x) ≤ |x− γ(t, y)|+ |γ(t, y)− y|+ d(x)

≤ λ

2
ρ(t, y) +

1

ξ
ρ(t, y) + d(x) =

(λ
2
+

1

ξ

)
ρ(t, y) + d(x).

(4.11)

So,

λρ(t, y) ≤ λ

2− ξλ
d(x) < d(x).

On the other hand, if t ∈ [τ(y), 1], we have that

ρ(t, y) =
1

15
d(γ(t, y)) ≤ 1

15
|x− γ(t, y)|+ 1

15
d(x) ≤ λ

30
ρ(t, y) +

1

15
d(x)

so that

(4.12) λρ(t, y) ≤ 2λ

30− λ
d(x) < d(x).

In particular, since 0 < λ < 1, in this case we also have

(4.13) ρ(t, y) <
d(x)

2
.

Hence, using these bounds and Hölder’s inequality (with the usual modification
if p = 1) we obtain

I ≤ C

ˆ

Rn

ˆ 1

0

(ˆ

|x−w|<d(x)/2

|f(w)− f(x)|p
|x− w|n+sp

dw
) 1

p

·
(ˆ

Rn

∣∣∣∇ϕ
(x− w

ρ

)∣∣∣
p′ 1

ρn
dw
) 1

p′ |γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx

≤ C

ˆ

Rn

(ˆ

|x−w|<d(x)/2

|f(w)− f(x)|p
|x− w|n+sp

dw
) 1

p

ˆ 1

0

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx

= C

ˆ

Rn

h(x)

ˆ 1

0

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx

= C
(ˆ

Rn

h(x)

ˆ τ(y)

0

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx+

ˆ

Rn

h(x)

ˆ 1

τ(y)

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx
)

= C(Ia + Ib).
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For Ia, notice that proceeding as in (4.11) we have that

|x− y| ≤
(λ
2
+

1

ξ

)
ρ(t, y) <

(1
2
+

1

λξ

)
d(x) < C1d(x).

Thus, we can write

Ia ≤ C

ˆ

|x−y|<C1d(x)

h(x)

ˆ τ(y)

0

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

|x− y|n+1−s
dx.

Now, the integral vanishes unless

|x− γ(t, y)| ≤ ρ(t, y)
λ

2
≤ ρ(t, y) = ξ|y − γ(t, y)| ≤ ξ|x− γ(t, y)|+ ξ|x− y|

which implies

|x− γ(t, y)| ≤ ξ

1− ξ
|x− y| ≤ 1

4
|x− y|,

so we can bound

Ia ≤ C

ˆ

|x−y|<C1d(x)

h(x)

ˆ τ(y)

0

χ|x−γ(t,y)|≤ 1
4
|x−y||γ̇(t, y)|

dt

|x− y|n+1−s
dx

≤ C

ˆ

|x−y|<C1d(x)

h(x) ℓ(γ(y) ∩B(x, |x− y|/4)) 1

|x− y|n+1−s
dx

≤ C

ˆ

|x−y|<C1d(x)

h(x)

|x− y|n−s
dx

where in the last step we have used property (4) of β-John domains.
To bound Ib, observe that for t ∈ [τ(y), 1] we have

(4.14) d(x) ≤ d(γ(t, y)) + |x− γ(t, y)| ≤ 15ρ(t, y) +
λ

2
ρ(t, y),

and, because we are in a β-John domain, and by (4.12) we have that

(4.15) |x− y| ≤ |x− γ(t, y)|+ |γ(t, y)− y| < λ

2
ρ(t, y) + C|γ̇(t, y)|t < C2d(x)

1
β

so that, if p = 1,

Ib =

ˆ

Rn

h(x)

ˆ 1

τ(y)

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx

≤ C

ˆ

Rn

h(x)

ˆ 1

τ(y)

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

d(x)n+1−s
dx

≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x)

ˆ 1

τ(y)

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

d(x)n+1−s
dx.

Now, using the support of ϕ and (4.13), we may write

Ib ≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x)

ˆ 1

τ(y)

χ
|x−γ(t,y)|≤ d(x)

2
|γ̇| dt

d(x)n+1−s
dx

≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x) ℓ(γ(y) ∩B(x, d(x)/2))d(x)s−n−1 dx

≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x) d(x)s−n dx

where in the last step we have used property (4) of β-John domains.
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If p > 1, to bound Ib, by Hölder’s inequality and property (4) we have

Ib =

ˆ

Rn

h(x)

ˆ 1

τ(y)

|γ̇|
∣∣∣ϕ
(x− γ

ρ

)∣∣∣
dt

ρn+1−s
dx

≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x)
(ˆ 1

τ(y)

χ
|x−γ|<

d(x)
2

|γ̇| dt
) 1

p

·
(ˆ 1

τ(y)

∣∣∣ϕ
(x− γ

ρ

)∣∣∣
p′ 1

ρ(n+1−s)p′
|γ̇| dt

) 1
p′

dx

≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x)d(x)
1
p

(ˆ 1

τ(y)

∣∣∣ϕ
(x− γ

ρ

)∣∣∣
p′ 1

ρ(n+1−s)p′
|γ̇| dt

) 1
p′

dx.

Therefore, since ρ ∼ d(x) by (4.12) and (4.14), using Hölder’s inequality again we
arrive at

Ib ≤ C

ˆ

|x−y|<C2d(x)
1
β

h(x)d(x)(b−
(n+a)p

βq
) 1
p

·
(ˆ 1

τ(y)

∣∣∣ϕ
(x− γ

ρ

)∣∣∣
p′ 1

ρ(n+1−s)p′+(b−
(n+a)p

βq
−1)p

′

p

dt
) 1

p′

dx

≤ C
(ˆ

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p

·
(ˆ 1

τ(y)

ˆ

Rn

∣∣∣ϕ
(x− γ

ρ

)∣∣∣
p′ 1

ρn
dx

1

ρ−n+(n+1−s)p′+(b− (n+a)p
βq

−1)p
′

p

dt
) 1

p′

and finally, by property (2),

Ib ≤ C
(ˆ

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p
( ˆ 1

0

1

tβ[−n+(n+1−s)p′+(b−
(n+a)p

βq
−1)p

′

p
]
dt
) 1

p′

≤ C
(ˆ

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p

provided 0 ≤ β[−n + (n + 1 − s)p′ + (b − (n+a)p
βq

− 1)p
′

p
] < 1 which holds for b <

ps− p+ 1− n+ p−1
β

+ (n+a)p
βq

and sufficiently close to that number.

To estimate II we proceed in a similar way. Indeed, since
´

ϕt(x) dx = 1 for all

t, we have
´

∂ϕt

∂t
(x) dx = 0. Moreover, recalling that

∂ϕt

∂t
(x) =

1

tn+1
ψ
(x
t

)

with ψ := −nϕ−x · ∇ϕ. Therefore, repeating the arguments that we used to bound
I we obtain,

II =

ˆ

Rn

ˆ 1

0

ˆ

|x−w|<λρ/2

(f(w)− f(x))
1

ρn+1
ψ
(x− w

ρ

)
dwρ̇ϕ

(x− γ

ρ

) dt
ρn
dx

which can be bounded analogously. This completes the proof. �

Using the above representation we obtain the improved inequalities in the case
of β-John domains:
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Theorem 4.1. Let Ω in R
n be a bounded β-John domain, 1 < p ≤ q < ∞,

a ≥ 0, b < (n+a)p
qβ

+ p−1
β

+ sp − p + 1 − n and, additionally, q ≤ n−p
n−sp

when p < n
s
.

Given s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

{
ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx

}1/p

where δ(x, z) := min{d(x), d(z)}.
Proof. By Proposition 4.1 we have

|f(y)− f̄ | ≤ C

ˆ

|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

(ˆ

|x−y|<C2d(x)
1
β

h(x)p d(x)b−
(n+a)p

βq dx
) 1

p

= A+B.

Observe that ‖A‖Lq(Ω,da) can be bounded as in Theorem 3.1, so it suffices to re-
strict ourselves to ‖B‖pLq(Ω,da) = ‖Bp‖

L
q
p (Ω,da)

. We have, using Minkowski’s integral

inequality,

‖Bp‖
L

q
p (Ω,da)

= C

[
ˆ

Ω

( ˆ

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) q

p
d(y)a dy

]p
q

≤ C

ˆ

Ω

h(x)pd(x)b−
(n+a)p

βq

(ˆ

|x−y|<C2d(x)
1
β

d(y)a dy
)p

q
dx

≤ C

ˆ

Ω

h(x)pd(x)b−
(n+a)p

βq

(
d(x)

a
β

ˆ

|x−y|<C2d(x)
1
β

dy
)p

q

dx

= C

ˆ

Ω

h(x)pd(x)b dx

where again we have used that d(y) ≤ |x − y| + d(x) ≤ Cd(x)
1
β and that a ≥ 0.

Therefore,

‖B‖Lq(Ω,da) ≤ C
(ˆ

Ω

h(x)pd(x)b dx
) 1

p
.

This concludes the proof. �

As discussed before, in the case p = 1 we recover the endpoint value for b and
can prove the following:

Theorem 4.2. Let Ω in R
n be a bounded β-John domain, 1 ≤ q ≤ n−1

n−s
, a ≥ 0

and b ≤ (n+a)
qβ

+ s− n. Given s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|
|z − x|n+s

δ(x, z)b dz dx

where δ(x, z) := min{d(x), d(z)}.
Proof. Clearly, it suffices to prove the result for b = n+a

qβ
+ s − n. By Proposi-

tion 4.1, we have

|f(y)− f̄ | ≤ C

ˆ

|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

ˆ

|x−y|<C2d(x)
1
β

h(x) d(x)s−n dx

= A+B
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Observe that ‖A‖L1(Ω,da) and ‖A‖Lq,∞(Ω,da) (for q > 1) can be bounded as in Theo-
rem 3.2. So we must consider ‖B‖Lq(Ω,da) (q ≥ 1). By Minkowski’s integral inequality,
we have

‖B‖Lq(Ω,da) ≤ C

ˆ

Ω

h(x) d(x)s−n
(ˆ

|x−y|<C2d(x)
1
β

d(y)a dy
)1

q
dx

≤ C

ˆ

Ω

h(x) d(x)s−n
(
d(x)

a
β

ˆ

|x−y|<C2d(x)
1
β

dy
)1

q
dx

= C

ˆ

Ω

h(x) d(x)s−n+ a+n
qβ dx

where in the second line we have used that d(y) ≤ |x− y|+ d(x) ≤ Cd(x)
1
β and that

a ≥ 0.
The result then follows immediately for q = 1 and using the “weak implies strong”

technique as in Theorem 3.2 for q > 1. �

To analyze the optimality of our estimates (in terms of the upper bound on q)
we consider a “mushroom-type” domain. These type of examples go back to [25] (see
Section 5), and we follow closely the presentation in [14] (see the discussion after
Corollary 5). Therefore, we will be somewhat sketchy.

Theorem 4.3. Let s ∈ (0, 1), a ≥ 0 and 1 ≤ p ≤ q < ∞. There exist a β-John

domain Ω in R
n and f ∈ C∞(Ω) such that

inf
c∈R

‖f − c‖Lq(Ω,da) ≤ C

{
ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx

}1/p

cannot hold unless q ≤ (n+a)p
1−p+β(b+n−1+p−sp)

.

Proof. Assume, for simplicity, that a = b = 0. Following [14], we define a
‘mushroom’ F of size r as the union of a cylinder of height r and radius rβ (called
the ‘stem’ and denoted by P) with a ball of radius r (called the ‘cap’ and denoted
by C), so that they create a mushroom-like shape. The domain Ω considered consists
of a cube Q and an infinite sequence of disjoint mushrooms F1, F2, . . . on one side of
the cube (called the ‘top’). The stems of F1, F2, . . . are perpendicular to the top and
of decreasing size ri → 0. This domain Ω can easily be seen to be a β-John domain.

Now, we let fi be the piecewise linear function on Ω such that fi = 0 outside Fi,
fi = 1 on the cap and fi is linear on the stem. We may also assume that f̄i = 0 for

every i. Hence, ‖fi − f̄i‖Lq(Ω) ≥ cnr
n
q

i .

To bound
( ´

Ω

´

|x−z|<d(x)/2
|fi(x)−fi(z)|

p

|x−z|n+sp dz dx
)1/p

observe that:

• if x ∈ Ci, z ∈ Q, then the integral vanishes, since d(x) ≤ ri and |x− z| > ri,
• if x, z ∈ Q or x, z ∈ Ci, then |fi(x)− fi(z)| = 0,
• in all remaining cases, |fi(x) − fi(z)|p ∼ r−p

i |xn − zn|p and 1
2
d(x) ≤ d(z) ≤

3
2
d(x), so d(x) ∼ d(z) ≤ rβi .

Then,
ˆ

Ω

ˆ

|x−z|<d(x)/2

|fi(x)− fi(z)|p
|x− z|n+sp

dz dx =

ˆ

Q

· · · dx+
ˆ

Pi

· · · dx+
ˆ

Ci

· · · dx

= I1 + I2 + I3
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We have

I1 ≤
ˆ

Q

ˆ

|x−z|<d(x)/2

1

rpi

|xn − zn|p
|x− z|n+sp

dz dx ≤ C

ˆ

∪w∈Pi
B(w,rβi )∩Q

1

rpi
d(x)−sp+p dx

≤ C|
⋃

w∈Pi

B(w, rβi ) ∩Q| r−p+β(−sp+p)
i ≤ Cr

−p+β(n−sp+p)
i ,

I2 ≤
ˆ

Pi

ˆ

|x−z|<d(x)/2

1

rpi

|xn − zn|p
|x− z|n+sp

dz dx ≤ C

ˆ

Pi

1

rpi
d(x)−sp+p dx

≤ C|Pi|r−p+β(−sp+p)
i = Cr

1−p+β(−sp+p+n−1)
i ,

I3 ≤
ˆ

Ci

ˆ

|x−z|<d(x)/2

1

rpi

|xn − zn|p
|x− z|n+sp

dz dx ≤ C

ˆ

∪w∈Pi
B(w,rβi )∩Ci

1

rpi
d(x)−sp+p dx

≤ C|
⋃

w∈Pi

B(w, rβi ) ∩ Ci|r−p+β(−sp+p)
i ≤ Cr

−p+β(n−sp+p)
i .

Then, there must hold r
n
q

i ≤ C(r
1−p+β(−sp+p+n−1)
i )

1
p which, for sufficiently small ri,

can only hold if q ≤ np
1−p+β(n−1+p−sp)

, as we wanted to prove.

It is easy to see that the same example can be used to prove the optimality in
the general case (with a, b not necessarily 0). �

5. The case of Hölder-α domains

Roughly speaking, a Hölder-α domain is given locally by the hypograph, in an
appropriate orthogonal system, of a Hölder-α function (a typical example being a
cuspidal domain). For a precise definition we refer to [10, Section 5.2].

These domains are a particular case of β-John domains with β = 1/α. However,
they are known to have better embedding properties, as they cannot contains “rooms
and corridors” like general β-John domains (see, e.g. [4] and [22, Example 2.4]).
Therefore, it is natural that our result of Theorem 4.1 can be improved in this case.

We obtain the following result, which is an improvement of Theorem 4.1 when Ω
is Hölder-α, assuming that p > 1 and there is no weight on the LHS of the inequality,
and we prove its optimality. We believe that these restrictions are only technical.

Theorem 5.1. Let Ω in R
n be a bounded Hölder-α domain, 1 < p ≤ q < ∞,

b ≤ p(s−n)+p(n−1+α)(1+ 1
q
− 1

p
), and, additionally, q ≤ n−p

n−sp
when p < n

s
. Given

s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

‖f − c‖Lq(Ω) ≤ C

{
ˆ

Ω

ˆ

|x−z|≤d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx

}1/p

where δ(x, z) := min{d(x), d(z)}.
Proof. Clearly, given p and q, it suffices to prove the claim for b = p(s − n) +

p(n− 1 + α)(1 + 1
q
− 1

p
). Recall that by Proposition 4.1 we could use

(5.16) |f(y)− f̄ | ≤ C

ˆ

|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

ˆ

|x−y|<C2d(x)α
h(x) d(x)s−n dx.

The key point is to improve this estimate, observing that (4.15) can be improved

if Ω is Hölder-α. According to the definition given in [10], Ω =
⋃N

j=0Oj with Ō0 ⊂ Ω

and each Ω ∩ Oj (1 ≤ j ≤ N) given by the hypograph of a Hölder-α function in
an appropriate coordinate system. It is clear that it is enough to obtain the desired
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estimate for each Oj with fixed j ≥ 1. To simplify notation, assume that in a given Oj

the appropriate coordinate system is the usual one, x = (x′, xn), x
′ ∈ R

n−1, xn ∈ R.
Now, by (4.12), |x − γ(t, y)| ≤ d(x)/2. But, it was proved in [10, Section 5.2]

that this inequality implies that

|x′ − y′| ≤ Cd(x), |xn − yn| ≤ Cd(x)α

and then we can replace the second integral in (5.16) by
ˆ

|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α
h(x)d(x)s−n dx.

Consequently, proceeding by duality, for ‖g‖Lq′(Ω) = 1, we have
ˆ

Oj

|f(y)− f̄ |g(y) dy ≤ A +B

where A is as in (3.8) (with a = 0), and can be bounded similarly. To estimate B we
consider separately the cases p = q and p < q.

If p = q we write

B ≤ C

ˆ

Ω

1

d(x)n−1+α

ˆ

|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α
|g(y)| dyh(x)d(x)s−1+α dx

≤ C

ˆ

Ω

MS g(x)h(x)d(x)s−1+α dx ≤ C‖MS g‖Lp′(Ω)‖h ds−1+α‖Lp(Ω)

where MS is the strong maximal function, i.e., the maximal function over the basis
of rectangles with sides parallel to the axes, which is known to be bounded in Lp for
1 < p ≤ ∞. Then, the proof concludes as that of Theorem 4.1 and adding over j.

If p < q, taking η = n
p
− n

q
(notice that 0 < η < n) we have,

B ≤ C

ˆ

Ω

1

d(x)(n−1+α)(1− η
n
)

·
ˆ

|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α
|g(y)| dyh(x)d(x)s−n+(n−1+α)(1− η

n
) dx

≤ C

ˆ

Ω

MS
η g(x)h(x)d(x)

s−n+(n−1+α)(1− η
n
) dx

≤ C‖MS
η g‖Lp′(Ω)‖h d

b
p‖Lp(Ω) ≤ C‖g‖Lq′(Ω)‖h d

b
p‖Lp(Ω)

where we have used that MS
η g(x) := supR∋x

1

|R|1−
η
n

´

R
|f(y)| dy, 0 < η < n, where

R belongs to the family of rectangles with sides parallel to the axes, and that MS
η :

Lq′ → Lp′ for 1
q
= 1

p
− η

n
and 1 < p < n

η
(see, e.g., [24, Theorem 3.1]). As before, the

proof concludes as in Theorem 4.1 and adding over j. �

In the next Theorem we prove that the previous result is optimal with respect
to the exponent b. We generalize an argument given in [2] for the case s = 1.

Theorem 5.2. Let 1 < p ≤ q < ∞. There exist a Hölder-α domain Ω in R
n

and f ∈ C∞(Ω) such that

(5.17) inf
c∈R

‖f − c‖Lq(Ω) ≤ C

{
ˆ

Ω

ˆ

|x−z|<d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx

}1/p

cannot hold unless b ≤ p(s− 1 + α) + p(n− 1 + α)(1
q
− 1

p
).
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Proof. Assume that b > p(s − 1 + α) + p(n − 1 + α)(1
q
− 1

p
). Using the same

notation as in the previous section we write x = (x′, xn). Given 0 < α ≤ 1 define the
Hölder-α domain

Ω = {x ∈ R
n : 0 < xn < 1, |x′| < x1/αn }

and f(x) = x−ν
n , with ν > 0 to be chosen.

It is not difficult to check that d(x) ∼ x
1/α
n −|x′|. Then, in the subdomain Ω̃ ⊂ Ω

defined by

Ω̃ = {x ∈ R
n : 0 < xn < 1, |x′| < x1/αn /2}

we clearly have d(x) ∼ x
1/α
n .

Now, observe that if ‖f‖Lq(Ω̃) is infinite, then so is infc∈R ‖f − c‖Lq(Ω̃), and that

(5.18) ‖f‖q
Lq(Ω̃)

∼
ˆ 1

0

ˆ

|x′|<x
1/α
n /2

x−νq
n dx′ dxn ∼

ˆ 1

0

x
−νq+n−1

α
n dxn.

On the other hand, if |x − z| < d(x)/2 we have |xn − zn| < xn/2 and so xn ∼ zn.
Consequently,

|f(z)− f(x)| = |z−ν
n − x−ν

n | ≤ Cx−ν−1
n |zn − xn|

and therefore,
ˆ

|x−z|<d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)bdz ≤ Cx−(ν+1)p
n d(x)b

ˆ

|x−z|<d(x)/2

|z − x|p−n−spdz

≤ Cx−(ν+1)p
n d(x)b+(1−s)p ≤ Cx

−(ν+1)p+ b+(1−s)p
α

n

where in the last inequality we have used that d(x) ≤ x
1/α
n and b + (1 − s)p ≥ 0

(which follows from our assumptions on b, p and q). Then,

(5.19)

ˆ

Ω

ˆ

|x−z|<d(x)/2

|f(z)− f(x)|p
|z − x|n+sp

δ(x, z)b dz dx ≤ C

ˆ

Ω

x
−(ν+1)p+ b+(1−s)p

α
n dx

≤ C

ˆ 1

0

x
−(ν+1)p+ b+(1−s)p+n−1

α
n dxn.

Therefore, (5.17) does not hold if there exists ν such that its LHS is infinite and its
RHS is finite, that is, if

−νq + n− 1

α
≤ −1 < −(ν + 1)p+

b+ (1− s)p+ n− 1

α
and then, the existence of such a ν is equivalent to

b > p(s− 1 + α) + p(n− 1 + α)
(1
q
− 1

p

)

as we wanted to see. �
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