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Hochschild homology and cohomology of

down-up algebras

Sergio Chouhy, Estanislao Herscovich, and Andrea Solotar ∗

Abstract

We present a detailed computation of the cyclic and the Hochschild ho-
mology and cohomology of generic and 3-Calabi-Yau homogeneous down-up
algebras. This family was defined by Benkart and Roby in [3] in their study of
differential posets. Our calculations are completely explicit, by making use of
the Koszul bimodule resolution and arguments similar to those appearing in
[11].
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1 Introduction

Motivated by the study of the algebra generated by the up and down operators in
the theory of differential posets defined independently by R. Stanley in [16] and by
S. Fomin in [9], or of uniform posets defined by P. Terwilliger in [18], G. Benkart
and T. Roby introduced in [3] the notion of down-up algebras. They have been
intensively studied in [2], [4], [6], [14], [20] among many other articles, and dif-
ferent kinds of generalizations have been defined [5], [7]. Since the homological
invariants of an algebra provide useful tools for its description as well as for its
representations, many of their homological properties were studied and in partic-
ular, a quite convenient projective resolution of the regular bimodule of a down-up
algebra was constructed by S. Chouhy and A. Solotar in [8].

Let K be a fixed field of characteristic 0. Given parameters (α, β, γ) ∈ K3, the as-
sociated down-up algebra A(α, β, γ) is defined as the quotient of the free associative
algebra K〈u, d〉 by the ideal generated by the relations

d2u− (αdud+ βud2 + γd),

du2 − (αudu + βu2d+ γu).
(1.1)

We shall sometimes denote a particular down-up algebra A(α, β, γ) just by A to
simplify the notation.

As examples of down-up algebras, A(2,−1, 0) is isomorphic to the enveloping
algebra of the Heisenberg-Lie algebra of dimension 3, and, for γ 6= 0, A(2,−1, γ) is
isomorphic to the enveloping algebra of sl(2,K). Moreover, Benkart proved in [2]
that any down-up algebra such that (α, β) 6= (0, 0) is isomorphic to one of Witten’s
7-parameter deformations of U (sl(2,K)).

∗This work has been supported by the projects UBACYT 20020130100533BA, UBACYT
20020130200169BA, PIP-CONICET 11220150100483CO, and MATHAMSUD-REPHOMOL. The second
and third authors are research members of CONICET (Argentina).
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Any of these algebras has a PBW basis given by

{ui(du)jdk : i, j, k ∈ N≥0}. (1.2)

Note that the down-up algebra A(α, β, γ) can be regarded as a Z-graded al-
gebra where the degrees of u and d are respectively 1 and −1. We shall refer
to this grading as special, and denote the special degree of an element a ∈ A by
s-deg(a). In fact, A =

⊕

n∈Z
An where An is the K-vector space spanned by the set

{ui(du)jdk|i− k = n}.
It is known [6] that if A(α, β, γ) is isomorphic to A(α′, β′, γ′), then

both α+ β and α′ + β′ are 1 or different from 1,

both γ and γ′ are 0 or different from 0.
(1.3)

The down-up algebra A(α, β, γ) is isomorphic to A(α, β, 1) for all γ 6= 0. Further-
more, if K is algebraically closed, P. Carvalho and I. Musson showed in [6] that
A(α, β, γ) is isomorphic to A(α′, β′, γ′) if and only if the following conditions hold

either α′ = α and β′ = β, or α′ = −α−1β and β′ = β−1,

both γ and γ′ are 0 or different from 0.
(1.4)

E. Kirkman, I. Musson and D. Passman proved in [13] that A(α, β, γ) is noethe-
rian if and only it is a domain, which is tantamount to the fact that the subalgebra
of A(α, β, γ) generated by ud and du is a polynomial algebra in two indetermi-
nates, that in turn is equivalent to β 6= 0. Under either of the previous situations,
A(α, β, γ) is Auslander regular and its global dimension is 3. On the other hand, it
was proved by Cassidy and Shelton in [7] than, if K is algebraically closed, then the
global dimension of A(α, β, γ) is always 3. Moreover, Benkart and Roby proved in
[3] that the Gelfand-Kirillov dimension of a down-up algebra is 3, independently
of the parameters. Since A(α, β, γ) is isomorphic to the opposite algebra, left and
right dimensions coincide.

The centre of a down-up algebra has been computed in [14] and [20], and the
first Hochschild cohomology space of a localization of some families of down-up
algebras with γ = 0 has been recently computed in [17], but up to now there is no
description of Hochschild homology and cohomology of down-up algebras avail-
able.

The main result of this article is the computation of the complete Hochschild
homology and cohomology of two families of down-up algebras with γ = 0. Given
α, β ∈ K, denote r1 and r2 the roots of the polynomial t2 − αt − β. We define the
following two cases.

(F1) Graded generic down-up algebras. The algebra A(α, β, 0) belongs to this family

if and only if (α, β) 6= (0, 0) and ri1r
j
2 6= 1 for all i and j such that (i, j) 6= (0, 0).

We call this assumption the genericity hypothesis.

(F2) Graded 3-Calabi-Yau down-up algebras. The algebra A(α, β, 0) belongs to this
family if and only if β = −1, in which case r2 = r−1

1 .

The methods we use are closely related to those used for the computation of the
Hochschild and cyclic (co)homology of Yang-Mills algebras in [11], and we think
that they will lead to the computation of these invariants for the other cases as
well, with more involved calculations. We are not studying here the case A(0, 0, 0)
for which the resolution constructed by M. Bardzell in [1] is available.

In Section 2 we introduce some notations and basic objects such as the projec-
tive resolution of A as A-bimodule. In case γ = 0, this is the Koszul resolution. We
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state the main results of the article in Theorem 2.1 and Theorem 2.2, and leave the
proofs for the subsequent sections.

In Section 3 we compute Hochschild and cyclic homology. It is clear from the
resolution that HHi(A) = 0 for all i ≥ 4. We provide explicit bases for HH0(A)
and HH3(A) and we use a Hilbert series argument involving reduced cyclic ho-
mology and a theorem by K. Igusa in [12] to obtain the Hilbert series of HH1(A)
and HH2(A).

Section 4 is devoted to the Hochschild cohomology. Since A(α,−1, 0) is 3-
Calabi-Yau, we only study here algebras belonging to the family (F1). It is well
known that their centre is K (see [14, 20]). We give bases of HH1(A), HH2(A) and
HH3(A). This may be particularly useful for the description of the corresponding
deformations.

2 Main results

In this section we will introduce some elements of down-up algebras with the aim
of stating the main results of the article, that will be proved in the sequel.

As stated previously, we will usually denote A(α, β, γ) simply by A. We men-
tioned in the introduction that this algebra can be regarded as a Z-graded algebra
where the degrees of u and d are, 1 and −1, respectively. We shall refer to this
grading as special. If γ is zero, the algebra A has another grading that we will call
usual with u and d both in degree 1. We shall denote the usual degree of an el-
ement a ∈ A by deg(a). Notice that the homogeneous components with respect
to the usual grading are finite dimensional K-vector spaces. For γ = 0, A is thus
Z2-graded by bideg := (deg, s-deg).

Let V be the K-vector space spanned by the set {d, u} and let T (V ) = ⊕n≥0V
⊗n

be the tensor algebra of V over K. We will typically omit the tensor product sym-
bols when writing an element of T (V ). Let R be the subspace of V ⊗3 spanned by
the set {d2u, du2} and let Ω be the subspace of V ⊗4 spanned by the element d2u2.

There is a short projective resolution of A as A-bimodule (see [8]):

0 → A⊗ Ω⊗A
δ3→ A⊗R⊗A

δ2→ A⊗ V ⊗A
δ1→ A⊗A → 0, (2.1)

where the augmentation δ0 : A ⊗ A → A is given by the multiplication map. The
differentials are

δ1(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v, for all v ∈ V,

δ2(1⊗ d2u⊗ 1) = 1⊗ d⊗ du+ d⊗ d⊗ u+ d2 ⊗ u⊗ 1

− α(1⊗ d⊗ ud+ d⊗ u⊗ d+ du⊗ d⊗ 1)

− β(1⊗ u⊗ d2 + u⊗ d⊗ d+ ud⊗ d⊗ 1)

− γ ⊗ d⊗ 1,

(2.2)

δ2(1 ⊗ du2 ⊗ 1) = 1⊗ d⊗ u2 + d⊗ u⊗ u+ du⊗ u⊗ 1

− α(1 ⊗ u⊗ du+ u⊗ d⊗ u+ ud⊗ u⊗ 1)

− β(1 ⊗ u⊗ ud+ u⊗ u⊗ d+ u2 ⊗ d⊗ 1)

− γ ⊗ u⊗ 1,

(2.3)

and

δ3(1⊗ d2u2 ⊗ 1) = d⊗ du2 ⊗ 1 + β ⊗ du2 ⊗ d

− 1⊗ d2u⊗ u− βu ⊗ d2u⊗ 1.
(2.4)
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Notice that for all i the map δi is homogeneous for the special degree and the same
holds for the usual degree when γ = 0. Moreover, the projective resolution (2.1) is
minimal in the category of graded modules if γ = 0.

We will denote the complex (2.1) by K . It is not hard to see that if β 6= 0, then
there is an isomorphism HomAe(K,Ae) ∼= Aσ ⊗A K of complexes of A-bimodules,
where Ae = A ⊗ Aop and σ is the automorphism determined by σ(u) = −β−1u
and σ(d) = −βd. As a consequence, noetherian down-up algebras are twisted 3-
Calabi-Yau, and if β = −1 they are 3-Calabi-Yau. Moreover, the algebra A(α, β, γ)
is 3-Calabi-Yau if and only if β = −1. See for example [15] and the references
therein.

In the following theorem we summarize the results about Hochschild homol-
ogy.

Theorem 2.1. Let A = A(α, β, 0) be a down-up algebra. Define

s1 =
t(2 + 3t)

1− t2
, s2 =

t2

1− t4
,

and for n ≥ 1,

fn =
1

(1 − t4)(1− tn)2
, gn =

t2 − t2n

1− t4
, hn =

2t(1− tn−1)

(1− t)(1 − tn)
.

• If A belongs to (F1), then the Hilbert series of the Hochschild homology spaces
HH0(A) and HH1(A) are the following, while HH2(A) and HH3(A) vanish.

HH0(A)(t) =
1 + 2t+ 2t2

1− t2
, HH1(A)(t) =

t(2 + 3t)

1− t2
,

• If A belongs to the family (F2) and r1 is not a root of unity, then the Hilbert series
are as follows.

HH0(A)(t) =
1 + 2t+ 2t2

1− t2
, HH1(A)(t) =

t(2 + 3t)

1− t2
+

t4

1− t8
,

HH2(A)(t) =
2t4

1− t8
, HH3(A)(t) =

t4

1− t8
.

• If A belongs to (F2) and r1 is a primitive n-th root of unity, then

i) For n even and n ≥ 4,

HH0(A)(t) = fn + hn + s2,

HH1(A)(t) =
t4

(1− t4)(1− tn)2
+ 2(fn + hn + s2 − 1)− s1,

HH2(A)(t) =
2t4

(1− t4)(1− tn)2
+ fn + hn + s2 − s1 − 1,

HH3(A) =
t4

(1− t4)(1 − tn)2
.

ii) For n odd and n ≥ 3,

HH0(A)(t) = fn + gn + hn,

HH1(A)(t) =
t4

(1− t4)(1 − tn)2
+ 2(fn + gn + hn − 1)− s1,

HH2(A)(t) =
2t4

(1− t4)(1 − tn)2
+ fn + gn + hn − s1 − 1,

HH3(A)(t) =
t4

(1− t4)(1 − tn)2
.
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iii) For n = 2, that is r1 = −1, the Hilbert series of the Hochschild homology
spaces of A(2,−1, 0) are

HH0(A)(t) =
1 + 2t+ 2t2 − t4 − 2t5

(1− t2)2(1 + t2)
, HH1(A)(t) =

2t+ 3t2 + t4 − 2t5

(1− t2)2(1 + t2)
,

HH2(A)(t) =
2t4

(1 − t2)2(1 + t2)
, HH3(A)(t) =

t4

1− t4
.

iv) For n = 1, that is r1 = 1, the Hilbert series of the Hochschild homology spaces
of A(2, 1, 0) are

HH0(A)(t) =
1

(1 − t)2
, HH1(A)(t) =

t(2− t)(1 + t2)

(1 − t)2
,

HH2(A)(t) =
2t3(1 + t− t2)

(1 − t2)(1 − t)
, HH3(A)(t) =

t4

1− t2
.

While proving this result we will also obtain the Hilbert series of the cyclic
homology of A. Moreover, we give explicit bases of HH0(A) and HH3(A).

The computation of the Hilbert series of Hochschild cohomology spaces fol-
lows from the previous ones in the 3-Calabi-Yau case, that is, for the family (F2).
However, we want to describe what happens for an algebra A in (F1). No formula
involving cyclic homology and the respective Hilbert series is available in this con-
text. So, we provide explicit basis for the Hochschild cohomology spaces in this
case.

Theorem 2.2 (see Section 4 for the notation). Let A be a down-up algebra belonging to
the family (F1). The Hilbert series of the Hochschild cohomology spaces are as follows.

HH0(A)(t) = 1, HH1(A)(t) = 2,

HH2(A)(t) =
1

t2
+ 2 +

t2

1− t2
, HH3(A)(t) =

1

t4(1− t2)
.

Moreover,

i) HH0(A) = K,

ii) the classes of the elements D|d and U |u form a basis of HH1(A),

iii) the classes of the elements {D2U |wk
1d+DU2|uwk

1 : k ≥ 0}∪{D2U |ud2+DU2|u2d}
form a basis of HH2(A), and

iv) the classes of the elements {D2U2|wj
1 : j ≥ 0, and j 6= 2} ∪ {D2U2|uw1d} form a

basis of HH3(A).

From the previous results we remark that all Hochschild homology spaces are
either infinite dimensional – with finite dimensional graded components– or zero.
The situation differs for Hochschild cohomology of algebras belonging to the fam-
ily (F1), in which case the centre is as small as possible, that is one dimensional,
and the first cohomology space has dimension 2, containing just the two obvious
derivations. The fact that the second and third cohomology spaces are infinite di-
mensional in all cases suggests that deformations of down-up algebras are quite
complicated, but having explicit bases in case (F1) indicates that the deformation
theory may be nonetheless tractable.
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3 Hochschild and cyclic homology of down-up alge-

bras

From now on we fix γ = 0, and let A = A(α, β, 0) be a down-up algebra with (α, β)
different from (0, 0). In this section we assume that the field K contains both roots
of the polynomial t2 − αt− β and it is of characteristic zero.

Denote by A(t, s) the Hilbert series of the bigraded algebra A. Consider K as a
left A-module with the trivial action of d and u. By computing the Euler-Poincaré
characteristic of the exact complex K ⊗A K we obtain

A(t, s) =
1

1− t(s+ s−1) + t3(s+ s−1)− t4
. (3.1)

The Hilbert series for the usual grading is obtained by setting s = 1 in the previous
expression:

A(t) =
1

(1 − t2)(1− t)2
. (3.2)

Next we describe a basis of A as a K-vector space that will be useful for the
computations. Denote r1 and r2 the roots of the polynomial t2 − αt − β. Since
(α, β) 6= (0, 0) we may assume that r1 is not zero. For l ∈ {1, 2} we define wl =
βud+ rldu. It is straightforward that

wlu = rluwl,

dwl = rlwld,
(3.3)

for l = 1, 2. Given p ∈ Z≥0, denote

φp =

p
∑

i=0

ri1r
p−i
2 =

rp+1
1 − rp+1

2

r1 − r2
.

The last expression only holds for r1 6= r2. We set φ−1 = 0. The following identities
are easily proved by induction.

Lemma 3.1. For all k ≥ 0 the following equalities hold

duk =
φk−1

r1
uk−1w1 + rk2u

kd,

dku =
φk−1

r1
w1d

k−1 + rk2ud
k.

(3.4)

For the proof of the following result we refer to [20], Lemma 2.2.

Lemma 3.2. Let l ∈ {1, 2} and suppose rl is not zero. The set {uiwj
l d

k : i, j, k ∈ N≥0}
is a basis of A.

We denote HC•(A), HH•(A) and HH
•
(A) the reduced cyclic homology, the

reduced Hochschild homology and the reduced Hochschild cohomology of A. No-
tice that the reduced Hochschild homology and cohomology spaces differ from the
non reduced groups only in (co)homological degree zero.

Tensoring the resolution K of A given by (2.1) by A over Ae we obtain the
following complex, whose homology is isomorphic to the Hochschild homology
of A:

0 → A⊗ Ω
d3→ A⊗R

d2→ A⊗ V
d1→ A → 0,

6



where d1(a⊗ d+ a′ ⊗ u) = ad− da+ a′u− ua′,

d2(a⊗ d2u+ a′ ⊗ du2)

=
(

dua+ uad+ u2a′ − α(uda+ adu+ ua′u)− β(dau + aud+ a′u2)− γa
)

⊗ d

+
(

ad2 + ua′d+ a′du− α(dad + dua′ + a′ud)− β(d2a+ uda′ + da′u)− γa′
)

⊗ u,

(3.5)

and
d3(a⊗ d2u2) = −(ua+ βau)⊗ d2u+ (ad+ βda)⊗ du2. (3.6)

Since the characteristic of K is zero, a theorem by T. Goodwillie (see [10], and
the consequence indicated by M. Vigué-Poirrier in [19]) tells us that, for all i ∈ N≥0

there are short exact sequences of graded vector spaces

0 → HCi−1(A) → HHi(A) → HCi(A) → 0.

Since HHi(A) = 0 for all i ≥ 4, we deduce that HCi(A) = 0 for all i ≥ 3.
We recall that the the Euler-Poincaré characteristic of the reduced cyclic homol-

ogy χHC•(A)(t) of A is defined as

χHC•(A)(t) =
∑

p∈Z

(−1)pHCp(A)(t) = HC0(A)(t) −HC1(A)(t) +HC2(A)(t).

A result by K. Igusa (see [12], Thm. 3.5, Equation (16)) –and proved by different
methods in an unpublished work by C. Löfwall– tells us that it satisfies the identity

χHC•(A)(t) =
∑

ℓ∈N

ϕ(ℓ)
ℓ log(A(tℓ)), where ϕ is the Euler’s totient function. Using

that
∑

d|n ϕ(d) = n for all n ∈ N, we compute

∑

ℓ∈N

ϕ(ℓ)

ℓ
log(1− tℓ) = −

∑

n∈N

(
∑

d|n

ϕ(d))
tn

n
= −

t

1− t
.

Hence, using Equation 3.2 we obtain

χHC•(A)(t) = −
∑

ℓ∈N

ϕ(ℓ)

ℓ
log((1 − t2ℓ)(1− tℓ)2) =

t(2 + 3t)

1− t2
.

Putting this all together we get

HC0(A)(t) = HH0(A)(t)

HC1(A)(t) = HH0(A)(t) +HH3(A)(t) −
t(2 + 3t)

1− t2
,

HC2(A)(t) = HH3(A)(t), (3.7)

HH1(A)(t) = 2HH0(A)(t) +HH3(A)(t) −
t(2 + 3t)

1− t2
,

HH2(A)(t) = HH0(A)(t) + 2HH3(A)(t) −
t(2 + 3t)

1− t2
.

The computation of HH0(A) and HH3(A) will thus provide us the dimensions of
the graded components of the other spaces.

Proposition 3.3. Let A(α, β, 0) be a down-up algebra.

1. If A belongs to (F1), then the vector space HH0(A) has a basis formed by the classes
of the elements of the set

{1, wj
1, d

j , uj : j ∈ N}.
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2. If A belongs to (F2), define n as the order of r1 if it is a root of unity and 0 otherwise.
The vector space HH0(A) has a basis formed by the classes of the following elements.

• If n is even and different from 2,

i) uiwj
1d

k such that n divides j − i and j − k,

ii) ui, dk with i, k ≥ 0 such that n ∤ i and n ∤ k, and

iii) wj
1, where j is any odd number.

• If n is odd and different from 1,

i) uiwj
1d

k such that n divides j − i and j − k.

ii) ui, dk with i, k ≥ 0 such that n ∤ i and n ∤ k, and

iii) wj
1, where j is odd and j ≤ n− 2.

• If n = 2,

u2id2k, u2i+1, d2k+1, w2j+1
1 with i, j, k ≥ 0.

• If n = 1,

uidk with i, j ≥ 0.

Before we get to the proof of Proposition 3.3 we need some definitions and

auxiliary results. Let a = uiwj
1d

k, where i, j, k ∈ N≥0. Using Lemma 3.1 we deduce
that

ad− da = (1− rj1r
i
2)u

iwj
1d

k+1 −
φi−1

r1
ui−1wj+1

1 dk, (3.8)

and

au− ua = −(1− rj1r
k
2 )u

i+1wj
1d

k +
φk−1

r1
uiwj+1

1 dk−1. (3.9)

Define fi−1,j+1,k = ad− da, and gi,j+1,k−1 = ua− au. Observe that Im(d1) is equal
to the vector space spanned by the set

{fi,j,k : i ≥ −1, j ≥ 1, k ≥ 0} ∪ {gi,j,k : i ≥ 0, j ≥ 1, k ≥ −1}.

Let us write ti = φi/r1 and si,j = 1 − rj1r
i
2. Then fi,j,k = si+1,j−1u

i+1wj−1
1 dj+1 −

tiu
iwj

1d
k .

For i, j, k with ti 6= 0 and j ≥ 1, let

Li,j := max{l : such that 0 ≤ l ≤ j − 1 and ti+l 6= 0}

and

zi,j,k := −
1

ti
fi,j,k −

Li,j∑

l=1

(

1

ti

l∏

m=1

si+m,j−m

ti+m

)

fi+l,j−l,k+l,

where we omit the second summand whenever Li,j = 0. In order to simplify
notations, let L = Li,j . Notice that

zi,j,k = uiwj
1d

k −

(

si+L+1,j−L−1

ti

L∏

m=1

si+m,j−m

ti+m

)

ui+L+1wj−L−1
1 dk+L+1,

and that it belongs to Im(d1). On the other hand, define

Γ = {(i, j, k) ∈ N3
0 : rj1r

i
2 = 1 or k = 0} ∩ {(i, j, k) ∈ N3

0 : rj1r
k
2 = 1 or i = 0}.

Lemma 3.4. Let i, j, k ≥ 0 and let x ∈ Im(d1) be such that the coefficient of uiwj
1d

k in x
is not zero. If (i, j, k) ∈ Γ, then j ≥ 1. If in addition n|i− k, then ti 6= 0.
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Proof. Write x =
∑

a,b,c≥0(ǫa,b,c[u
awb

1d
c, d] + µa,b,c[u

awb
1d

c, u]). The coefficient of

uiwj
1d

k in this expression is

ǫi,j,k−1si,j − ǫi+1,j−1,kti − µi−1,j,ksk,j + µi,j−1,k+1tk,

where elements with negative subindices are zero. If (i, j, k) belongs to Γ, then
this element is equal to −ǫi+1,j−1,kti + µi,j−1,k+1tk. By hypothesis this is not zero.
We deduce that j ≥ 1. If n|i − k, then tk = ti and the last expression is equal to
(−ǫi+1,j−1,k + µi,j−1,k+1)ti. Since this is not zero, we obtain ti 6= 0. �

Let Γ0 be the set formed by the elements (i, j, k) ∈ Γ such that

• n|i− k, and

• j = 0 or ti = 0 or uiwj
1d

k 6= zi,j,k.

Lemma 3.5. The set consisting of the classes in HH0(A) of the elements uiwj
1d

k with
(i, j, k) ∈ Γ0 is linearly independent.

Proof. Let Γ′ ⊆ Γ0 be a finite set and let λγ ∈ K×, with γ ∈ Γ′, be such that
∑

γ∈Γ′ λγu
γ1wγ2

1 dγ3 ∈ Im(d1). We may further assume, without loss of generality,

that
∑

γ∈Γ′ λγu
γ1wγ2

1 dγ3 belongs to the subspace of Im(d1) spanned by the homo-
geneous elements of special degree divisible by n.

It is easy to check that fi,j,k = gi,j,k for all i ≥ 0, j ≥ 1 and k ≥ 0 such that
n|i − k. Therefore, the subspace of Im(d1) spanned by the homogeneous elements
of special degree divisible by n is the K-span of the set

{fi,j,k : i ≥ −1, j ≥ 1, k ≥ 0} ∪ {gi,j,−1 : i ≥ 0, j ≥ 1}.

Thus,

∑

γ∈Γ′

λγu
γ1wγ2

1 dγ3 =
∑

i≥0,j≥1,k≥0

µi,j,kfi,j,k +
∑

j≥1,k≥0

µj,kf−1,j,k +
∑

i≥0,j≥1

µ′
i,jgi,j,−1.

(3.10)
Let (a, b, c) be an element in Γ′ and denote L = La,b. By Lemma 3.4 we obtain b ≥ 1
and ta 6= 0. As a consequence uawb

1d
c 6= za,b,c. This implies sa+m,b−m 6= 0 for all

m = 1, . . . , L+ 1.
Notice that f−1,j,k = (1− rj−1

1 )wj−1
1 dk+1 and gi,j,−1 = (1− rj−1

1 )ui+1wj−1
1 , and

that the elements (0, j − 1, k + 1) and (i + 1, j − 1, 0) belong to Γ if and only if

1 − rj−1
1 = 0. Since (a, b, c) ∈ Γ′ ⊆ Γ, the coefficient of uawb

1d
c on the right hand

side of the above equation is

µa−1,b+1,c−1sa,b − µa,b,cta.

On the left hand side its coefficient is λa,b,c. Since (a, b, c) ∈ Γ, it follows that
µa−1,b+1,c−1sa,b = 0. Therefore µa,b,c = −λa,b,ct

−1
a 6= 0. The fact that sa+m,b−m 6= 0

for m = 1, . . . , L + 1 implies (a + m, b − m, c +m) /∈ Γ and as a consequence the
coefficient of ua+mwb−m

1 dc+m on the left hand side of Equation 3.10 is 0, for the
same values of m. We thus obtain

µa+l,b−l,c+l = µa+l−1,b−l+1,c+l−1
sa+l,b−l

ta+l
,

for 1 ≤ l ≤ L. We deduce µa+L,b−L,c+L 6= 0. On the other hand, either
L = b − 1 or ta+L+1 = 0. In either case µa+L+1,b−L−1,c+L+1ta+L+1 = 0. Look-
ing at the coefficient of ua+L+1wb−L−1

1 dc+L+1 on both sides of (3.10) we obtain
µa+L,b−L,c+Lsa+L+1,b−L−1 = 0. This is a contradiction. �
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Proof of Proposition 3.3. Using Equations (3.8) and (3.9) in order to obtain rewriting

rules, it is clear that HH0(A) is generated by the classes of the elements uiwj
1d

k

with (i, j, k) ∈ Γ.
For an algebra A in the family (F1), n = 0 and Γ is the set

{(0, 0, k) : k ≥ 0} ∪ {(i, 0, 0) : i ≥ 0} ∪ {(0, j, 0) : j ≥ 0}.

Suppose
∑

k≥1

λkd
k +

∑

i≥1

µiu
i +
∑

j≥0

ǫjw
j
1 ∈ Im(d1)

for some λk, µi, ǫj ∈ K. By Lemma 3.4 it follows that λk = 0 = µi for all i, k ≥ 1
and ǫ0 = 0. Since A belongs to (F1), the element sm,j−m 6= 0 for all j ≥ 1 and
1 ≤ m ≤ j. This implies that (0, j, 0) ∈ Γ0 for all j ≥ 1. By Lemma 3.5 we have that
ǫj = 0 for all j ≥ 1. As a consequence, the classes in HH0(A) of the elements of the
set

{dk : k ≥ 1} ∪ {ui : i ≥ 1} ∪ {wj : j ≥ 0},

form a basis and we obtain the first claim of Proposition 3.3.
Let A be an algebra in the family (F2) such that r1 is different from 1 and −1.

In this case r2 = r−1
1 and n is different from 1 and 2. Here Γ is the set of elements

(i, j, k) ∈ N3
0 satisfying any of the following properties.

1. n|j − i and n|j − k.

2. i = j = 0 and n ∤ k.

3. j = k = 0 and n ∤ i.

4. i = k = 0 and n ∤ j.

5. i = 0, n|j, n ∤ k and j ≥ 1.

6. k = 0, n|j, n ∤ i and j ≥ 1.

Let us see that the elements uiwj
1d

k with (i, j, k) of types 5 and 6 belong to

Im(d1). Let (i, j, k) be of type 5. We have wj
1d

k = r1(1 − r−2
1 )uwj−1

1 dk+1 − r1f0,j,k
and

uwj−1
1 dk+1 =

φkf0,j,k − g0,j,k

rk1 − 1
.

We deduce that the element wj
1d

k belongs to Im(d1). The case where (i, j, k) is
of type 6 is similar. As a consequence, the homology space HH0(A) is generated

by the classes of elements uiwj
1d

k with (i, j, k) of type 1, 2, 3 or 4. Observe that if
(i, j, k) ∈ Γ is not of type 5 or 6, then either j = 0 or n|i−k. If j ≥ 1 and (i, j, k) /∈ Γ0,

then uiwj
1d

k = zi,j,k ∈ Im(d1). Thus, we can remove it from our set of generators.

Using Lemmas 3.4 and 3.5 we deduce that the set of classes of elements uiwj
1d

k

with (i, j, k) in

Γ1 := {(i, j, k) ∈ Γ : (i, j, k) is of type 1, 2, 3 or 4, and j = 0 or (i, j, k) ∈ Γ0},

is a basis of HH0(A). Now we describe the set Γ1.
Let (i, j, k) be of type 1 with j ≥ 1 and ti 6= 0. Denote L = Li,j . We have

ti+l = 0 if and only if n|2(i + l + 1). On the other hand si+m,j−m = 0 if and only
if n|2m. In particular si,j = 0. If n is odd, then there exists 0 ≤ l ≤ n − 1 such
that n|2(i+ l + 1), which implies L ≤ n− 2. Similarly, in case n is even, we obtain
L ≤ n/2−2. In either case sm,j−m 6= 0 for all m = 1, . . . , L+1 and as a consequence

uiwj
1z

k 6= zi,j,k. This implies (i, j, k) ∈ Γ1 for all (i, j, k) of type 1.
Suppose n is even. Let (0, j, 0) be of type 4. Since n ∤ j we have j ≥ 1. Let

L = L0,j . The element tl is zero if and only if n|2(l + 1). Therefore L = min{n/2−
2, j − 1}. On the other hand sm,j−m is zero if and only if n|j − 2m. If j is odd,
then this last condition is never satisfied and sm,j−m 6= 0 for all m, from where
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we deduce wj 6= z0,j,0 and (0, j, 0) ∈ Γ1. Suppose j is even. If L = j − 1, then
sm,j−m = 0 for m = j/2 and j/2 < L+1, which implies wj = z0,j,0. If L = n/2− 2,
so there exists 1 ≤ m ≤ n/2−1 = L+1 such that n/2 divides j/2−m. This implies
sm,j−m = 0 and wj = z0,j,0. We conclude that an element (0, j, 0) of type 4 belongs
to Γ1 if and only if it j is odd. We have proven the first part of the second claim of
Proposition 3.3.

Suppose n is odd and let (0, j, 0) be of type 4. Set L = L0,j . In this case tl = 0
if and only if n|l + 1. We deduce L = min{j − 1, n − 2}. On the other hand,
sm,j−m = 0 if and only if n|j − 2m. Since 2 is invertible modulo n and n ∤ j, this
condition is always satisfied for some 1 ≤ m ≤ n − 1. Therefore, if j ≥ n − 1, we
obtain wj = z0,j,0 and (0, j, 0) /∈ Γ1. Suppose j ≤ n − 2. We have L = j − 1. The
absolute value of j − 2m is positive and strictly less than n for all m = 1, . . . , j.
Thus, if 1 ≤ m ≤ n− 1 is such that n|j − 2m, we get m ≥ j + 1. This implies

max{m ≥ 1 : sm,j−m 6= 0} ≥ j + 1 > L+ 1.

As a consequence wj 6= z0,j,0 and (0, j, 0) ∈ Γ1. This proves the second part of the
second claim Proposition 3.3.

The proof of the cases where n = 1 or n = 2 is similar. �

We will now describe HH3(A). The result depends heavily on whether the
algebra belongs to (F1) or to (F2). In the first case HH3(A) annihilates, while for
(F2) the dimension is always infinite, for which the basis differs considerably in
the root of unity case.

Proposition 3.6. Let A = A(α, β, 0) be a down-up algebra.

1. If A belongs to (F1), then HH3(A) vanishes.

2. If A belongs to (F2), the Hochschild homology group HH3(A) has a basis formed by
the classes of the elements of the set

• {w2i
1 w2i

2 |d2u2 : i ≥ 0} if r1 is not a root of unity,

• { wi
1w

j
2u

nkdnl|d2u2 : n|i−j and kl = 0} if r1 is a primitive n-th root of unity
with n ≥ 3,

• {w2i
1 |d2u2 : i ≥ 0} if r1 = −1,

• {wi
1|d

2u2 : i ≥ 0} if r1 = 1.

Proof. Let v ∈ Ker d3. Since the differentials respect the bidegree, we may assume

v is homogeneuos of bidegree (s, t). Let l = (s+ t)/2. An element uiwj
1d

k homoge-
neous of bidegree (s, t) satisfies j = l − i ≥ 0 and k = i− t ≥ 0. As a consequence,
we deduce l ≥ 0 and t ≤ l. Set

v =
∑

i

ciu
iwl−i

1 di−t,

where ci vanishes either when i < 0, l−i < 0 or when i−t < 0. Using the formulas
in Fact 3.1 we obtain the following equality.

d3(v|d
2u2)

= −
(∑

ci
(
(1 + βrl−i

1 ri−t
2 )ui+1wl−i

1 di−t + β
φi−t−1

r1
uiwl−i+1

1 di−t−1
))

|d2u

+
(∑

ci
(
(1 + βrl−i

1 ri2)u
iwl−i

1 di−t+1 + β
φi−1

r1
ui−1wl−i+1

1 di−t
))

|du2.
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The condition d3(v|d
2u2) = 0 implies the vanishing of each summand separately.

By looking at the coefficient of ua+1wl−a
1 da−t in the first constraint and at the coef-

ficient of uawl−a
1 da−t+1 in the second constraint, we obtain the following identities.

For all a ≥ 0,

0 = ca(1 + βrl−a
1 ra−t

2 ) + ca+1β
φa−t

r1
,

0 = ca(1 + βrl−a
1 ra2 ) + ca+1β

φa

r1
.

Suppose A belongs to (F1). The first equality implies that ca = µaca+1, where
µa = βφa−t(r1(1 + βrl−a

1 ra−t
2 ))−1. Since ca = 0 for all a > l, we deduce ca = 0 for

all a. As a consequence, HH3(A) = 0.
Suppose now that A belongs to (F2) and r1 is not a root of unity. Using the fact

that r2 = r−1
1 , the equalities above are

0 = ca(1− rl−2a+t
1 )− ca+1

φa−t

r1
,

0 = ca(1− rl−2a
1 )− ca+1

φa

r1
.

If l is odd, the second equality and an argument similar to the case (F1) show
that ca = 0 for all a, and so v = 0. Suppose l is even. We may use the second
equation for a ranging from l to l/2 + 1 and the previous argument to deduce
ca = 0 for a ∈ {l/2 + 1, · · · , l}. Replacing a = l/2 in the first equation we obtain
cl/2(1−rt1) = 0. If t 6= 0, then cl/2 = 0, and the first equation for values of a ranging
from l/2 − 1 to 0 proves that ca = 0 for all a and therefore v = 0. If t = 0, then
the same argument proves that there exists µa ∈ k such that ca = µacl/2 for all
a. Observe that in this case l is even and t = 0, which implies s = 4k for some
k ∈ Z. As a consequence, the homogeneous component of bidegree (s, t) of Ker d3
is trivial if (s, t) 6= (4k, 0) for some k ∈ Z, and in case (s, t) = (4k, 0), it is one
dimensional. Using (3.3) it is easy to see that the element w2k

1 w2k
2 belongs to the

homogeneous component of bidegree (4k, 0).
The case where A belongs to (F2) and r1 is a root of unity follows from [14],

Lemma 2.0.1, Theorems 4.0.3 and 4.0.4, together with the fact that A is 3-Calabi-
Yau, so HH3(A)[4] ∼= HH0(A). �

Theorem 2.1 follows from Proposition 3.3, Proposition 3.6 and the identities in
(3.7).

4 Hochschild cohomology

As we mentioned in Section 3, if A belongs to (F2), then it is 3-Calabi-Yau and the
dimension of the Hochschild cohomology spaces can be deduced from Theorem
2.1, since HHi(A) is isomorphic to HH3−i(A)[4] for all i ∈ {0, 1, 2, 3}. We use
again the minimal resolution of A as A-bimodule to obtain the following complex
whose homology is isomorphic to the Hochschild cohomology of A.

0 → A
d∗

0→ V ∗ ⊗A
d∗

1→ R∗ ⊗A
d∗

2→ Ω∗ ⊗A → 0, (4.1)

where V ∗ is the dual space of V spanned by the basis {U,D}, and similarly for R∗

and Ω∗. The differentials are given by

d∗0(a) = U |(ua− au) +D|(da− ad),

d∗1(x) = D2U ⊗∆1(x) +DU2 ⊗∆2(x), (4.2)
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where, for x = U ⊗ a+D ⊗ a′,

∆1(x) = d2a+ a′du+ da′u− α(dad + a′ud+ dua′)− β(ad2 + ua′d+ uda′)− γa′,

∆2(x) = dau+ dua+ a′u2 − α(adu + uda+ ua′u)− β(aud+ uad+ u2a′)− γa,

and
d∗2(D

2U ⊗ a+DU2 ⊗ a′) = D2U2 ⊗ (da′ + βa′d− au− βua). (4.3)

Clearly HHi(A) = 0 for all i ≥ 4. From now on, assume that A belongs to (F1).
Note that by defining bideg(U) = (−1,−1) and bideg(D) = (1,−1), the differen-
tials of the complex (4.1) are of bidegree zero. We recall that HH0(A) is the center
Z (A) of the algebra A.

Proposition 4.1. Let A = A(α, β, 0) be a down-up algebra of the family (F1). The coho-
mology space HH0(A) is K.1A.

Proof. It is clear that K · 1A ⊆ Z (A). We shall prove the other inclusion. Let

a =
∑

cijku
iwj

1d
k,

where the sum is indexed over all integers i, j, k ∈ N≥0, the support is finite and
cijk ∈ K. Let us suppose that a ∈ Z (A), so in particular ua− au = 0. It suffices to
prove that cijk = 0 for all (i, j, k) ∈ N3

≥0 \ {(0, 0, 0)}. Using the identities (3.3) we
get that

ad− da =
∑

cijk

(

(1 − rj1r
i
2)u

iwj
1d

k+1 −
φi−1

r1
ui−1wj+1

1 dk
)

, (4.4)

and

au− ua = −
∑

cijk

(

(1 − rj1r
k
2 )u

i+1wj
1d

k −
φk−1

r1
uiwj+1

1 dk−1
)

. (4.5)

Since a ∈ Z (A), both two expressions vanish. By regarding the total coefficient
of the monomial ui0+1dk0 on the right hand side of (4.5) we get that ci0,0,k0

= 0 if

k0 6= 0, since in this case (1−rk0

2 ) 6= 0. Analogously, since the total coefficient of the
monomial ui0dk0+1 on the right hand side of (4.4) vanishes, we see that ci0,0,k0

= 0
if i0 6= 0, since in this case (1 − ri02 ) 6= 0. As a consequence, we conclude that
ci,0,k = 0, for all (i, k) ∈ N2

0 \ {(0, 0)}.
The vanishing of the coefficient of the monomial ui0+1wj0dk0 on the right hand

side of (4.5), for j0 > 0, implies that

ci0,j0,k0
= −

ci0+1,j0−1,k0+1

(1− rk0

2 rj01 )
.

Note that the hypothesis of genericity implies that the denominator never van-
ishes. Iterating this identity we obtain that cijk is proportional to ci+j,0,k+j , which
vanishes if (i, j, k) 6= (0, 0, 0), and so cijk = 0 for all (i, j, k) ∈ N3

≥0 \ {(0, 0, 0)}, thus
proving the proposition. �

Proposition 4.2. Let A = A(α, β, 0) be a down-up algebra of the family (F1). The coho-
mology space HH3(A) is isomorphic to the K-vector space spanned by the classes of the
elements of the set

{D2U2|wj
1 : j ≥ 0 and j 6= 2} ∪ {D2U2|uw1d}.

Proof. Identifying the space Ω∗⊗A with A, the cohomology space HH3(A) is A/S,
where S is the K-vector space {da + βad + a′u + βua′ : a, a′ ∈ A}. Denote by

13



π : A → HH3(A) the canonical projection. If v is an element of HH3(A), denote
by Kv the K-vector space spanned by it.

We shall prove that the classes of {wj
1 : j ≥ 2 and j 6= 2} ∪ {uw1d} in the

cohomology space HH3(A) form a basis. Let a = uiwj
1d

k, where i, j, k ∈ N≥0. It is
straightforward to compute

da+ βad =
(
β + rj1r

i
2

)
uiwj

1d
k+1 +

φi−1(r1, r2)

r1
ui−1wj+1

1 dk, (4.6)

and

au+ βua =
(
β + rj1r

k
2

)
ui+1wj

1d
k + β

φk−1(r1, r2)

r1
uiwj+1

1 dk−1. (4.7)

The hypothesis of genericity implies that β+rj1r
l
2 = 0 if and only if (i, l) = (1, 1).

Note that the first coefficient on the right hand side of the above equations is of this

form. Setting i = 0 in (4.6) and k = 0 in (4.7) we obtain that wj
1d

l and ulwj
1 belong

to S for all j ≥ 0 and l ≥ 1. Let i, j, k ≥ 0. Equation (4.6) implies that π(uiwj
1d

k) ∈

Kπ(ui−1wj+1
1 dk−1) for all k ≥ 1 and (i, j) 6= (1, 1). Suppose (i, j) /∈ {(1, 1), (2, 0)}.

By a repeated use of (4.6) and the remarks above, we conclude that uiwj
1d

k lies in

S if i 6= k, and we also deduce that π(uiwj
1d

i) ∈ Kπ(wi+j
1 ). By a similar argument

using (4.7) we obtain that in case (i, j) ∈ {(1, 1), (2, 0)}, the element π(uiwj
1d

k)

belongs to Kπ(uw1d) for all k. As a consequence, the set {π(wj
1) : j ≥ 2}∪{π(u2d2)}

generates HH3(A) as a K-vector space. On the other hand, (4.6) tells us that the
element π(w2

1) vanishes for (i, j, k) = (1, 1, 0).
Let us see that the set {π(wj

1) : j ≥ 2} ∪ {π(u2d2)} is linearly independent.
Suppose there exist elements λj ∈ K, with j ≥ 0, and a, a′ ∈ A, such that

∑

j 6=2

λjw
j
1 + λ2uw1d = da+ βad+ au+ βua.

Let l ≥ 0. By looking at the homogeneous component of bidegree (2l, 0) in the
equation above, we deduce that there exist ǫk,j ∈ K such that

λlw
l
1 =

∑

j+k=l−1

ǫj,k(fj,k), if l 6= 2,

λ2uw1d =
∑

j+k=1

ǫj,k(fj,k), if l = 2,

where fj,k = (uk+1wj
1d

k)d + βd(uk+1wj
1d

k) for all k, j ≥ 0. It is easy to see that
these equations imply λj = 0 for all j ≥ 0. �

Proposition 4.3. Let A = A(α, β, 0) be a down-up algebra of the family (F1). The coho-
mology space HH1(A) is 2-dimensional and it is spanned by the classes of {D|d, U |u}.

We shall first prove the following intermediate result.

Lemma 4.4. Under the same assumptions of the proposition, the K-vector space (V ∗ ⊗
A)/ Im(d∗0) is spanned by the classes of the elements of the set

S = {U |ul, D|dl : l ∈ N} ∪ {U |uiwj
1d

k : i− k ≤ 0} ∪ {D|uiwj
1d

k : i− k ≥ −1}.

Proof. Note that there is some redundancy in our description of S , since for exam-

ple D|d belongs both to the first and to the third subset of the union. If a = uiwj
1d

k,
then d∗0(a) equals

U |
(

(1 − rj1r
k
2 )u

i+1wj
1d

k −
φk−1(r1, r2)

r1
uiwj+1

1 dk−1
)

−D|
(

(1− rj1r
i
2)u

iwj
1d

k+1 −
φi−1(r1, r2)

r1
ui−1wj+1

1 dk
)

. (4.8)
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Suppose xa,b,c = U |uawb
1d

c /∈ S , then b + c > 0 and a− c > 0. We shall show that
xa,b,c belongs to the subspace spanned by S and Im(d∗0). In order to do so, first
notice that Equation (4.8) for i = a−1, j = b and k = 0 tells us that xa,b,0 = U |uawb

1

belongs to the subspace spanned by S and Im(d∗0), since for b > 0 the coefficient
of xa,b,0 in (4.8) is nonzero by the hypothesis of genericity. Moreover, Equation
(4.8) for i = a − 1, j = b and k = c tells us that xa,b,c = U |uawb

1d
c belongs to the

subspace spanned by xa−1,b+1,c−1, the set S and Im(d∗0), because, for b + c > 0,
the coefficient of xa,b,c in (4.8) is nonzero due to the hypothesis of genericity. By
a recursive argument we prove that xa,b,c = U |uawb

1d
c belongs to the subspace

spanned by S and Im(d∗0).

Analogously, let x′
a′,b′,c′ = D|ua′

wb′

1 d
c′ /∈ S . Thus, a′ + b′ > 0 and a′ − c′ < −1.

We claim that x′
a′,b′,c′ belongs to the subspace spanned by the set S and Im(d∗0).

Indeed, first notice that Equation (4.8) for i = 0, j = b′ and k = c′ − 1 implies

that x′
0,b′,c′ = D|wb′

1 d
c′ belongs to the subspace spanned by S and Im(d∗0), since

for b > 0 the coefficient of x′
0,b′,c′ in (4.8) is nonzero by the hypothesis of gener-

icity. Furthermore, Equation (4.8) for i = a′, j = b′ and k = c′ − 1 implies that

x′
a′,b′,c′ = D|ua′

wb′

1 d
c′ belongs to the subspace spanned by x′

a′−1,b′+1,c′−1, the set
S and Im(d∗0), using that for b′ + c′ > 0 the coefficient of x′

a′,b′,c′ in (4.8) is nonzero
by the hypothesis of genericity, for b′ + c′ > 0. A recursive argument allows us

to conclude that x′
a′,b′,c′ = D|uawb

1d
c′ belongs to the subspace spanned by S and

Im(d∗0). �

Since (4.1) is a complex, the differential d∗1 trivially induces a map d̄∗1 from
(V ∗ ⊗ A)/ Im(d∗0) to R∗ ⊗ A, whose kernel is the Hochschild cohomology space
HH1(A). It is easy to prove that the classes of U |u and D|d belong to the kernel
of d̄∗1, and that they are linearly independent, since the intersection between the K-
vector subspace of V ∗⊗A spanned by U |u and D|d and Im(d∗0) is trivial, by degree
reasons. In order to complete the proof of Proposition 4.3 it suffices thus to prove
the following result.

Lemma 4.5. Assume A is a down-up algebra of the family (F1). Define W to be the K-
vector subspace of (V ∗ ⊗ A)/ Im(d∗0) spanned by the classes of the elements of the family
S ′ given by

{U |ul, D|dl : l ∈ N≥2} ∪ {U |uiwj
1d

k : i− k ≤ 0} ∪ {D|uiwj
1d

k : i− k ≥ −1} \ {D|d}.

The intersection W ∩Ker(d̄∗1) is trivial.

Proof. Let x be an element of (V ∗ ⊗ A) given by a finite linear combination of the
form

x =
∑

i−k≤0

ci,j,kU |uiwj
1d

k

︸ ︷︷ ︸

xU

+
∑

i′−k′≥−1

c′i′,j′,k′D|ui′wj′

1 dk
′

︸ ︷︷ ︸

xD

+
∑

l≥2

alU |ul

︸ ︷︷ ︸

x′

U

+
∑

l′≥2

a′l′D|dl
′

︸ ︷︷ ︸

x′

D

,

where we exclude the case (i′, j′, k′) = (0, 0, 1) in the second sum. Since the image
under d̄∗1 of the class of x in (V ∗ ⊗ A)/ Im(d∗0) coincides with the image under d∗1
of x, it suffices to prove that the vanishing of this last image implies that that the
class of x in (V ∗ ⊗ A)/ Im(d∗0) vanishes. Without loss of generality we may take x
homogeneous for the bigrading, since d∗1 is homogeneous of bidegree zero. Being
homogeneous for the special degree implies that either x = xU+x′

D or x = xD+x′
U ,

while being homogeneous for the usual degree restricts x to one of the following
cases:

(i) x = xU such that deg(xU ) + s-deg(xU ) 6= 0;
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(ii) x = c0,1,k−1U |wdk−1 + c1,0,kU |udk + a′k+1D|dk+1, for k ≥ 1;

(iii) x = xD such that deg(xD) 6= s-deg(xD);

(iv) x = c′i−1,1,0D|ui−1w + c′i,0,1D|uid+ ai+1U |ui+1, for i ≥ 1.

Let us first consider case (iii). By definition of d∗1, we write d∗1(x) = D2U |∆1(x) +
DU2|∆2(x). An explicit computation using formulas given in Fact 3.1 leads to

∆2(x) =
∑

i′−k′≥−1

ci′,j′,k′

(φk′−1(r1, r2)φk′−2(r1, r2)

r21
ui′wj′+2

1 dk
′−2

+
αφk′−1(r1, r2)

r1
(rj

′

1 rk
′−1

2 − 1)ui′+1wj′+1
1 dk

′−1

+ (r2j
′

1 r2k
′

2 − αrj
′

1 rk
′

2 − β)ui′+2wj′

1 dk
′

)

,

and the coefficient of the monomial uawb
1d

c (where a, b, c ≥ 0) is thus

φc+1(r1, r2)φc(r1, r2)

r21
ca,b−2,c+2

+
αφc(r1, r2)

r1
(rb−1

1 rc2 − 1)ca−1,b−1,c+1 + (r2b1 r2c2 − αrb1r
c
2 − β)ca−2,b,c.

The fact that x belongs to the kernel of d∗1 implies the vanishing of the previous
expression. In particular, we see that

ca,0,c = 0 for all c 6= 1,

ca,1,c = 0 for all c 6= 0, and

ca,b,c = 0 for all b ≥ 2.

Condition deg(xD) 6= s-deg(xD) implies that ca,0,1 = 0 and ca,1,0 = 0 for all a. As a
consequence, xD vanishes in (V ∗ ⊗A). Case (i) is handled mutatis mutandi.

Let us now treat case (iv), where

x = c′i−1,1,0D|ui−1w + c′i,0,1D|uid+ ai+1U |ui+1,

for some i ≥ 1. We write againd∗1(x) = D2U |∆1(x) + DU2|∆2(x). Using the
computations of the previous paragraph we see that ∆2(D|ui−1w) and ∆2(D|uid)
vanish. The expression of d∗1 in (4.2) together with the formulas of Fact 3.1 tell us
that ∆2(U |ui+1) is given by

(ri+1
1 + ri+1

2 − α)

r1
ui+1w + r2(r1 − r2)(1 − ri2)u

i+2d.

Since the second coefficient of the previous expression is nonzero by the hypothesis
of genericity, we see that the vanishing of ∆2(x) implies that ai+1 is zero, which
we will assume from now on. We shall now turn our attention to ∆1(x), for x =
c′i−1,1,0D|ui−1w + c′i,0,1D|uid. Using again the formulas of Fact 3.1, we see that

∆1(D|ui−1w) =
1− ri2
r1

(
ui−1w2 + r21(r2 − r1)u

iwd
)
,

and

∆1(D|uid) =
φi−1(r1, r2)

r21

(
ui−1w2 + r21(r2 − r1)u

iwd
)
.
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The hypothesis of genericity implies that all the coefficients appearing in both of
the previous expressions are nonzero. We note however that ∆1(D|ui−1w) and
∆1(D|uid) are not linearly independent, and so x is a multiple of φi−1D|ui−1w −
r1(1 − ri2)D|uid. Since φi−1D|ui−1w − r1(1 − ri2)D|uid is also a multiple of d∗0(u

i)
(see (4.8)), we conclude that the class of x in (V ∗ ⊗A)/ Im(d∗0) vanishes. Case (ii) is
analogous. �

We now turn to a characterization of the space HH2(A(α, β, 0)). As before, let A
denote the algebra A(α, β, 0) and let A(t, s) denote the Hilbert series of A regarded
as a bigraded algebra. This bigrading on A induces a bigrading on its Hochschild
cohomology, whose associated Hilbert series will be denoted by HHi(A)(t, s) for
all i ≥ 0.

Proposition 4.6. Under the previous assumptions,

HH2(A)(t, s) =
1

t2
+ 2 +

t2

1− t2
.

Proof. Let C• be the complex (4.1). Recall that the homology of C• is HH•(A).
Regarding HH•(A) as a complex with zero differentials, the Euler-Poincaré char-
acteristic χC•(t, s) associated to C• is equal to the Euler-Poincaré characteristic
χHH•(A)(t, s) associated to HH•(A). Using the descriptions we obtained of C•

and of the Hochschild cohomology spaces HH0(A), HH1(A) and HH3(A), the
following equalities are straightforward to check,

χC•(t, s) = −t−4,

HH0(A)(t, s) = 1,

HH1(A)(t, s) = 2,

HH3(A)(t, s) =
1

t4(1− t2)
.

Therefore, the equality χC•(t, s) = χHH•(A)(t, s) is

−
1

t4
= 1− 2 +HH2(A)(t, s)−

1

t4(1− t2)
,

and the lemma follows. �

From the previous lemma we deduce that every homogeneous component of
HH2(A) of bidegree different from (2k, 0) for k ≥ −1 is zero.

The following set is a K-basis of the homogeneous component of R∗ ⊗ A of
bidegree (2k, 0)

{D2U |uawk+1−ada+1 : 0 ≤ a ≤ k + 1} ∪ {DU2|ua+1wk+1−ada : 0 ≤ a ≤ k + 1}.

Proposition 4.7. The homogeneous component of HH2(A) of bidegree (−2, 0) is iso-
morphic to the K-vector space spanned by the class of the element D2U |d + DU2|u. On
the other hand, the homogeneous component of HH2(A) of bidegree (0, 0) is isomorphic
to the K-vector space spanned by the classes of the elements D2U |wd + DU2|uw and
D2U |ud2 +DU2|u2d.

Proof. There are no homogeneous elements of bidegree (−2, 0) in V ∗ ⊗ A and the
homogeneous component of bidegree (−2, 0) in R∗ ⊗ A is spanned by the ele-
ments D2U |d and DU2|u. The first claim follows from the fact that d∗2(λD

2U |d +
µDU2|u) = (µ− λ)D2U2|(du + βud).

The elements of V ∗ ⊗ A of bidegree (0, 0) are spanned by D|d and U |u. We
have already seen in Proposition 4.3 these elements are in the kernel of d∗1. On the
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other hand, the elements D2U |wd + DU2|uw and DU2|ud2 + DU2|u2d belong to
the kernel of d∗2 and they are linearly independent. By Proposition 4.6 their classes
form a basis of the homogeneous component of HH2(A) of bidegree (0, 0). �

We now turn to a description of the homogeneous components of bidegree
(2k, 0) with k ≥ 1. For all non negative integers x, y and z, define

gx,y,z = d∗1(U |uxwy
1d

z),

fx,y,z = d∗1(D|uxwy
1d

z).

Observe that bideg(gx,y,z) = (x + 2y + z − 1, x − z − 1) and bideg(fx,y,z) =
(x+ 2y + z − 1, x− z + 1).

Lemma 4.8. Let k ≥ 1. The elements fz,k−z,z+1, where 0 ≤ z ≤ k, generate the
homogeneous component of Im(d∗1) of bidegree (2k, 0) as K-vector space.

Proof. The set {U |uz+1wk−z
1 dz : 0 ≤ z ≤ k} ∪ {D|uzwk−z

1 dz+1 : 0 ≤ z ≤ k} gener-
ates the homogeneous component of bidegree (2k, 0) of V ∗ ⊗ A and therefore the
set {gz+1,k−z,z : 0 ≤ z ≤ k} ∪ {fz,k−z,z+1 : 0 ≤ z ≤ k} generates the homogeneous
component of Im(d∗1) of the same bidegree.

For 0 ≤ z ≤ k, define xz = U |uz+1wk−z
1 dz − D|uzwk−z

1 dz+1. Observe that
d∗1(xz) = gz+1,k−z,z − fz,k−z,z+1. Using the expression given in (4.8) for the image
of an element under d∗0 we see that

d∗0(u
zwk−z

1 dz) = (1 − rk−z
1 rz2)xz −

φz−1

r1
xz−1. (4.9)

Since k ≥ 1, both coefficients appearing in the above equation are non zero. Taking
z = 0 and applying d∗1, we deduce d∗1(x0) = 0 and by an inductive argument we
obtain d∗1(xz) = 0 for all 0 ≤ z ≤ k. As a consequence, gz+1,k−z,z = fz,k−z,z+1 for
all 0 ≤ z ≤ k and the result follows. �

Let n and m be the dimensions of the components of bidegree (2k, 0) of Ker(d∗2)
and Im(d∗1), respectively. It is straightforward to check that

d∗2(D
2U |uawk+1−a

1 da+1 +DU2|ua+1wk+1−a
1 da) = 0,

for all 0 ≤ a ≤ k + 1. We deduce that n ≥ k + 2. On the other hand, we know that
m ≤ k + 1 by Lemma 4.8. Also, Proposition 4.6 implies n −m = 1 and it follows
that n = k + 2 and m = k + 1. As a consequence, the homogeneous component of
Ker(d∗2) of bidegree (2k, 0) is the K-vector space spanned by the elements

D2U |uawk+1−a
1 da+1 +DU2|ua+1wk+1−a

1 da,

for 0 ≤ a ≤ k + 1.
Let us prove that the element D2U |wk+1

1 d+DU2|uwk+1
1 does not belong to the

image Im(d∗1). By definition, fz,k−z,z+1 is equal to d∗1(D|uzwk−z
1 dz+1). We write

fz,k−z,z+1 = D2U |∆1(D|uzwk−z
1 dz+1) + DU2|∆2(D|uzwk−z

1 dz+1). For 0 ≤ z ≤ k,
Fact 3.1 implies that

∆2(D|uzwk−z
1 dz+1) =

φzφz−1

r21
uzwk−z+2

1 dz−1 +
(rk−z

1 rz2 − 1)αφz

r1
uz+1wk−z+1

1 dz

+ (rk−z
1 rz+1

2 − r1)(r
k−z
1 rz+1

2 − r2)u
z+2wk−z

1 dz+1.

(4.10)

Once more, the hypothesis of genericity implies that none of the coefficients ap-
pearing on the right hand side of the above equation annihilates.
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Suppose D2U |wk+1
1 d + DU2|uwk+1

1 belongs to Im(d∗1). By Lemma 4.8, there
exist λ0, . . . , λk ∈ K such that

D2U |wk+1
1 d+DU2|uwk+1

1 =

k∑

z=0

λzfz,k−z,z+1.

Therefore, uwk+1
1 =

∑k
z=0 λz∆2(D|uzwk−z

1 dz+1). Looking at the coefficient of
uk+2dk+1 on the right hand side of the last equality, we deduce λk = 0. Induc-
tively in z and looking at the coefficient of uz+2wk−z

1 dz+1, we deduce λz = 0 for all
0 ≤ z ≤ k, which is a contradiction. Thus, the element D2U |wk+1

1 d +DU2|uwk+1
1

does not belong to Im(d∗1). We have proven the following.

Proposition 4.9. Let k ≥ 1. The homogeneous component of Ker(d∗2) of bidegree (2k, 0)
is the K-vector space of dimension k + 2 spanned by the set

{D2U |uawk+1
1 da+1 +DU2|ua+1wk+1

1 da : 0 ≤ a ≤ k + 1},

and the class in HH2(A) of the element D2U |wk+1
1 d+DU2|uwk+1

1 generates the homo-
geneous component of bidegree (2k, 0).

Theorem 2.2 follows from Propositions 4.1,4.2, 4.3, 4.6, 4.7 and 4.9.
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