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1. Introduction

The poset Sp(G) of non-trivial p-subgroups of a finite group G was introduced by 
K. Brown in the seventies [8]. Brown observed that the topology of the simplicial com-
plex associated to this poset, which we denote by K(Sp(G)), is related to the algebraic 
properties of G, and proved the Homological Sylow Theorem

χ(K(Sp(G))) ≡ 1 mod |G|p,

where χ(K(Sp(G))) denotes the Euler characteristic of the complex and |G|p is the great-
est power of p that divides the order of G.

The study of the topological properties of Sp(G) was continued by D. Quillen in his 
seminal paper [16]. Quillen investigated the homotopy properties of K(Sp(G)) by com-
paring it with the complex associated to the subposet Ap(G) of non-trivial elementary 
abelian p-subgroups of G. He proved that K(Sp(G)) and K(Ap(G)) are homotopy equiv-
alent and that these polyhedra are contractible if G has a non-trivial normal p-subgroup. 
Quillen conjectured that the converse should hold [16, Conjecture 2.9]: if K(Sp(G)) is 
contractible then Op(G) �= 1. Here Op(G) denotes the maximal normal p-subgroup of G. 
The conjecture remains unproven but there have been remarkable progresses. In the 
nineties M. Aschbacher and S. Smith obtained the most significant partial confirmation 
of Quillen’s conjecture so far [3].

The works of Brown and Quillen on the topology of the p-subgroup complexes have 
been pursued by many mathematicians, who related the topological properties of the 
complexes and the combinatorics of the posets with the algebraic properties of the group 
(see [2,1,7,9,11,13,14,17,22,23]). For example, in [1,13,14] the authors investigated the 
fundamental group of these complexes and in [11] T. Hawkes and I.M. Isaacs proved 
that if G is p-solvable and has an abelian Sylow p-subgroup, then χ(K(Sp(G))) = 1 if 
and only if Op(G) �= 1. We refer the reader to S. Smith’s book [18] for more details on 
subgroup complexes and the development of these results along the last decades.

In all the articles that we mentioned above, the authors handled the posets Sp(G) and 
Ap(G) topologically by means of their classifying spaces (or order complexes) K(Sp(G))
and K(Ap(G)). In 1984 R.E. Stong adopted an alternative point of view: he treated Sp(G)
and Ap(G) as finite topological spaces [21]. Any finite poset has an intrinsic topology 
and in [21] Stong used results on the homotopy theory of finite spaces that he obtained 
previously in [20] and results of McCord [15], in order to relate the (intrinsic) topology 
of the posets Sp(G) and Ap(G) with the algebraic properties of the group. At that time 
it was already known that for any finite poset X (viewed as a finite space) there exists 
a natural weak equivalence μX : K(X) → X. In particular, the posets Ap(G) and Sp(G)
are weak equivalent (viewed as finite spaces) since their order complexes are homotopy 
equivalent. But the notion of homotopy equivalence and contractibility in the context of 
finite topological spaces is strictly stronger than those in the context of polyhedra. This 
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is because the classical theorem of J.H.C. Whitehead is no longer true in the context of 
finite spaces (see [4,5]).

Stong showed that in general Sp(G) and Ap(G) are not homotopy equivalent as finite 
spaces. Concretely, he proved that for G = S5, the symmetric group on five letters, and 
p = 2, the finite spaces Ap(G) and Sp(G) do not have the same homotopy type. He also 
proved that Sp(G) is a finite contractible space if and only if Op(G) �= 1. In this way, 
Quillen’s conjecture can be reformulated by saying that if Sp(G) is homotopically trivial 
(i.e. if K(Sp(G)) is contractible) then it is contractible (as a finite space). On the other 
hand, the contractibilty of the poset Ap(G) implies that of Sp(G). In a note at the end 
of [21] he left open the question whether the converse holds.

The first goal of this article is to answer Stong’s question mentioned above. In this 
direction, we prove first the following two results.

Proposition 3.2. Let G be a finite group and p a prime. In the following cases Sp(G) and 
Ap(G) have the same homotopy type as finite spaces:

(1) Ω1(P ) is abelian for each P ∈ Sylp(G),
(2) G = Dn (the dihedral group),
(3) |G| = pαq, where q is a prime.

Moreover, Ap(G) ⊂ Sp(G) is a strong deformation retract if and only if it is a retract, 
and this happens if and only if condition (1) holds.

For each prime p, Ω1(G) denotes the subgroup of G generated by elements of order p, 
|G| denotes the order of G and Sylp(G) is the set of its Sylow p-subgroups.

Proposition 3.3. In all of the following cases, the contractibility of Sp(G) implies that of 
Ap(G) (viewed as finite spaces):

(1) All maximal elementary abelian p-subgroups are conjugate,
(2) h(Ap(G)) ≤ 1,
(3) |G|p ≤ p3.

Here h(Ap(G)) denotes the height of the poset Ap(G). Recall that the height h(X) of 
a poset X is one less than the maximum number of elements in a chain of X.

In order to find a counterexample to Stong’s question, we used these results to discard 
many (thousands of) potential candidates: we applied the filters provided by Proposi-
tion 3.2 and Proposition 3.3 to all groups of order less than or equal to 576 in the “Small 
Groups library” of GAP. In Example 3.7 we exhibit a group of order 576 which answers 
Stong’s question negatively. We also find the minimal counterexample of a group G such 
that Sp(G) and Ap(G) are not homotopy equivalent. In Proposition 3.8 we prove that if 
|G| < 72, Sp(G) � Ap(G) for every prime p.
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Our counterexample to Stong’s question shows that the contractibility of the finite 
space Ap(G) is strictly stronger than the contractibility of Sp(G). On the other hand, by 
Stong’s results (see Proposition 2.1 below), the contractibility of Sp(G) is equivalent to G
having a non-trivial normal p-subgroup. The second goal of this article is to understand 
the contractibility of Ap(G) in purely algebraic terms. In the last section of the paper 
we prove the following two results. The first one provides a complete answer when the 
poset is contractible in few steps.

Proposition 4.5. The followings assertions hold:

(1) Ap(G) is contractible in 0 steps if and only if G has only one subgroup of order p, 
i.e. Ω1(G) � Zp,

(2) Ap(G) is contractible in 1 step if and only if Ω1(G) is abelian,
(3) Ap(G) is contractible in 2 steps if and only if the intersection of all maximal ele-

mentary abelian p-subgroups is non-trivial, if and only if p | |CG(Ω1(G))|,
(4) Ap(G) is contractible in 3 steps if and only if there exists an elementary abelian 

p-subgroup subgroup of G which intersects (in a non-trivial way) every non-trivial 
intersection of maximal elementary abelian p-subgroups.

The second main result of the last section provides a partial answer in the case that 
Ap(G) is contractible in more than 3 steps.

Theorem 4.11. The poset Ap(G) is contractible in n steps if and only if one of the 
following holds:

(1) n = 0 and Ap(G) = {∗},
(2) n ≥ 1 is even and 

⋂
A∈Mn−1

A > 1,
(3) n ≥ 1 is odd and 〈A : A ∈ Mn−1〉 is abelian.

Here Mn−1 denotes the set of minimal or maximal elements (depending on whether n
is odd or even) of the subposet of Ap(G) corresponding to the n-th term in the sequence

Ap(G) ⊇ i(Ap(G)) ⊇ si(Ap(G)) ⊇ isi(Ap(G)) ⊇ . . .

where i(X) and s(X) are the subposets obtained from a finite poset X by taking in-
fima (resp. suprema) of the bounded subsets of maximal (resp. minimal) elements (see 
Section 4 for more details).

All groups, posets and simplicial complexes in this paper are assumed to be finite.

2. Preliminaries on finite spaces and R.E. Stong’s approach

We recall first some basic facts on the homotopy theory of finite topological spaces. 
For more details, we refer the reader to [4,5,15,20].
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The standard way to study a poset X topologically is by means of its order complex 
K(X) which is the simplicial complex of non-empty chains of X. However any finite 
poset X has also an intrinsic topology where the open sets are its down-sets (recall that 
a down-set is a subset U with the property that, if x ∈ U and y ≤ x, then y ∈ U). It is 
easy to see that a map f : X → Y between posets is order-preserving if and only if it 
is continuous (with the intrinsic topology), and that two continuous maps f, g : X → Y

are homotopic if and only if there exists a fence of maps f0, f1, . . . , fn : X → Y such 
that f0 = f , fn = g and fi, fi+1 are comparable for each 0 ≤ i < n. Recall that fi and 
fi+1 are comparable if fi ≤ fi+1 (i.e. fi(x) ≤ fi+1(x) for every x ∈ X) or fi ≥ fi+1.

There is a relationship between the topology of X and the topology of its order 
complex K(X), which was first discovered by McCord [15]: there exists a natural weak 
equivalence μX : K(X) → X. In particular they have the same homotopy groups and 
homology groups. This implies for example that the posets Ap(G) and Sp(G) are weak 
equivalent (viewed as finite topological spaces) since their order complexes are homotopy 
equivalent, but they are not in general homotopy equivalent as finite spaces. The classical 
theorem of J.H.C. Whitehead is no longer true in the context of finite spaces, and in 
general K(X) and X are not homotopy equivalent (although they are weak equivalent). 
The notion of homotopy equivalence in the context of finite spaces is therefore strictly 
stronger than the corresponding notion in the context of simplicial complexes (see [4]
for examples of non-contractible finite spaces X such that the corresponding K(X) are 
contractible). In fact, the homotopy types of finite spaces correspond to strong homotopy 
types in the context of simplicial complexes (see [6]). As we mentioned above, in [21] Stong 
proved that, for G = S5, the symmetric group on five letters, and p = 2, the finite spaces 
Ap(G) and Sp(G) do not have the same homotopy type.

The classification of homotopy types of finite spaces can be done combinatorially. This 
was studied by Stong in a previous article [20], using the notion of beat point. An element 
x ∈ X is called a down beat point if Ûx = {y ∈ X, y < x} has a maximum, and it is an 
up beat point if F̂x = {y ∈ X, x < y} has a minimum. If x is a beat point (down or up), 
the inclusion X − x ↪→ X is a strong deformation retract and conversely, every strong 
deformation retract is obtained by removing beat points. A space without beat points is 
called a minimal space. Removing all beat points of X leads to a minimal space called 
the core of X. This core is unique up to homeomorphism, and two finite posets X and 
Y have the same homotopy type if and only if their cores are homeomorphic. It is easy 
to see that a poset with maximum or minimum is contractible.

If G is a group and X is a G-poset, instead of removing a single beat point x, we can 
remove the orbit Gx and obtain an equivariant strong deformation retract X−Gx ↪→ X. 
It can be shown that if f : X → Y is an equivariant map which is also a homotopy 
equivalence, then f is in fact an equivariant homotopy equivalence [4, Proposition 8.1.6]. 
In particular, X has a G-invariant core, and if, in addition, it is contractible, then X has 
a fixed point. Using these facts, Stong proved the following.

Proposition 2.1 (Stong). Let G be a finite group and p a prime number.
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(1) If Ap(G) is contractible then G has a non-trivial normal p-subgroup.
(2) Sp(G) is contractible if and only if G has a non-trivial normal p-subgroup.

From this result one deduces that Quillen’s conjecture [16, Conjecture 2.9] can be 
restated as follows: if K(Sp(G)) is contractible then Sp(G) is a contractible finite space 
(see [4, Chapter 8] for more details).

By Proposition 2.1, if Ap(G) is contractible then Sp(G) is contractible. In a note at 
the end of [21], Stong asked whether the converse holds. We will show below that the 
contractibility of Sp(G) does not imply the contractibility of Ap(G) and we will exhibit 
the smallest counterexample.

3. Some cases for which Sp(G) � Ap(G) and the answer to Stong’s question

In this section we prove two results that will help us to find the minimal counterex-
ample of a group G such that Sp(G) and Ap(G) do not have the same homotopy type. 
Recall that Stong’s counterexample is G = S5 (see [21]). On the other hand, we will use 
Propositions 3.2 and 3.3 to find a counterexample that answers Stong’s question [21, 
Section 3].

For a fixed prime p, we denote by Ω1(G) the subgroup of G generated by the elements 
of order p. The centralizer of H in G is denoted, as usual, by CG(H) and the center 
of G by Z(G). The set of Sylow p-subgroups is denoted by Sylp(G). Recall that Op(G)
denotes the intersection of all Sylow p-subgroups of G and Op′(G) denotes the largest 
normal subgroup of G of order coprime to p. We denote by M(X) the set of maximal 
elements of a poset X.

Remark 3.1. If G is a p-group (or more generally, if it has a unique Sylow p-subgroup), 
then both Sp(G) and Ap(G) are contractible. Moreover Sp(G) has a maximum. On the 
other hand, p | |CG(Ω1(G))| because 1 < Z(G) ≤ CG(Ω1(G)), which implies that Ap(G)
is contractible (see Proposition 4.5).

Proposition 3.2. In the following cases Sp(G) and Ap(G) have the same homotopy type 
as finite spaces:

(1) Ω1(P ) is abelian for each P ∈ Sylp(G) (see [21, Section 3]),
(2) G = Dn (the dihedral group),
(3) |G| = pαq, where q is a prime.

Moreover, Ap(G) ⊂ Sp(G) is a strong deformation retract if and only if it is a retract, 
and this happens if and only if condition (1) holds.

Proof. We prove (1) and the moreover part first. If Ω1(P ) is abelian for each Sylow 
p-subgroup P , then for each non-trivial p-subgroup Q it follows that Ω1(Q) is a non-trivial 
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elementary abelian p-subgroup. Thus there is a mapping r : Sp(G) → Ap(G) defined by 
r(Q) = Ω1(Q), and it is a retraction. If i : Ap(G) ↪→ Sp(G) is the inclusion map, then 
ir ≤ IdSp(G) and ri = IdAp(G). This proves (1). On the other hand, if r : Sp(G) → Ap(G)
is a retraction, then it is easy to see that r(Q) ≥ Ω1(Q) for each p-subgroup Q. Thus 
Ω1(P ) is abelian for each Sylow p-subgroup P .

Suppose now that G = Dn. If p is odd there is only one Sylow p-subgroup. The case 
p = 2 follows straightforwardly from the structure of the subgroups of dihedral groups.

Finally we prove the case |G| = pαq. We can assume that p �= q and that the number of 
Sylow p-subgroups is q. If each pair of distinct Sylow p-subgroups has trivial intersection, 
then

Sp(G) =
∐

P∈Sylp(G)

Sp(P ) �
∐

P∈Sylp(G)

{∗} �
∐

P∈Sylp(G)

Ap(P ) = Ap(G)

Thus, we can suppose that there exist two distinct Sylow p-subgroups P, P ′ for which 
P ∩P ′ > 1. By the proof of [12, Theorem 1.36], Op(G) = P ∩P ′ for each pair of distinct 
Sylow p-subgroups P and P ′. In particular, Sp(G) is contractible and hence it remains 
to show that Ap(G) is contractible.

Assume that Ap(G) is not contractible. Note that Ap(G) = Ap(Ω1(G)) and 
Sp(Ω1(G)) ⊂ Sp(G) is a strong deformation retract (the retraction being R �→ R∩Ω1(G)). 
Also, |Ω1(G)| = pα

′
q, so without loss of generality we may suppose that G = Ω1(G).

Since Ap(G) is not contractible, in particular it is not contractible in two steps and by 
Proposition 4.5, this implies that p � |Z(G)|. Now we affirm that the Sylow q-subgroups 
are not normal. Otherwise, take P a Sylow p-subgroup and Q a Sylow q-subgroup. Then 
G = PQ is a semidirect product. On the other hand Op(G) > 1, and we can take N to 
be a minimal non-trivial normal p-subgroup. Then Q ≤ CG(N) and N ≤ P is a minimal 
normal p-subgroup. Since P is a p-group, N ∩ Z(P ) > 1, and minimality implies that 
N ≤ Z(P ), that is, P ≤ CG(N). It follows that N ≤ Z(G), and this contradicts the fact 
that p � |Z(G)|. In particular, we have proved that Op′(G) = 1 and, by the standard 
Hall–Higman Lemma Op(G) is self-centralizing, i.e. Op(G) ≥ CG(Op(G)).

Given A ∈ Ap(G), let r(A) be the intersection of all T ∈ M(Ap(G)) such that A ≤ T . 
This defines a map r : Ap(G) → Ap(G). We will show below that r(A) ∩ Op(G) > 1
for each A ∈ Ap(G). This implies that the map f : Ap(G) → Ap(Op(G)) defined by 
f(A) = r(A) ∩ Op(G) verifies that

if(A) ≤ r(A) ≥ A

fi(A) ≥ A ∩ Op(G) = A

where i : Ap(Op(G)) ↪→ Ap(G) is the inclusion. Hence

Ap(G) � Ap(Op(G)) � ∗

since Op(G) is a p-group.
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We prove then that r(A) ∩ Op(G) > 1 for each A ∈ Ap(G). As we mentioned above, 
Op(G) = P ∩ P ′ for each pair of distinct Sylow p-subgroups P, P ′. Therefore we only 
need to prove that 

⋂
i Bi∩Op(G) > 1 where the Bi’s are all maximal elementary abelian 

p-subgroups in a same Sylow p-subgroup, say, P . Since Op(G) is self-centralizer, Z(P ) ≤
Op(G), and in particular Ω1(Z(P )) ≤ Op(G). Consequently,

1 < Ω1(Z(P )) = Ω1(Z(P )) ∩ Op(G) ≤
⋂

B∈M(Ap(P ))

B ∩ Op(G) ≤
⋂
i

Bi ∩ Op(G) �

Note that if the height of Ap(G) is 0 then for each Sylow p-subgroup P , Ω1(P ) is 
abelian, because there is exactly one subgroup of order p in P . In this case, by Proposi-
tion 3.2 Sp(G) and Ap(G) are homotopy equivalent as finite spaces.

The next proposition shows some cases where the contractibility of Sp(G) implies that 
of Ap(G) (viewed as finite spaces).

Proposition 3.3. In any of the following cases, the contractibility of Sp(G) implies that 
of Ap(G):

(1) All maximal elementary abelian p-subgroups are conjugate,
(2) h(Ap(G)) ≤ 1,
(3) |G|p ≤ p3.

Proof. Suppose first that all maximal elementary abelian p-subgroups are conjugate. We 
claim that the intersection of all of them is non-trivial. Indeed, if Ω1(Z(Op(G))) ≤ A, 
where A is a maximal elementary abelian p-subgroup, then Ω1(Z(Op(G))) =
Ω1(Z(Op(G)))g ≤ Ag for all g ∈ G and therefore Ω1(Z(Op(G))) is a non-trivial el-
ementary abelian p-subgroup contained in the intersection of all maximal elementary 
abelian p-subgroups. By Proposition 4.5, Ap(G) is contractible.

If h(Ap(G)) ≤ 1, then its order complex is a graph. This implies that, in this case, 
Ap(G) is homotopically trivial if and only if it is contractible.

If |G|p ≤ p3, h(Ap(G)) = 0, 1, or 2, and in the last case Ap(G) = Sp(G). �
We exhibit now various examples. We found these examples using the GAP program 

[10]. Proposition 3.2 and Proposition 3.3 were used to filter most of the groups (thou-
sands) in the “Small Groups library” of GAP.

Example 3.4. Let G = ((Z3 ×Z3) �Z8) �Z2 be the group with id [144,182] in the Small 
Groups library of GAP. Note that |G| = 2432. If we take p = 2, the cores of the finite 
spaces Sp(G) and Ap(G) have 21 and 39 elements respectively. In particular, they are not 
homotopy equivalent. Note that all maximal elementary abelian p-subgroups in a same 
Sylow p-subgroup of this group are conjugate, so in particular all maximal elementary 
abelian p-subgroups are conjugate in G. This example shows that the condition of item 
(1) in Proposition 3.3 is not sufficient for Ap(G) and Sp(G) to be homotopy equivalent.
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Example 3.5. Let G = S3 �Z2, i.e. G = (S3×S3) �Z2 where the action of Z2 interchanges 
the coordinates. The order of G is 72 and, for p = 2, the posets Sp(G) and Ap(G) are 
not homotopy equivalent. This can be verified by computing their cores, which have 
21 and 39 elements respectively. This example shows that the condition of item (3) in 
Proposition 3.3 is not sufficient for Ap(G) and Sp(G) to be homotopy equivalent.

Surprisingly, the next group for which these posets are not homotopy equivalent is 
G = S5 (and p = 2), which is Stong’s example (see [21, Section 3]). We will show below 
that the previous example is in fact the minimum example of a group G whose posets 
Ap(G) and Sp(G) are not homotopy equivalent (for some p).

In the examples above the prime was p = 2. In principle, this is because they have 
small order and can be computed from the Small Groups library of GAP. However, the 
next example shows that Sp(G) � Ap(G) also fails for p > 2.

Example 3.6. Let G be the group isomorphic to

(((Z2 × Z2) × ((Z2 × Z2 × Z2 × Z2) � Z3)) � Z3) � Z3

which has id [1728,47861] in the Small Groups library of GAP. Its order is 1728 = 2633

and this is the smallest group for which Sp(G) and Ap(G) do not have the same homotopy 
type with a prime p �= 2 (p = 3 in this case). The cores of Sp(G) and Ap(G) have 256
and 512 elements respectively.

The following example provides the negative answer to Stong’s question [21, Section 3]: 
we exhibit a group G for which Sp(G) is contractible and Ap(G) is not.

Example 3.7. Let G be the subgroup of S8 generated by the permutations (1 2 8 3)(4 7)
and (1 6 3 7 8 5)(2 4). This group has order 576 = 2632 and id [576,8654] in the Small 
Groups library of GAP. One can verify the following properties for p = 2:

(1) G is isomorphic to ((A4 × A4) � Z2) � Z2, where A4 is the alternating group in 4
letters.

(2) Ap(G) has height 3.
(3) G = Ω1(G).
(4) Sp(G) is contractible but the core of Ap(G) has 100 elements (and therefore it is not 

contractible).
(5) There is a normal elementary abelian p-subgroup which is a maximal element in the 

poset Ap(G).
(6) The group G is solvable by Burnside’s Theorem. In particular, it satisfies Quillen’s 

conjecture (see [16, Corollary 12.2]).
(7) Since 26 does not divide 7!, S8 is the smallest symmetric group containing a coun-

terexample of this type. Moreover, every subgroup of S8 distinct of G verifies that 
Sp(G) � ∗ implies Ap(G) � ∗.
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(8) The Fitting subgroup verifies F (G) = Op(G). In particular, Op(G) is self-
centralizing.

To produce this counterexample we applied the filters provided by Proposition 3.2
and Proposition 3.3 to all groups of order less than or equal to 576 in the Small Groups 
library of GAP.

We prove now that 72 is the minimum order for which Ap(G) and Sp(G) do not have 
the same homotopy type (for some p).

Proposition 3.8. If |G| < 72 then Sp(G) � Ap(G) for each prime p.

Proof. Let 1 ≤ n < 72 and let G be a group of order n. If p � |G| both posets are 
empty and there is nothing to say. Otherwise, n = pαm with α ≥ 1 and (m : p) = 1. If 
α = 1 or 2, the Sylow p-subgroups are abelian and by Proposition 3.2, Ap(G) ⊂ Sp(G)
is a strong deformation retract. If α ≥ 3 then 2332 = 72 > n = pαm ≥ 23m, and thus 
1 ≤ m < 9. For m = 1 or prime, the result follows from Proposition 3.2 (4). So it 
remains to show that m �= 4, 6 and 8. If m = 4, 6 or 8, as (p : m) = 1, p ≥ 3. But then 
pαm ≥ 334 = 108 > 72. �
4. The contractibility of Ap(G) in algebraic terms

Example 3.7 shows that the contractibility of the finite space Ap(G) is strictly stronger 
than the contractibility of Sp(G). On the other hand, by Proposition 2.1, the contractibil-
ity of Sp(G) is equivalent to G having a non-trivial normal p-subgroup. Our aim is to 
understand the contractibility of Ap(G) in purely algebraic terms.

Definition 4.1. Let f, g : X → Y be two order-preserving maps between finite posets. We 
say that f and g are homotopic in n steps (with n ≥ 0) if there exist f0, . . . , fn : X → Y

such that f = f0, fn = g and fi, fi+1 are comparable for every 0 ≤ i < n (i.e. fi(x) ≤
fi+1(x) for all x, or fi(x) ≥ fi+1(x) for all x). We denote it by f ∼n g.

Two posets X and Y are homotopy equivalent in n steps (denoted by X ∼n Y ) if 
there are maps f : X → Y and g : Y → X such that fg ∼n IdY and gf ∼n IdX . We say 
that X is contractible in n steps if X ∼n ∗ (the singleton), or equivalently, there exist 
x0 ∈ X and f0 = IdX , f1, . . . , fn = cx0 : X → X, where cx0 is the constant map x0, such 
that fi and fi+1 are comparable for each i.

Remark 4.2. Note that X ∼0 Y if and only if they are homeomorphic, and that X is 
contractible in 1 step if and only if it has a maximum or a minimum. Note also that 
in this case, X can be carried to a point by only removing up beat points (if it has a 
maximum), or down beat points (if it has a minimum). Thus, contractibility in 1 step 
means that only one type of beat points is needed to be removed. Note also that if 
X ∼n Y and Y ∼m Z, then X ∼n+m Z.
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Suppose X is a contractible finite space. As we explained above, this means that 
there exists an ordering x1, . . . , xr of the elements of X such that xi is a beat point of 
X − {x1, . . . , xi−1} for i = 1, . . . , r − 1. In each step, xi can be an up beat point or a 
down beat point. We say that the beat points can be removed with (at most) n changes
if there are 1 < i1 < i2 < . . . < in ≤ r − 1 such that all the beat points between x1 and 
xi1−1, xi1 and xi2−1, . . . , xin and xr−1 are of the same kind. For example, if the poset 
X has a maximum or minimum, one can reach the singleton by removing beat points 
without any changes (all up beat points, if it has a maximum, and all down beat points 
if it has a minimum).

Theorem 4.3. The poset X is contractible in n steps if and only if we can remove the 
beat points with (at most) n − 1 changes.

Proof. Assume first that there exists an ordering {x1, . . . , xk} = X such that xj is a 
beat point of Xj = X −{x1, . . . , xj−1} and that there are at most n − 1 changes of kind 
of beat points.

If n = 1, then they are all down beat points or all up beat points. Suppose the first 
case. For each j, let ÛXj

xj = {x ∈ Xj , x < xj} and yj ∈ Xj be yj = max Û
Xj
xj . Let 

rj : Xj → Xj+1 be the retraction which sends xj to yj and fixes the other points, 
and let ij : Xj+1 → Xj be the inclusion. Then α1 := i1r1 ≤ IdX1 = IdX . Let αj =
i1i2 . . . ijrj . . . r2r1 : X → X. Since ijrj ≤ IdXj

for all j, we conclude that αj ≤ IdX for 
all j. In particular, for j = k − 1, αk−1 ≤ IdX and αk−1 is a constant map given that 
rk−1 : Xk−1 → Xk = {xk}. Consequently, X ∼1 ∗.

Now assume n > 1 and take an ordering {x1, . . . , xk} = X of beat points with at most 
n −1 changes. Take the minimum i such that xi and xi+1 are beat points of different kinds. 
By the same argument used before, it is easy to see that X ∼1 X −{x1, . . . , xi} = Xi−1
because all the beat points removed are of the same type. By induction, Xi−1 can be 
carried out to a point by removing beat points with at most n − 2 changes, and then 
Xi−1 ∼n−1 ∗. Therefore, by Remark 4.2, X ∼n ∗.

Suppose now that X is contractible in n steps and proceed by induction on n. If 
n = 1, then X has a maximum or a minimum. In that case we can reach the core of X
by removing only up beat points in the first case, or only down beat points in the latter 
case.

Let n = 2 and assume, without loss of generality, that IdX ≤ g ≥ cx0 , where cx0 is 
the constant map x0. We can suppose that X has neither a minimum nor a maximum, 
and this implies that g is not the identity map. Let Fix(g) denote the subposet of X of 
points which are fixed by g. Note that M(X) ⊆ Fix(g) �= X. Since IdX ≤ g, for any 
x ∈ X we have

x ≤ g(x) ≤ g2(x) ≤ g3(x) ≤ . . .

and therefore there exists i ∈ N such that gi(x) ∈ Fix(g).
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Take x ∈ X − Fix(g) a maximal element. If x < z, then z ∈ Fix(g) by maximality. 
Now, since g ≥ IdX , we have x < g(x) ≤ g(z) = z. Therefore, x is an up beat point.

Let {x1, . . . , xk} be a linear extension of (X − Fix(g))op and let Xj = X −
{x1, . . . , xj−1}. We affirm that xj is an up beat point of Xj for each j ≥ 1. The case 
j = 1 is what we did before. Suppose j > 1 and let y = gm(xj) ∈ Fix(g) ⊆ Xj . Take 
z ∈ Xj such that z > xj . Then z ∈ Fix(g) and xj < y = gm(xj) ≤ gm(z) = z, which 
shows that xj is an up beat point of Xj . Hence, Fix(g) can be obtained from X by 
removing only up beat points. We show now that Fix(g) has a minimum, using the fact 
that g ≥ cx0 . This implies that Fix(g) can be carried out to a single point by removing 
only down beat points, and hence the beat points of X can be removed with 1 change 
(first up beat points and then down beat points). In order to see that Fix(g) has a 
minimum, take m ∈ N such that gm(x0) ∈ Fix(g). Then, for any z ∈ Fix(g) we have 
z = gm+1(z) ≥ gm(x0).

Suppose now that n > 2. Assume that there exists a fence IdX ≤ g1 ≥ g2 ≤ g3 ≥ . . . , 
with gn = cx0 . Let Y = Fix(g1). We may suppose that X �= Y . By the same argument 
used in the case n = 2, Y is obtained from X by removing only up beat points. Let 
i : Y ↪→ X be the inclusion map and r : X → Y the retraction given by the extraction 
of the up beat points. Then

IdY ≥ rg2i ≤ rg3i ≥ . . .
≤
≥ rgni = crgn(x0)

Then Y ∼n−1 ∗ and, by induction, the beat points of Y can be removed with at most 
n − 2 changes. This concludes the proof. �

The contractibility of Ap(G) in few steps can be described in purely algebraic terms. 
First we need a lemma.

Lemma 4.4. If f, g : Ap(G) → Ap(G) are two maps such that IdAp(G) ≥ f ≤ g, then 
IdAp(G) ≤ g.

Proof. Let A ∈ Ap(G). We need to prove that A ≤ g(A). Take a ∈ A a non-trivial 
element. Thus, 〈a〉 is a minimal elementary abelian p-subgroup and therefore

〈a〉 = f(〈a〉) ≤ g(〈a〉) ≤ g(A)

This means that a ∈ g(A) for each non-trivial element a ∈ A. Consequently, A ≤
g(A). �
Proposition 4.5. The followings assertions hold:

(1) Ap(G) is contractible in 0 steps if and only if G has only one subgroup of order p, 
i.e. Ω1(G) � Zp,
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(2) Ap(G) is contractible in 1 step if and only if Ap(G) has a maximum, if and only if 
Ω1(G) is abelian,

(3) Ap(G) is contractible in 2 steps if and only if the intersection of all maximal ele-
mentary abelian p-subgroups is non-trivial, if and only if p | |CG(Ω1(G))|,

(4) Ap(G) is contractible in 3 steps if and only if there exists an elementary abelian 
p-subgroup subgroup of G which intersects (in a non-trivial way) every non-trivial 
intersection of maximal elementary abelian p-subgroups.

Proof. Item (1) is clear and item (2) follows from the previous lemma. We prove (3) 
and (4). Assume that Ap(G) is contractible in 2 steps. By the previous lemma we can 
suppose that there exists a map f : Ap(G) → Ap(G) with IdAp(G) ≤ f ≥ cN , where 
cN is the constant map with value N , for some N ∈ Ap(G). In this way, if A ∈ Ap(G)
is a maximal element, then A ≤ f(A) implies A = f(A). Hence, for each maximal 
element A we see that A ≥ N , i.e. N is contained in each maximal element. If a ∈ N is a 
non-trivial element, then a ∈ CG(Ω1(G)), which means that p | |CG(Ω1(G))|. Conversely, 
if p | |CG(Ω1(G))|, by Cauchy’s Theorem there exists an element a ∈ CG(Ω1(G)) of 
order p. Let N = 〈a〉. Thus, N ∈ Ap(G) and a ∈ A for each maximal elementary abelian 
p-subgroup A. If we denote by r(B) the intersection of all maximal elementary abelian 
p-subgroups containing B, we get

B ≤ r(B) ≥ N

This concludes the proof of (3).
If Ap(G) is contractible in 3 steps, then by the previous lemma we can take a homotopy 

IdAp(G) ≤ f ≥ g ≤ cN , where cN is the constant map with value N . Moreover, f(B) ≤
r(B), and thus r(B) ≥ g(B) ≤ N . This means that r(B) ∩N ≥ g(B) > 1, and therefore

B ≤ r(B) ≥ r(B) ∩N ≤ N

is a well-defined homotopy between the identity of Ap(G) and the constant map N . But 
then N intersects in a non-trivial way every non-trivial intersection of maximal elements 
of Ap(G). Note that this also proves the converse. �

The following example shows that, unlike what happens with Sp(G) (which is always 
contractible in two steps since it is conically contractible [16, Proposition 2.4]), the poset 
Ap(G) may be contractible in more than two steps.

Example 4.6. Let G = S4. Then |G| = 233. Since N = 〈(1 2)(3 4), (1 3)(2 4)〉 is a non-
trivial normal 2-subgroup of G, both posets S2(G) and A2(G) are contractible by item 
(3) of Proposition 3.3. In fact, A2(G) is contractible in 3 steps but it is not contractible 
in two steps. The poset i(Ap(G)) of non-trivial intersections of maximal elements (see 
below for a formal definition) is given by
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〈(1 2), (3 4)〉 〈(1 2)(3 4), (1 3)(2 4)〉 〈(1 3), (2 4)〉 〈(1 4), (2 3)〉

〈(1 2)(3 4)〉 〈(1 3)(2 4)〉 〈(1 4)(2 3)〉

This shows that the intersection of all maximal elementary abelian p-subgroups is triv-
ial, but the subgroup N intersects in a non-trivial way each non-trivial intersection of 
maximal elementary abelian p-subgroups.

The contractibility of Ap(G) in more than 3 steps can be described in algebraic terms 
but with the aid of extra combinatorial information about the poset. The methods that 
we will use are a generalization of those used in the proofs of Lemma 4.4 and Proposi-
tion 4.5.

For a finite lattice L, recall that L∗ = L − {0̂, ̂1} is called the proper part of L. We 
say that a finite poset X is a reduced lattice if X = L∗ for some lattice L. Equivalently, 
for every pair of elements {x, y} with an upper bound in X there exists the supremum 
x ∨ y. This condition is equivalent to saying that for each pair of elements {x, y} with 
a lower bound in X there exists the infimum x ∧ y [19, Proposition 3.3.1] (see also [4]). 
Recall that M(X) denotes the set of maximal elements of X, similarly we denote by 
m(X) the minimal elements. If x ∈ X, we denote by M(x) the set of maximal elements 
over x and by m(x) the set of minimal elements below x. A reduced lattice X is atomic
if every element is the supremum of the minimal elements below it, i.e. if x =

∨
y∈m(x) y

for each x ∈ X. Similarly, X is coatomic if Xop is atomic, i.e. if x =
∧

y∈M(x) y for each 
x ∈ X.

The poset Ap(G) is an atomic reduced lattice: the infimum of two elementary abelian 
p-subgroups with non-trivial intersection is their intersection, and the supremum, when 
they have an upper bound, is the subgroup generated by both subgroups.

Given two order preserving maps f, g : X → Y , where Y ia a reduced lattice, such 
that {f(a), g(a)} is lower bounded (resp. upper bounded) for each a ∈ X, we define the 
maps f ∧ g, f ∨ g : X → Y by (f ∧ g)(a) = f(a) ∧ g(a) and (f ∨ g)(a) = f(a) ∨ g(a).

Proposition 4.7. Let X be an atomic reduced lattice. If IdX ∼n g, then there exist 
f0, . . . , fn : X → X with

IdX = f0 ≤ f1 ≥ f2 ≤ . . .
≥
≤ fn = g

and such that f2k = f2k−1 ∧ f2k+1 for each 1 ≤ k < n/2 and f2k+1 = f2k ∨ f2k+2 for 
each 0 ≤ k < n/2.

Proof. Note first that, since X is an atomic reduced lattice, one can use the same argu-
ment as in the proof of Lemma 4.4 to show that, if IdX ≥ f̃1 ≤ f̃2, then IdX ≤ f̃2. Then 



E.G. Minian, K.I. Piterman / Advances in Mathematics 328 (2018) 1217–1233 1231
there exists a fence

IdX = f0 ≤ f1 ≥ f2 ≤ . . .
≥
≤ fn = g

Now for i even we have fi−1 ≥ fi ≤ fi+1, and we can replace fi by fi−1 ∧ fi+1
and obtain fi−1 ≥ fi−1 ∧ fi+1 ≤ fi+1. Then we can proceed analogously with all odd 
indexes i. �

The following constructions were introduced by J. Barmak in [4, Chapter 9]. Given a 
reduced lattice X, let

i(X) =
{∧

x∈S

x : S ⊆ M(X), S �= ∅ and lower bounded
}

s(X) =
{∨

x∈S

x : S ⊆ m(X), S �= ∅ and upper bounded
}

With these notations, X is atomic if and only if X = s(X), and it is coatomic if and 
only if X = i(X). Both i(X) and s(X) are strong deformation retracts of X (see [4, 
Chapter 9]). Moreover, i(X) can be obtained from X by extracting only up beat points, 
and s(X) by extracting only down beat points. As ii(X) = i(X) and ss(X) = s(X), we 
can perform these two operations until we obtain a core of X. In particular, the core of 
X is both an atomic and coatomic reduced lattice. Let n ≥ 0. If X is atomic and n ≥ 0, 
denote by Xn the (n + 1)-th term in the sequence

X ⊇ i(X) ⊇ si(X) ⊇ isi(X) ⊇ . . .

In the same way, when X is coatomic denote by Xn the (n +1)-th term in the sequence

X ⊇ s(X) ⊇ is(X) ⊇ sis(X) ⊇ . . .

Note that if X is a G-poset, then i(X) and s(X) are G-invariant. So this method provides 
an easy tool to find a G-invariant core of X.

Remark 4.8. Note that if X is a reduced lattice and IdX ≤ f , then f(x) ≤
∧

y∈M(x) y

for any x ∈ X.

Theorem 4.9. Let X be an atomic reduced lattice. The following conditions are equivalent:

(1) X ∼n ∗,
(2) i(X) ∼n−1 ∗,
(3) Xi ∼n−i ∗ for all i ≥ 0,
(4) Xn = ∗.
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With the convention that, for a negative number m, X ∼m ∗ means that X ∼0 ∗. 
Analogous equivalences hold when X is a coatomic reduced lattice, with s(X) instead of 
i(X).

Proof. (1) ⇒ (2). Let r : X → i(X) be the retraction r(x) =
∧

y∈M(x) y and let i :
i(X) ↪→ X be the inclusion map. Then ri = Idi(X) and ir ≥ IdX . If X ∼n ∗, by 
Proposition 4.7 there exist f1, . . . , fn : X → X such that

IdX ≤ f1 ≥ f2 ≤ f3 ≥ f4 . . .

with fn a constant map. By the previous remark, f1 ≤ ir, and therefore we have a fence

IdX ≤ ir ≥ f2 ≤ f3 ≥ f4 . . .

Composing with i and r we have:

Idi(X) = ri ≤ Idi(X) = riri ≥ rf2i ≤ rf3i ≥ rf4i ≤ . . .

Hence i(X) ∼n−1 ∗.
(2) ⇒ (1). Since i(X) is obtained from X by removing only up beat points, and 

i(X) ∼n−1 ∗, by Theorem 4.3 X ∼n ∗.
(1) ⇔ (3). This follows by applying induction, the arguments of above and the anal-

ogous results for coatomic reduced lattices.
(4) ⇒ (1). This follows from Theorem 4.3 and the fact that each time that we apply 

i or s, we perform a change of kind of beat points.
(3) ⇒ (4). Straightforward. �

Remark 4.10. If X is atomic, then Xn is coatomic for n odd and it is atomic for n even. 
In particular, if X ∼n ∗, by the previous theorem Xn = ∗, which means that Xn−1 has 
a maximum if n is odd, or it has a minimum if n is even. Thus if we let Mn be m(Xn)
for n even and M(Xn) for n odd, we conclude that X ∼n ∗ if and only if |Mn| = 1.

Now we can apply these results to describe the contractibility in steps of Ap(G) in 
algebraic terms.

Theorem 4.11. The poset Ap(G) is contractible in n steps if and only if one of the 
following holds:

(1) n = 0 and Ap(G) = {∗},
(2) n ≥ 1 is even and 

⋂
A∈Mn−1

A > 1,
(3) n ≥ 1 is odd and 〈A : A ∈ Mn−1〉 is abelian.

Proof. By the previous remark Ap(G) ∼n ∗ if and only if |Mn| = 1.
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If n is odd, Ap(G)n−1 has a maximum and Mn−1 is the set of minimal elements of 
Ap(G)n−1. If B ∈ Ap(G)n−1 is the maximum, B ≥ A for each A ∈ Mn−1 and then 
〈A : A ∈ Mn−1〉 ≤ B is an abelian subgroup.

If n is even, Ap(G)n−1 has a minimum and Mn−1 is the set of maximal elements 
of Ap(G)n−1. If B ∈ Ap(G)n−1 is the minimum, B ≤ A for each A ∈ Mn−1 and then 
1 < B ≤

⋂
A∈Mn−1

A is a non-trivial subgroup. This proves the “if” part.
For the “only if” part, note that in either case we have that Ap(G)n−1 has a max-

imum or a minimum, thus it is contractible in 1 step and the result follows from 
Theorem 4.9. �
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