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We compute the zero-temperature dynamical structure factor S(q, ω) of the triangular lattice Heisenberg
model (TLHM) using a Schwinger boson approach that includes the Gaussian fluctuations (1/N corrections)
of the saddle-point solution. While the ground state of this model exhibits a well-known 120◦ magnetic ordering,
experimental observations have revealed a strong quantum character of the excitation spectrum. We conjecture
that this phenomenon arises from the proximity of the ground state of the TLHM to the quantum melting
point separating the magnetically ordered and spin-liquid states. Within this scenario, magnons are described
as collective modes (two-spinon bound states) of a spinon condensate (Higgs phase) that spontaneously break
the SU(2) symmetry of the TLHM. Crucial to our results is the proper account of this spontaneous symmetry
breaking. The main qualitative difference relative to semiclassical treatments (1/S expansion) is the presence of
a high-energy spinon continuum extending up to about three times the single-magnon bandwidth. In addition,
the magnitude of the ordered moment (m = 0.224) agrees very well with numerical results and the low-energy
part of the single-magnon dispersion is in very good agreement with series expansions. Our results indicate
that the Schwinger boson approach is an adequate starting point for describing the excitation spectrum of some
magnetically ordered compounds that are near the quantum melting point separating this Higgs phase from the
deconfined spin-liquid state.

DOI: 10.1103/PhysRevB.98.184403

I. INTRODUCTION

Novel quantum states in strongly interacting electron sys-
tems are boosting a new era of quantum materials [1]. Un-
derstanding their basic constituents is necessary to predict
their behavior under different conditions and to derive low-
energy theories that can describe the interplay between charge
and spin degrees of freedom in doped magnets. It is then
imperative to develop new approaches beyond the conven-
tional paradigms. More specifically, the increasingly refined
spectra produced by recent advances in inelastic neutron
scattering [2–7] are demanding new theories that can account
for multiple anomalies observed in dynamical spin structure
factor S(q, ω) of frustrated quantum antiferromagnets.

In the conventional paradigm [8], magnetic order devel-
ops at low enough temperatures via spontaneous symmetry
breaking [9]. The elementary low-energy quasi-particles are
spin-one modes known as magnons. In the new paradigm [10],
zero-point or quantum fluctuations enhanced by magnetic
frustration and/or low dimensionality may preclude conven-
tional symmetry breaking, leading to a quantum spin-liquid
phase at T = 0 [11]. Topologically ordered quantum spin
liquids are different from simple quantum paramagnets be-
cause they cannot be adiabatically connected with any product
state and they can support excitations with fractional quantum
numbers [12–17]. The first proposal of a topologically ordered
quantum spin liquid was the resonant valence bond (RVB)

state introduced by Anderson to describe the ground state of
the triangular lattice Heisenberg model (TLHM) [10]. The
RVB state is a linear superposition of different configurations
of short-range singlet pairs, whose resonant character leads to
the decay of spin-one modes into pairs of free S = 1

2 spinons.
The nature of the ground state of the triangular Heisenberg

antiferromagnet was a controversial topic for a long time [18].
Finally, a sequence of numerical works [19–23] provided
enough evidence in favor of long-range Néel magnetic order
(120◦ ordering) with a relatively small ordered moment (41%
of the full moment) [18,22,23]. This sizable reduction of the
ordered moment is indicative of strong quantum fluctuations
and of the proximity to a quantum spin-liquid phase. In
a semiclassical treatment of the problem (1/S expansion),
the presence of strong quantum fluctuations manifests via a
large 1/S correction of the magnon bandwidth along with
single- to two-magnon decay in a large region of the Brillouin
zone [24–27].

Early studies of the low-temperature properties based on
an effective quantum field theory suggested the need of
adopting alternative descriptions to the semiclassical approach
[28–30]. In particular, Chubukov et al. [30] proposed that
the antiferromagnetic (AF) triangular Heisenberg model is in
the crossover region between a classical renormalized and a
quantum critical regime of deconfined spinons at temperatures
T ∼ 0.4J . As shown in Fig. 1, this observation is consis-
tent with the proximity of the 120◦ Néel order to a zero-
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FIG. 1. Schematic finite-temperature phase diagram for 2D frus-
trated antiferromagnets [42]. g is a generic measure of the zero-point
quantum fluctuations and gc connects continually a spiral magnetic
state to quantum spin-liquid state. The dashed lines indicate the
crossover from the classical renormalized and the quantum disor-
dered regimes to the quantum critical regime. The corresponding
energy scales are the spin stiffness ρs and the triplet excitation
�, respectively. The conjectured location of the spin- 1

2 triangular
Heisenberg model and the compound Ba3CoSb2O9 are indicated by
the vertical lines.

temperature quantum melting point (QMP). If the quantum
phase transition between the magnetically ordered state and
the spin-liquid phase turns out to be continuous (or qua-
sicontinuous), the magnon modes should be described as
weakly bounded two-spinon bound states in the proximity
of the QMP. In other words, the two-spinon confinement
length ξconf should become significantly larger than the lattice
spacing (ξconf � a) near the QMP. Indeed, it is known that
the J1-J2 (nearest and next-nearest exchange coupling) trian-
gular Heisenberg model exhibits a transition into a spin-liquid
state at J2/J1 � 0.06 [31–41]. Recent numerical studies [41]
indicate that this is a continuous quantum phase transition
between the 120◦ Néel ordered state and the spin-liquid phase.

The above-described picture is analogous to color con-
finement in quantum chromodynamics (QCD): hadrons are
described as composite states of quarks, although quarks
cannot be directly observed because they are confined by
the gluon field that creates some kind of “string” between
them. The analogy with a two-body problem with a linear
interaction potential is an oversimplification because it does
not account for the quantum nature of the gluon field: excited
bound states of the linear potential (heavy hadron particles)
are unstable and decay into lighter ones [43,44]. A similar
situation is expected for the above-described quantum mag-
net: high-energy two-spinon bound states, corresponding to
longitudinal modes, are expected to decay into multiple pairs
of two-spinon bound states transforming the two-body prob-
lem of confinement into a many-body one. These processes
should leave their fingerprint in the high-energy continuum
of the dynamical spin susceptibility, which can be measured
with inelastic neutron scattering (INS). Unlike other experi-
mental techniques, INS can reveal the internal structure of the
magnon modes. Identifying these signatures is then crucial to

determine if a given compound provides a realization of this
strong quantum mechanical effect.

Identifying condensed-matter analogs of confined frac-
tional particles is important for multiple reasons. In the first
place, we can connect the original lattice or microscopic
(high-energy) model with the effective (low-energy) field
theory that is obtained in the long-wavelength limit [30].
Consequently, we can relate the parameters of the microscopic
theory to the properties of the particles (such as hadron masses
in the context of QCD) that emerge at low energies. The
physics of spin ladders provides a simple one-dimensional
(1D) analog of this physics [45,46], where the role of quarks
is played by spinons, although there are also some obvious
differences because the interaction between spinons is not
usually attributed to gauge fields. In the second place, the
emergence of gauge fields and fractionalized excitations in
dimension higher than one could shed light on the unusual
behavior of different classes of correlated electron materials
in the proximity of a quantum critical point [13,47–51].

Recent inelastic neutron scattering measurements per-
formed in Ba3CoSb2O9 [5,7,52], an experimental realization
of a quasi-two-dimensional (quasi-2D) triangular S = 1

2 an-
tiferromagnet (AF), are indeed suggesting that semiclassi-
cal approaches (large-S expansion) do not reproduce several
aspects of the dynamical structure factor S(q, ω), despite
the existence of magnetic long-range order. In particular,
the magnon bandwidth W , the observed line broadening [5],
and, more importantly, the very unusual dispersive continuum
extending up to 6W [7] are the most salient features, which
cannot be reproduced by linear spin-wave (LSW) theory plus
1/S (LSW+1/S) corrections [26,53]. It is important to note
that the easy-plane anisotropy and the finite interlayer ex-
change of Ba3CoSb2O9 preclude spontaneous single- to two-
magnon decay at the LSW+1/S level,1 which is obtained for
the isotropic 2D Heisenberg model [25,26]. In other words,
a low-order 1/S expansion for the S = 1

2 model relevant to
Ba3CoSb2O9 does not even anticipate strong quantum effects
in this material. Then, as for the case of Cs2CuCl4 [42,54,55],
it is natural to ask if the anomalies observed in the dynamical
structure factor of Ba3CoSb2O9 can be attributed to a long
confinement length ξconf � a of spinons, as hypothesized
in Fig. 1, and if a 1/N expansion (N is the number of
flavors of the fractional particles) can account for the observed
anomalies.

The Schwinger boson (SB) theory, originally developed by
Arovas and Auerbach [56], is an adequate technique to answer
this question. The control parameter N can be naturally intro-
duced in the SB theory by increasing the number of flavors of
the Schwinger bosons [28,29,56–58]. The saddle-point result
becomes exact in the N → ∞ limit. At this level, the system
is described as a gas of noninteracting spinons and long-range
magnetic ordering manifests via a Bose condensation of the
SBs [59–61]. The resulting dynamical spin structure factor
S(q, ω) only includes a two-spinon continuum, which misses

1The easy-plane anisotropy gaps out the Goldstone mode at the
K point. Consequently, unlike the isotropic case, the kinematic
conditions prevent single Goldstone modes at the � point from
decaying into pairs of Goldstone modes at the K point.
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the true collective modes (magnons) of a magnetically ordered
state [61–68]. As we demonstrate in this work, magnons al-
ready arise at the Gaussian fluctuation level (1/N corrections)
as a result of the interaction with fluctuations of the emergent
gauge fields. The crucial difference relative to previous for-
mulations of this problem [56] is that we compute S(q, ω) on
top of the spinon condensate (Higgs phase) that spontaneously
breaks the SU(2) symmetry of the TLHM (broken-symmetry
ground state).

The broken-symmetry spinon condensate is selected by
adding an infinitesimal symmetry-breaking field h, which
is sent to zero after taking the thermodynamic limit. The
resulting local magnetization of the 120◦ Néel ordering is
m = 0.224 which quantitatively agrees with quantum Monte
Carlo (QMC) [22] and density matrix renormalization group
(DMRG) [23] predictions. On the other hand, the excitation
spectrum, revealed by S(q, ω), has a strong quantum char-
acter, which is not captured by low-order 1/S expansions.
The low-energy magnons consist of two-spinon bound states
confined by gauge fluctuations of the auxiliary fields. The
good agreement with the relation dispersion predicted by
series expansions [18] indicates that magnons may indeed
have the composite nature predicted by the SB theory. More-
over, the resulting high-energy two-spinon continuum, which
extends up to about three times the single-magnon bandwidth,
may account for the first high-energy peak that is observed
in Ba3CoSb2O9 [7]. Furthermore, as we show in the next
sections, the inclusion of Gaussian corrections removes other
problems of the saddle-point approximation, such as the spu-
rious modes arising from unphysical density fluctuations of
the bosonic field.

The paper is organized as follows: In Sec. II we briefly
review the Schwinger boson approach for treating AF Heisen-
berg models. Using the saddle-point expansion, we derive
the saddle-point solution consisting of a spinon condensate
that spontaneously breaks the SU(2) symmetry of the TLHM
(Higgs phase) and the effect of Gaussian fluctuations of
the auxiliary (gauge) fields on the ground-state energy and
the dynamical susceptibility. In Sec. III we show the main
consequences of properly accounting for the spontaneous
SU(2) symmetry breaking. Section IV contains the results
obtained for the TLHM, including the magnitude of the or-
dered moment, the dynamical structure factor, and the magnon
dispersion relation along with a detailed analysis of the long-
wavelength limit. The physical implications of these results
are discussed in Sec. V.

II. SCHWINGER BOSON THEORY

In this section we present the path-integral formulation of
the Schwinger boson theory specialized for isotropic frus-
trated AF models whose ground states break the SU(2)
symmetry of the Heisenberg Hamiltonian. In particular, we
consider the S = 1

2 AF TLHM,

H = J
∑
〈ij 〉

Si · Sj , (1)

whose ground state is known to exhibit 120◦ magnetic
ordering [19,20,22,23]. We introduce the Schwinger boson
representation of the spin Si in terms of spin- 1

2 boson oper-

ators biσ , through the relation

Si = 1
2 b†i · σ · bi , (2)

where b†i = (b†i↑, b
†
i↓), σ = (σx, σ y, σ z) is the vector of Pauli

matrices, and the bosons are subject to the number constraint∑
σ

b
†
jσ bjσ = 2S = 1. (3)

The Heisenberg interaction can be expressed as [69]

Si · Sj = :B†
ijBij : −A

†
ijAij , (4)

in terms of the SU(2)-invariant bond operators

Aij = 1
2 (bi↑bj↓ − bi↓bj↑), Bij = 1

2 (bi↑b
†
j↑ + bi↓b

†
j↓).

A
†
ij creates singlet states, while B

†
ij makes them resonate.

These are the two key ingredients of the RVB theory pro-
posed by Anderson [10]. By using the operator identity
:B†

ijBij :+A
†
ijAij = S2, the Heisenberg interaction was orig-

inally expressed in terms of the Aij operators only [28,56,65].
However, keeping the Aij and Bij operators in Eq. (4) for
the saddle-point approximation has two important advan-
tages. It better accounts for noncollinear magnetic orderings,
like the 120◦ structure, that typically appear in frustrated
magnets [68,70–72], and it enables a proper extension from
SU(2) � Sp(2) to Sp(N ), which is formally required to take
the large-N limit with generators of the Lie algebra that are
odd under time reversal [58]. This two-singlet bond structure
is currently used to classify quantum spin liquids based on the
projective symmetry group [73,74].

The partition function for H is expressed in terms of the
functional integral over coherent states [75]:

Z[j ] =
∫

D[b, b]D[λ] e
− ∫ β

0 dτ

[∑
iσ

b
τ

iσ ∂τ b
τ
iσ + H(b,b) +Js+Jb

]

× e
− ∫ β

0 dτ i
∑
i

λτ
i

(∑
σ

b
τ

iσ bτ
iσ −2S

)
, (5)

where

Js =
∑

i

j
τμ

i bτ†
i · σμ · bτ

i (6)

represents the Zeeman coupling to a space- (i) and time- (τ )
dependent external field j

τμ

i (μ = x, y, z), while

Jb =
∑

i

h
μ

i bτ†
i · σμ · bτ

i (7)

represents a linear coupling between the order parameter
and a finite static symmetry-breaking field hj = (h cos( Q ·
rj ), h sin( Q · rj ), 0) with Q = ( 2π

3 , 2π√
3

), corresponding to
the 120◦ magnetic structure. The integration over the time-
and space-dependent auxiliary field λτ

i accounts for the lo-
cal constraint (3). The integration measures are D[b, b] =∏

iτσ

db̄τ
iσ dbτ

iσ

2πi
and D[λ] =∏iτ

dλτ
i

2π
.

The Hamiltonian

H = 1

2

∑
〈ij〉

Jij

(
A

τ

ijA
τ
ij − B

τ

ijB
τ
ij

)
(8)
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is quartic in the complex numbers b and b. These terms can be
decoupled into quadratic terms using a Hubbard-Stratonovich

(HS) transformation that introduces auxiliary fields W
A
, WA

and W
B
, WB to decouple the AA and BB terms, respectively:

eJij A
τ

ij A
τ
ij =
∫

D[W
A
,WA] e−Jij W

Aτ

ij WAτ
ij eJij (W

Aτ

ij Aτ
ij +WAτ

ij A
τ

ij )

(9)

and

e−Jij B
τ

ij B
τ
ij =
∫

D[W
B
,WB] e−Jij W

Bτ

ij WBτ
ij eJij (−W

Bτ

ij Bτ
ij +WBτ

ij B
τ

ij ),

(10)

with integration measure D[W
r
,Wr ] =∏ijτ

dW
rτ

ij dWrτ
ij

2πi/Jij
, and

r = A,B. After replacing Eqs. (9) and (10) in Eq. (5), the
Gaussian integrals over b and b can be formally carried out.
The resulting partition function becomes

Z[j ] =
∫

D[W,W ]D[λ] e−Seff (W,W,λ,j ), (11)

where the effective action can be split into two terms

Seff (W,W, λ, j ) = S0(W,W, λ) + Sbos(W,W, λ, j ), (12)

with

S0(W,W, λ)=
∫ β

0
dτ
∑
ijr

JijW
rτ

ij Wrτ
ij −2Si

∑
i

λτ
i (13)

and

Sbos(W,W, λ, j ) = 1
2 Tr ln[G−1(W,W, λ, j )]

= − 1
2 ln Zbos(W,W, λ, j ). (14)

W and W are the HS fields Wrτ
ij , W

rτ

ij (r = A,B) and G−1 =
M is the bosonic dynamical matrix with the trace taken over
space, time, and boson flavor indices. The bosonic partition
function Zbos can be formally integrated out to get

Zbos(W,W, λ, j ) =
∫

D[b, b]e−b†·G−1(W,W,λ,j )·b

= det[G(W,W, λ, j )],

where b is a vector containing all the variables bτ
iσ .

The effective action (12) is invariant under the U(1) gauge
transformation bτ

iσ → bτ
iσ eiθτ

i if the auxiliary fields transform
as

Wrτ
ij → Wrτ

ij ei(θτ
i ±θτ

j ),

W
rτ

ij → W
rτ

ij e−i(θτ
i ±θτ

j ), (15)

λτ
i → λτ

i − ∂τ θ
τ
i ,

where the + and − signs hold for the A and B fields,
respectively. In other words, the phase fluctuations of the
auxiliary fields represent the emergent gauge fluctuations of
the SB theory.

The Fourier transformation to Matsubara frequency and
momentum space is done using

f τ
i = 1√

Nsβ

∑
k,iωn

f
iωn

k e−i(k·r i−ωnτ ) (16)

for any field f τ
i , where iωn = 2πin/β are the bosonic Mat-

subara frequencies and k the momenta. For convenience,
in what follows, we denote f

iωn

k as f ω
k . For simplicity, we

perform a rotation to a local reference frame such that the
magnetic ordering and consequently h become spatially uni-
form. In this case, the bosonic variables transform as bω

k↑ →
bω

k+ Q
2 ↑ and bω

k↓ → bω

k− Q
2 ↓. After introducing the representa-

tion b†k,ω = (b̄ω
k↑, b−ω

−k↓, b
ω

k↓, b−ω
−k↑), G−1 is

G−1 ω,ω′

k,k′ =

⎛
⎜⎜⎜⎜⎜⎝

FB
Q (k, k′, iω) FA

Q (k, k′) − h
2 δk,k′ 0

F
A

Q (k′, k) FB
Q (k′, k,−iω) 0 − h

2 δk,k′

− h
2 δk,k′ 0 FB

− Q (k, k′, iω) −FA
− Q (k, k′)

0 − h
2 δk,k′ −F

A

− Q (k′, k) FB
− Q (k′, k,−iω)

⎞
⎟⎟⎟⎟⎟⎠, (17)

with matrix elements

FB
Q (k, k′, iω) = 1

2
iω δk,k′δω,ω′ + iλω−ω′

k−k′

2
√

Nsβ
−
∑
δ>0

Jδ

4
√

Nsβ

(
WB ω−ω′

k−k′,δ e−i(k′+ Q
2 )·δ−W

B ω′−ω

k′−k,δ ei(k+ Q
2 )·δ) (18)

and

FA
Q (k, k′) =

∑
δ>0

Jδ

4
√

Nsβ
WA ω−ω′

k−k′,δ

(
ei(k+ Q

2 )·δ − e−i(k′+ Q
2 )·δ), (19)

where δ represents (half of) the vectors connecting the nearest neighbors of the triangular lattice.

A. Saddle-point expansion

To evaluate Eq. (11) we expand the effective action Seff about its saddle point [75], defined by the set of saddle-point (sp)
equations

∂Seff

∂φα

∣∣∣∣
sp

= ∂ S0

∂φα

∣∣∣∣
sp

+ 1

2
Tr

[
Gsp ∂G−1

∂φα

]
= 0, (20)
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where φα denotes the fields {Wrω

k,δ, Wrω
k,δ, λω

k } (α includes
field, momentum, and frequency indices). The expansion of
the effective action becomes

Seff = S
sp
eff +
∑
α1α2

S (2)
α1α2

�φα1�φα2 + Sint, (21)

where S
sp
eff corresponds to the effective action evaluated

at the saddle-point fields φ
sp
α , the second term takes

into account the auxiliary field fluctuations �φα = φα −
φ

sp
α at the Gaussian level, and the last term Sint =∑∞

n=3

∑
α1...αn

S (n)
α1...αn

�φα1 . . . �φαn
includes auxiliary field

fluctuations of third and higher orders. The coefficients are
defined as

S (n)
α1...αn

= 1

n!

∂nSeff

∂φα1 . . . ∂φαn

∣∣∣∣
sp

(22)

for n � 2. The corresponding partition function (11) is

Z[j ] = e−S
sp
eff (W sp,Wsp,λsp,j )

∫
D[φ̄, φ] e−� φ†·S (2)·� φ+Sint .

The first factor represents the partition function within the
saddle-point approximation, while the second one is the con-
tribution from the fluctuations of the auxiliary fields: � φ† =
φ† − φsp† with φ† = (W

rω

k,δ, Wr−ω
−k,δ, λ−ω

−k ).

1. Saddle-point approximation

For a static and homogeneous saddle-point solution, the
Fourier transformed fields satisfy φω

k |sp = √
Nsβ φ δk,0δω,0,

for φ = W
r

δ,W
r
δ , λ. We consider the ansatz

WA
δ

∣∣
sp = iAδ, W

A

δ

∣∣
sp = −iAδ,

WB
δ

∣∣
sp = −Bδ, W

B

δ

∣∣
sp = Bδ, (23)

λ|sp = iλ,

with Aδ, Bδ , and λ real, which is consistent with magnetic

ordering in the xy plane [76]. While W
A

δ |sp = (WA
δ |sp)∗, it

turns out that (WB
δ |sp)∗ = −W

B

δ |sp [58,77]. This corresponds
to a distorted saddle-point solution as a consequence of the

sign difference between the W
A
A and W

B
B terms in the

HS decouplings of Eqs. (9) and (10). Furthermore, the real
field λτ

i takes an imaginary value at the sp. To reach this
distorted saddle point, it is necessary to perform an analytical
continuation for computing the partition function [75]. The
resulting effective saddle-point action describes a system of
noninteracting bosons coupled with the static and homoge-
neous sp auxiliary fields:

S
sp
eff (W sp,Wsp, λsp)

= −Nsβ
∑
δ>0

Jδ

(
B2

δ − A2
δ

)− 2SNsβλ − lnZsp
bos, (24)

where Zsp
bos = ∫ d[b̄, b] e−S

sp
bos , S

sp
bos =∑k,ω

b†k,ω · Msp
k,ω ·

bk,ω, and Msp is the dynamical matrix of the bosons
evaluated at the saddle-point solution

Msp
k,ω =

⎛
⎜⎜⎜⎜⎜⎝

(
iω + λ + γ B

k+ Q
2

)
e−iωη −γ A

k+ Q
2

− h
2 0

−γ A

k+ Q
2

(− iω + λ + γ B

k+ Q
2

)
eiωη 0 − h

2

− h
2 0

(
iω + λ + γ B

−k+ Q
2

)
e−iωη −γ A

−k+ Q
2

0 − h
2 −γ A

−k+ Q
2

(− iω + λ + γ B

−k+ Q
2

)
eiωη

⎞
⎟⎟⎟⎟⎟⎠,

(25)

with

γ A
k =
∑
δ>0

JδAδ sin(k · δ), (26)

γ B
k =
∑
δ>0

JδBδ cos(k · δ). (27)

The convergence factors e±iωη with η = 0+ arise from the time ordering of the functional integral and they are crucial for the
Matsubara frequency sum in Eq. (20) to be well defined [57].

The single-spinon Green’s function is obtained by computing Gsp = (Msp)−1,

Gsp(k, iω) =
∑

σ

g−σ
k

iω − εkσ

+ g+σ
k

iω + εkσ

, (28)

(σ = ±) where the two band spinon relation dispersion are

εkσ =
√

1

2

[(
α2

k+ Q
2

+ α2
−k+ Q

2

+ h2

2

)
+ σ�2

k

]
, (29)

with α2
k = (λ + γ B

k )
2 − (γ A

k )
2

and

�2
k =
√(

α2
k+ Q

2

− α2
−k+ Q

2

)2
+
[[(

λ + γ B

k+ Q
2

)
+
(
λ + γ B

−k+ Q
2

)]2
−
(
γ A

k+ Q
2

− γ A

−k+ Q
2

)2]
h2. (30)
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The 4 × 4 matrices g± σ
k are

g+ σ
k =

⎛
⎜⎜⎜⎝

Ekσ Ckσ Fkσ D−kσ

Ckσ Akσ Dkσ Bkσ

Fkσ Dkσ E−kσ C−kσ

D−kσ Bkσ C−kσ A−kσ

⎞
⎟⎟⎟⎠,

g− σ
k = −

⎛
⎜⎜⎜⎝

Akσ Ckσ Bkσ Dkσ

Ckσ Ekσ D−kσ Fkσ

Bkσ D−kσ A−kσ C−kσ

Dkσ Fkσ C−kσ E−kσ

⎞
⎟⎟⎟⎠, (31)

with matrix elements

Akσ = v2
kσ

�2
−kσ

�2
k

+ σu2
−kσ

h2

4�2
k

,

Ekσ = u2
kσ

�2
−kσ

�2
k

+ σv2
−kσ

h2

4�2
k

, (32)

Ckσ = zkσ

�2
−kσ

�2
k

− σz−kσ

h2

4�2
k

,

Bkσ = −σεkσ

[
v2

kσ v2
−kσ + zkσ z−kσ −

(
h

4εkσ

)2
]

h

�2
k

,

Fkσ = −σεkσ

[
u2

kσ u2
−kσ + zkσ z−kσ −

(
h

4εkσ

)2
]

h

�2
k

, (33)

and

Dkσ = −σεkσ

[
v2

kσ z−kσ + u2
−kσ zkσ

] h

2�2
k

, (34)

where

u2
kσ =

λ + γ B

k+ Q
2

2εkσ

+ 1

2
, v2

kσ =
λ + γ B

k+ Q
2

2εkσ

− 1

2
, (35)

zkσ =
γ A

k+ Q
2

2εkσ

, �2
kσ = σ

(
ε2

kσ − α2
k+ Q

2

)
. (36)

By replacing the Green’s functions and the dynamical matrix
given in Eqs. (28) and (25), respectively, the saddle-point
condition (20) at T = 0 yields the following self-consistent
equations for the mean field parameters Aδ, Bδ , and
λ:

Aδ = 1

Ns

∑
kσ

Ckσ sin

(
k + Q

2

)
· δ,

Bδ = 1

Ns

∑
kσ

Akσ cos

(
k + Q

2

)
· δ, (37)

S = 1

Ns

∑
kσ

Akσ .

These equations coincide with the Schwinger boson
mean field theory (SBMFT). In particular, the usual sys-
tem of equations for a singlet ground state is recovered for

h = 0 [68]:

Aδ = 1

Ns

∑
k

γ A
k

2αk
sin(k · δ),

Bδ = 1

Ns

∑
k

λ + γ B
k

2αk
cos(k · δ), (38)

S + 1

2
= 1

Ns

∑
k

λ + γ B
k

2αk
,

where αk is the spinon dispersion relation in a global reference
frame for h = 0.

2. Gaussian fluctuation approximation

The Sint term of Eq. (21) is neglected within the Gaussian
fluctuation approximation, so as to keep the field fluctuations
in the effective action up to quadratic order:

Seff � S
sp
eff +
∑
α1α2

� φ†
α1

· S (2)
α1α2

· � φα2 . (39)

The coefficients of the quadratic terms S (2) define the fluctua-
tions matrix

S (2)
α1α2

= 1

2

∂2Seff

∂φα1∂φα2

∣∣∣∣
sp

= 1

2

{
∂2S0

∂φα1∂φα2

− 1

2
Tr
[
Gsp vφα1

Gsp vφα2

]}
≡ (�0 − �)α1α2 . (40)

�0 is a diagonal matrix containing the coupling constant Jδ in
the diagonal, and a zero in the λλ element, � is the so-called
polarization matrix, and vφ = ∂G−1

∂φ
are the internal vertices,

i.e., the derivatives of the bosonic dynamical matrix with
respect to the auxiliary fields [75].

The distorted character of the sp has two important conse-
quences. The first one is the need to perform an analytic con-
tinuation of the real and the imaginary parts of the auxiliary
fields in the Gaussian integral∫

D[φ̄, φ] e−� φ†·S (2)·� φ, (41)

in order to pass through the sp. The second one is the non-
Hermiticity of the fluctuation matrix.

Regarding the first issue, the analytical continuation leads
to a � φ† = φ† − φsp† in Eq. (41) that is not necessarily the
Hermitian conjugated of � φ. One way to circumvent this
problem in the evaluation of the Gaussian integral is to make
a simple change of integration variables � φ → φ, consisting
of the rigid shifts of the real and the imaginary parts of the
auxiliary field axes, so that the sp is shifted to the origin of the
integration domain and, hence, φ† and φ become conjugate
variables. In fact, as the integrand is an analytical function of
the real and imaginary parts of the auxiliary fields, this change
of variables can be seen as a “rectangular” deformation of the
real and imaginary parts of the auxiliary field axes.

On the other hand, due to the non-Hermiticity of the
fluctuation matrix, the stability of the Gaussian fluctuations
about the sp must be analyzed carefully. In particular, the
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convergence of the Gaussian integral
∫

D[φ̄, φ]e−φ†·S (2)· φ, is
given by the positive-stable condition of the fluctuation matrix
(see Appendix A). A matrix is positive stable if all of its
eigenvalues have a positive real part. This condition is less
restrictive than the usual requirement of positive definiteness
of the Hermitian part of the matrix [78]. In fact, in our case we
have found that for the TLHM the fluctuation matrix is always
positive stable while its Hermitian part is indefinite.

It is worth mentioning that, if the positive-stable condition
is satisfied, the Gaussian integral (41) can be evaluated al-
ternatively through the steepest descent method [75]. In this
method, the real and imaginary parts of the auxiliary field
axes are deformed such that the integrand, along the deformed
path, has a constant phase close to the sp. Mathematically, the
expected optimal direction of the path is obtained from the
singular value decomposition (SVD) of the fluctuation matrix:

S (2) = U · � · V †, (42)

where U,V are complex unitary matrices and � =
diag[s1, . . . , sn] is a semipositive-definite diagonal matrix
with n × n being the dimension of the fluctuation matrix. The
steepest descent path is then given by

φ† = φH · V · U †, (43)

where the superscript H denotes the Hermitian conjugate of φ.
Notice that along the steepest descent path φ† and φ may not
be conjugate variables. Substituting Eq. (43) into the Gaussian
effective action yields

Seff � S
sp
eff +
∑
α1α2

� φH
α1

· S̃ (2)
α1α2

· � φα2 (44)

with S̃ (2) = V · � · V †, which is Hermitian and semipositive
definite. So, this reformulation allows us to work with both
a pair of conjugate variables � φH and � φ and a Hermitian
fluctuation matrix. However, it should be stressed that the
stability of the Gaussian fluctuation approximation is given
by the positive-stable condition of the original S (2) fluctuation
matrix. In our case of the TLHM we have checked that
the two procedures mentioned above, using non-Hermitian
and Hermitian fluctuation matrices, give always the same
quantitative results.

B. Ground-state energy

In this section we calculate the ground-state energy within
the Gaussian fluctuation approximation aiming to the evalu-
ation of the local magnetization. For this purpose we must
compute the partition function at the Gaussian level with a
finite symmetry-breaking field h (and Js switched off). The
partition function is given by

Z (2)(h) = e−S
sp
eff ×
∫

D[ φ†, φ] e−φ†·S (2)· φ. (45)

Within the sp approximation, the ground-state energy is
obtained by taking the limit T → 0 of F sp = S

sp
eff/β. How-

ever, to get the correct zero-point energy one should main-
tain the discrete character of the imaginary time τ (a very
tedious procedure) to respect the correct equal-time ordering
in the path integral. Alternatively, one can keep track of this
time ordering by transforming the conjugate bosonic field as

b
ω

k → b
ω

k e−iωη, with the convergence factor η mentioned pre-
viously. In this case, the ground-state energy (per site) turns
out to be

Esp
gs (h) = 1

2Ns

∑
kσ

εkσ (h) −
∑
δ>0

Jδ

(
B2

δ − A2
δ

)− λ(2S + 1),

(46)

which is identical to the ground-state energy derived within
the canonical mean field approximation [68,75].

Hereafter, we proceed to compute the Gaussian correction
to the ground-state energy. We use the original non-Hermitian
fluctuation matrix S (2) and the Gaussian integral in Eq. (45)
yields, for a positive-stable matrix (see Appendix A),

Zfl(h) ≡
∫

D[ φ†, φ] e−φ†·S (2)· φ = 1

det S (2)
. (47)

Because of the redundant local U(1) gauge degree of free-
dom introduced by the Schwinger boson representation [see
Eq. (15)], the fluctuation matrix contains infinite zero gauge
modes (one for each ω and k value), corresponding to the null
space of S (2). The artificial infinities arising from these zero
gauge modes are avoided by integrating only over the gen-
uine physical fluctuations (fluctuations with restoring force).
This is formally done following the Faddeev-Popov prescrip-
tion [77].

By applying an infinitesimal gauge transformation to the
auxiliary fields φ → φ(θ ), the gauge fluctuations around the
saddle-point solution φsp(θ ) = φsp + δ φsp(θ ) take the form

δ φsp(θ ) =

⎛
⎜⎝

δWr ω
k,δ (θ )

δW
r −ω

−k,δ (θ )

δλω
k (θ )

⎞
⎟⎠, (48)

where

δWr ω
k,δ (θ ) = i(1 ± eik·δ )Wδ

r
∣∣
spθkω,

δW
r −ω

−k,δ (θ ) = −i(1 ± eik·δ )W
r

δ

∣∣
spθkω, (49)

δλω
k (θ ) = −iωnθkω.

As the fluctuation matrix is non-Hermitian, the right (R)
and left (L) zero gauge modes of S (2), corresponding to each
(k, iω), are not necessarily Hermitian conjugate. In particular,
the right zero mode is computed as φR

0 = ∂ φsp(θ )/∂θkω, while
the left zero mode is defined by φL

0 = ∂ φsp†(θ )/∂θ kω:

φR
0 (k, iωn) = i

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + eik·δ )WA
δ

∣∣
sp

−(1 + eik·δ )W̄A
δ

∣∣
sp

(1 − eik·δ )WB
δ

∣∣
sp

−(1 − eik·δ )W̄B
δ

∣∣
sp

ωn

⎞
⎟⎟⎟⎟⎟⎟⎠

(50)

and

φL
0 (k, iωn) = − i

(
(1 + e−ik·δ )W̄A

δ

∣∣
sp,−(1 + e−ik·δ )WA

δ

∣∣
sp,

− (1 − e−ik·δ )W̄B
δ

∣∣
sp, (1 − e−ik·δ )WB

δ

∣∣
sp, ωn

)
.

(51)
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To get rid of the redundant gauge fluctuations of the
auxiliary fields, we impose the natural gauge conditions [77]

g(θ ) = φ†(θ ) · φR
0 = 0, h(θ ) = φL

0 · φ(θ ) = 0, (52)

by means of the Faddeev-Popov trick, that consists of express-
ing the identity as

1 = �FP( φ†, φ) ×
∫

dθ dθ

2πi
δ(g(θ ), h(θ )). (53)

Here, the Dirac delta function has been generalized to the
complex plane (see Appendix B) and �FP( φ†, φ) is the so-
called Faddeev-Popov determinant which, at sp level, is given
by

�FP = φL
0 · φR

0 . (54)

Using Eqs. (50) and (51), the explicit expression of the
Faddeev-Popov determinant is

�FP(k, iωn) = 4
∑

δ

[
(1 + cos k · δ)A2

δ

− (1 − cos k · δ)B2
δ

]+ ω2
n. (55)

After introducing the identity (53) in the Gaussian integral
(47) and drawing upon the gauge invariance of the action and
the measure, we obtain (see Appendix B)

Zfl(h) =
∏

k,iωn>0

�FP(k, iωn)

det S
(2)
⊥ (k, iωn)

, (56)

where S
(2)
⊥ (k, iωn) is the projection of the fluctuation matrix

S (2)(k, iωn) onto the subspace orthogonal to the zero gauge
modes for (k, iωn). The determinant of S

(2)
⊥ is simply the

product of all the nonzero (complex) eigenvalues of the fluc-
tuation matrix S (2).

The Gaussian correction to the free energy can then be
expressed as

F fl(h) = − 1

β
ln(Zfl(h)/Z0)

= − 1

2β

∑
k,iωn

ln

[
�FP(k, iωn)

ω2
n det S

(2)
⊥ (k, iωn)

]
. (57)

In this expression, Z0 corresponds to the Gaussian correction
of the partition function when all the Hamiltonian parameters
(exchange interactions, external magnetic fields) are set to
zero. This normalization by Z0 fixes the zero reference level
of the free energy (see Appendix B).

At T = 0, we get the following Gaussian correction to the
ground-state energy:

Efl
gs(h) = − 1

4πNs

∫ ∞

−∞
dω
∑

k

ln

[
�FP(k, ω)

ω2 det S
(2)
⊥ (k, ω)

]
. (58)

Within the Gaussian fluctuation approximation the ground-
state energy is Egs(h) = E

sp
gs (h) + Efl

gs(h). It can be shown
that this expression, in a 1/N expansion, includes all the terms
up to 1/N order [75]. It has been shown that the Gaussian
fluctuation approximation yields a ground-state energy that
compares quantitatively very well with numerical predictions
for several Heisenberg models [31,77,79,80].

Alternatively, one can avoid the Faddeev-Popov prescrip-
tion by fixing the gauge phase θτ

i in Eq. (15) such that the
transformed λ field becomes τ independent. In this case,
the λ fluctuations are only restricted to the ω = 0 subspace.
As ω = 0 is a single point in the logarithmically convergent
integral (58) we can discard the fluctuations coming from
this subspace. On the other hand, for ω �= 0 the fluctuation
matrix S (2) must be truncated by eliminating the λ column and
row. We call this matrix the truncated fluctuation matrix S

(2)
tr .

Owing to the gauge fixing, S
(2)
tr has no zero gauge modes any-

more. Hence, one can evaluate directly the Gaussian integral
(47) and the Gaussian correction to the ground-state energy
results [77]

Efl
gs(h) = − 1

4πNs

∫ ∞

−∞
dω
∑

k

ln

[
1

det S
(2)
tr (k, ω)

]
. (59)

In Appendix C, we analytically show that both expressions
for Efl

gs(h), Eqs. (58) and (59), are identical. Furthermore, we
have numerically checked that this identity is fulfilled.

C. Dynamical spin susceptibility

The dynamical spin susceptibility in the frequency and
momentum space [75,81]

χμν (q, iω) = ∂2lnZ[j ]

∂j
μ

q,iω ∂j ν
−q,−iω

∣∣∣∣
j=0

(60)

can be separated in two contributions:

χ = χ
I
+ χ

II
, (61)

χ
I μν (q, iω) = 1

2Z[j = 0]

∫
D[φ, φ] Tr[G uμ(q, iω)

× G uν (−q,−iω)] e−Seff (φ,φ,j=0) (62)

and

χ
II μν (q, iω) = 1

4Z[j = 0]

∫
D[φ, φ] Tr[G uμ(q, iω)]

× Tr[G uν (−q,−iω)] e−Seff (φ,φ,j=0), (63)

where uμ(q, iω) = ∂G−1
/∂j

μ

q,iω is the external vertex, with
μ = x, y, z. The traces go over momentum, Matsubara fre-
quency, and boson indices. The analytic continuation iω →
ω + i0+ yields the real and imaginary parts of the dynamical
spin susceptibility. At T = 0, the latter is related with the
dynamical structure factor as

S (q, ω) = − 1

π
Im[ χ (q, ω)]. (64)

1. Saddle-point approximation

In this approximation the dynamical spin susceptibility is
computed by considering the saddle-point effective action of
Eq. (24) and the single-spinon Green’s function of Eq. (28).
Each contribution is given by

χ sp
I μμ(q, iω) = 1

2 Tr[Gspuμ(q, iω)Gspuμ(−q,−iω)] (65)
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and

χ sp
II μμ(q, iω) = 1

4 Tr[Gspuμ(q, iω)]Tr[Gspuμ(−q,−iω)].

(66)

χ
sp
II μμ vanishes because Gspuμ is traceless for each μ value.

χ sp
I

is represented diagrammatically in Fig. 1(a) and it coin-
cides with the χMF that is obtained from the SBMFT [68].

2. Gaussian fluctuations approximation

To compute Gaussian corrections to χ
sp
μμ(q, iω), the

Green’s function G that appears in Eqs. (62) and (63) must
be expanded around the saddle point

G � Gsp −
∑

α

[
G ∂G−1

∂φα

G
]∣∣∣∣

sp

�φα. (67)

By replacing Eqs. (67) and (39) in Eq. (62), the Gaussian
correction χfl

I to the dynamical spin susceptibility results:

χfl
I μν (q, iω)

=
∑
α1α2

[
1

2Z (2)

∫
D[φ̄, φ] �φα1

�φα2 e−∑αα′ φ̄αS
(2)
αα′ φα′
]

× {Tr
[
Gspvφα1

Gspvφα2
Gspuν (−q,−iω)Gspuμ(q, iω)

]
+ Tr
[
Gspvφα1

Gspvφα2
Gspuμ(q, iω)Gspuν (−q,−iω)

]
+ Tr
[
Gspvφα1

Gspuμ(q, iω)Gspvφα2
Gspuν (−q,−iω)

]}
=
∑
α1α2

Dα2α1 (q, iω)
[
�α1α2νμ(q, iω) + �α1α2μν (q, iω)

+�α1μα2ν (q, iω)
]
, (68)

where

Dα2α1 (q, iω) =
[

1

Z (2)

∫
D[φ̄, φ] �φα1

�φα2 e−∑αα′ φ̄αS
(2)
αα′ φα′
]

= [(S (2) )−1]α2α1 (69)

is the random phase approximation (RPA) propagator and

�α1α2μν (q, iω) = 1
2 Tr
[
Gspvφα1

Gspvφα2
Gspuμ(q, iω)

× Gspuν (−q,−iω)
]
. (70)

Replacing Eqs. (67) and (39) in Eq. (63), we obtain the
Gaussian correction to the dynamical spin susceptibility

χfl
II μν (q, iω)

=
∑
α1α2

1

2
Tr
[
Gsp vφα1

Gsp uμ(q, iω)
]

×
[

1

Z (2)

∫
D[φ̄,Dφ] �φα1

�φα2 e−∑αα′ φ̄αS
(2)
αα′ φα′
]

× 1

2
Tr
[
Gsp vφα2

Gsp uν (−q,−iω)
]

=
∑
α1α2

�μα1 (q, iω) Dα2α1 (q, iω) �να2 (−q,−iω), (71)

(a) (b)

(c) (d) (e)

FIG. 2. Diagrammatic representation of (a) saddle-point contri-
bution and (b)–(e) the 1/N corrections. In our calculation we only
include the contribution (b) for reasons explained in the text. The
diagram (c) corresponds to a vertex correction relative to (a), while
the diagrams (d) and (e) include a Hartree-Fock correction of the
single-spinon propagator. The dashed lines represent the external
lines, the full lines represent spinon propagators at the sp level, and
the wavy lines represent the RPA propagator [75].

where

�μα (q, iω)= ∂2Seff

∂jμ∂φα

= 1
2 Tr
[
Gspvφα

Gspuμ(q, iω)
]
. (72)

The term χfl
II

[Eq. (71)] is diagrammatically represented in
Fig. 2(b), while Figs. 2(c) and 2(d) are the diagrams corre-
sponding to the terms χfl

I
[Eq. (68)]. In the context of a large-

N expansion, these Gaussian corrections to the dynamical
susceptibility correspond to 1/N contributions [62]. However,
it can be shown [81] that the full Gaussian corrections do
not collect all the 1/N terms because the diagram shown
in Fig. 2(e), arising from Sint in Eq. (21), is also of order
1/N . This diagram must then be added to χfl

I
of Eq. (68) in

order to produce the full 1/N correction to the dynamical spin
susceptibility.

In the following, we will only include the 1/N correction
χfl

II
. There are two reasons for only including this contribution

in a first approach to the problem. At the sp level, the local
constraint of the SBs is relaxed to a global one, allowing
for unphysical bosonic density fluctuations (states that are
outside the physical Hilbert space). In other words, the density
(charge) susceptibility χ

sp
ch , which should be zero due to the

local constraint (3), becomes finite at the sp level. Arovas
and Auerbach demonstrated [56] that the inclusion of the
diagram shown in Fig. 2(b) cancels exactly the finite sp charge
susceptibility, i.e., χch = χ

sp
ch + χfl

ch = 0. On the other hand,
the inclusion of Figs. 2(c) and 2(d) requires extra counterterms
to fulfill χch = 0 [75]. The second reason for restricting to the
diagram shown in Fig. 2(b) is that it is the only one that can
introduce poles (collective modes) in the corrected dynamical
susceptibility. Note that the poles of this diagram coincide
with the poles of the RPA propagator because both χfl

II
and

Dα1,α2 are evaluated at the same q and ω.
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Another important observation is that the diagram shown
in Fig. 2(b) vanishes for a singlet ground state (h = 0). The
simple reason is that �μ of Eq. (72) can be interpreted as a
crossed susceptibility for two fields that belong to different
representations of the symmetry group SU(2) of H (jμ are
components of a vector field, while the auxiliary fields φα are
scalars). Consequently, �μ vanishes for a singlet ground state,
leading to the cancellation of χfl

II
. This result was found by

Arovas and Auerbach 30 years ago [56] and it is most likely
the reason why further attempts of computing 1/N corrections
to χ are not found in the subsequent literature. A key observa-
tion of this paper is that the diagram shown in Fig. 2(b) does
not vanish for the broken-symmetry (magnetically ordered)
ground state.

Some remarks are in order regarding the zero gauge modes
and the computation of χfl

II
through Eq. (71). In principle,

the computation of the two Gaussian integrals involved in the
RPA propagator (69) requires the use of the Faddeev-Popov
prescription. However, this prescription can be circumvented
due to the orthogonality between �μ and the zero gauge
modes. This orthogonality arises from the gauge invariance
of the effective action, which implies ∂Seff

∂θ
= 0 (also ∂Seff

∂θ
= 0)

or

∑
α

∂Seff

∂φα

∂φα

∂θ
= 0. (73)

This equation is valid for any value of the auxiliary fields. By
taking the derivative with respect to the external source jμ,
we get

∑
α

∂2Seff

∂jμ∂φα

∂φα

∂θ
+ ∂Seff

∂φα

∂2φα

∂jμ∂θ
= 0. (74)

The orthogonality between �μα = ∂2Seff
∂jμ∂φα

|sp and the right

zero gauge mode φR
0 is obtained after evaluating this equation

at the sp values of the auxiliary fields and noticing that the
second term vanishes because of the sp condition (20). The
same holds for the left zero gauge mode if the effective action
is derived with respect to θ . If the fluctuations of the auxiliary
fields are decomposed into components parallel and perpen-
dicular to the zero gauge mode directions, �φ = φ‖ + φ⊥,
Eq. (71) can be rewritten as follows:

χfl
II μν (q, iω) = lim

ε→0

∫
D[φ̄‖, φ‖]D[φ̄⊥, φ⊥]�μα1 × [φ‖ + φ⊥]α1 [φ‖ + φ⊥]α2 × �να2e

−εφ̄
†
‖φ‖−φ̄

†
⊥S

(2)
⊥ φ⊥∫

D[φ̄‖, φ‖]D[φ̄⊥, φ⊥]e−εφ̄
†
‖φ‖−φ̄

†
⊥S

(2)
⊥ φ⊥

, (75)

where the zero modes have been Gaussian regularized by means of the finite positive constant ε in both integrals, which must be
set to zero at the end of the calculation [78]. The indices q and iω have been eliminated to make the notation more compact and
summation over repeated indices is assumed. The orthogonality between �μ and φ‖ implies that Eq. (75) can be factorized as

χfl
II μν (q, iω) =

∫
D[φ̄⊥, φ⊥]�μα1 × φ⊥α1

φ⊥α2 × �να2e
−φ̄

†
⊥S

(2)
⊥ φ⊥∫

D[φ̄⊥, φ⊥]e−φ̄
†
⊥S

(2)
⊥ φ⊥

lim
ε→0

∫
D[φ̄‖, φ‖]e−εφ̄

†
‖φ‖∫

D[φ̄‖, φ‖]e−εφ̄
†
‖φ‖

. (76)

Therefore, χfl
II

of Eq. (71) can be computed with the matrix

S
(2)
⊥ which is the projection of the fluctuation matrix S (2) onto

the subspace perpendicular to the zero gauge modes. The
same result is obtained if, instead of the Gaussian regular-
ization, we consider a positive zero eigenvalue λ0 and at the
end of the calculation we take the limit λ0 → 0, in the line of
Appendix B. This procedure avoids the use of the Faddeev-
Popov prescription. We can conclude that the zero gauge
modes do not contribute to the dynamical spin susceptibility
because they do not couple to the external magnetic field jμ

contained in �μ [81].

D. Summary of the calculation of Gaussian fluctuations

Here, we outline a summary of the main steps followed for
the computation of the Gaussian corrections to the different
quantities considered in this paper:

(i) Starting from the partition function (11), the effective
action is expanded around its saddle point (21) up to quadratic
order (39).

(ii) The saddle point-approximation leads to a set of self-
consistent equations (37) for the seven parameters Aδ, Bδ λ

(δ > 0 takes three possible values in the triangular lattice).

These equations correspond to the sp condition (20) after
considering the ansatz (23).

(iii) The seven mean field parameters of the sp solution are
plugged in the fluctuation matrix S (2), which for each (k, iω)
is a complex non-Hermitian matrix of dimension 13 × 13 [re-

member that φ† = (W
A ω

k δ ,WA −ω
−k δ ,W

B ω

k δ ,WB −ω
−k δ , λ−ω

−k )]. The
Gaussian fluctuation approximation is stable if all the eigen-
values of the fluctuation matrix have a positive real part
(positive-stable condition).

(iv) Confirming the presence of the zero gauge modes
of the fluctuation matrix is an important sanity check for
the correct computation of the fluctuation matrix S (2). This
can be done by multiplying the fluctuation matrix (which is
computed numerically) by the analytical expression of the
zero gauge mode φR (50).

(v) The Faddeev-Popov prescription is applied after con-
firming the existence of zero gauge modes to carry on the
Gaussian integral over genuine fluctuations of the auxiliary
fields. Alternatively, the Faddeev-Popov prescription can be
avoided by using the truncated matrix S

(2)
tr .

(vi) The ground-state energy Egs(h) = E
sp
gs (h) + Efl

gs(h)
is obtained by computing E

sp
gs (h) and Efl

gs(h) of Eqs. (46)
and (58), respectively.
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(vii) The local magnetization m(h) = m
sp
gs(h) + mfl(h) is

obtained by taking the numerical derivative of Egs(h) with
respect to h.

(viii) The dynamical structure factor is obtained via
S (q, ω) = − 1

π
Imχ (q, ω), after analytic continuation

iω → ω + iη+ of the dynamical susceptibility χ (q, iω) =
χ

sp
I μμ(q, iω) + χfl

II μμ(q, iω), where Eqs. (65) and (71) are
used, respectively. It is worth emphasizing that there is no
need to perform the Faddeev-Popov trick in this case because
the zero gauge modes do not couple to the external sources.

III. SPONTANEOUS SU(2) SYMMETRY BREAKING

In this section we investigate the consequences of the
spontaneous SU(2) symmetry breaking on the dynamical spin
susceptibility. The correct description of this phenomenon
requires to carry on the thermodynamic limit of Eq. (71) in
the right order:

lim
h→0

lim
Ns→∞

χfl
II

(k, iω; h) = lim
Ns→∞

χfl
II

(
k, iω; h∼N−1

s

)
. (77)

To trace back the origin of the symmetry-breaking contri-
bution, it is instructive to compare the saddle-point Green’s
functions in the thermodynamic limit with (h �= 0) and with-
out (h = 0) the symmetry-breaking field. In both cases, the
spinons (bosons) condense at T = 0. Correspondingly, the
Green’s function in the thermodynamic limit includes contri-
butions from condensed and noncondensed bosons:

Gsp(k, iω) = Gsp
n (k, iω) + Gsp

c (k, iω). (78)

The energy of the noncondensed bosons remains finite in
the thermodynamic limit. Thus, the two limits h → 0 and
Ns → ∞ commute for Gsp

n (k, iω). In contrast, the energy of
the condensed bosons is O(N−1

s ), as required by the macro-
scopic occupation number, implying that Gsp

c (k, iω) is linear
in Ns . Because of this factor of Ns , the change of Gsp

c (k, iω)
induced by the O(1/Ns ) symmetry-breaking field in Eq. (77)
remains finite in the thermodynamic limit. In other words,
the symmetry-breaking field only modifies Gsp

c (k, iω) in the
thermodynamic limit.

The Green’s function for the SU(2) symmetric case (h =
0) is

Gsp
0 (k, iω) ≡ lim

Ns→∞
lim
h→0

Gsp(k, iω; h). (79)

The contribution from the condensate is

Gsp
0−c(k, iω) = δk,0

(
g−

0 (k = 0)

iω − ε0
+ g+

0 (k = 0)

iω + ε0

)

+ δk, Q

(
g−

0 (k = Q)

iω − εQ

+ g+
0 (k = Q)

iω + εQ

)

+ δk, Q̄

(
g−

0 (k = Q̄)

iω − ε Q̄
+ g+

0 (k = Q̄)

iω + ε Q̄

)
, (80)

with, Q, Q̄ ≡ − Q, and 0 being the condensation wave vec-
tors, and

g−
0 (k = 0) = −

⎛
⎜⎜⎝

v2
0 z0 0 0

z0 u2
0 0 0

0 0 v2
0 z0

0 0 z0 u2
0

⎞
⎟⎟⎠,

g+
0 (k = 0) =

⎛
⎜⎜⎝

u2
0 z0 0 0

z0 v2
0 0 0

0 0 u2
0 z0

0 0 z0 v2
0

⎞
⎟⎟⎠, (81)

g−
0 (k = Q) = −

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 v2

Q̄− z Q̄−
0 0 z Q̄− u2

Q̄−

⎞
⎟⎟⎟⎠,

g+
0 (k = Q) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 u2

Q̄− z Q̄−
0 0 z Q̄− v2

Q̄−

⎞
⎟⎟⎟⎠, (82)

g−
0 (k = Q̄) = −

⎛
⎜⎜⎝

v2
Q̄− z Q̄− 0 0

z Q̄− u2
Q̄− 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

g+
0 (k = Q̄) =

⎛
⎜⎜⎝

u2
Q̄− z Q̄− 0 0

z Q̄− v2
Q̄− 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (83)

with v2
0 = limh→0 v2

0±, u2
0 = limh→0 u2

0±, z0 = limh→0 z0±,

ε0 = limh→0 ε0± ∼ N−1
s , and ε± Q = limh→0 ε± Q− ∼ N−1

s .
Only the k = 0 point of the lower band condenses for

finite external field h because ε0− ∼ 1
Ns

. It can be seen that
the condensation does not occur at the k = 0 point of the
higher band and at the ± Q points because ε0+, ε± Q− ∼ 1√

Ns
,

which does not produce macroscopic occupation number in
the thermodynamic limit. The condensate contribution to the
Green’s function in the symmetry-breaking (h �= 0) case is
then modified relative to the h = 0 case:

Gsp
sb−c(k, iω) = δk,0

(
g−

sb(k = 0)

iω − ε0−
+ g+

sb(k = 0)

iω + ε0−

)
, (84)

with

g−
sb(k = 0) = −1

2

⎛
⎜⎜⎜⎝

v2
0− z0− v2

0− z0−
z0− u2

0− z0− u2
0−

v2
0− z0− v2

0− z0−
z0− u2

0− z0− u2
0−

⎞
⎟⎟⎟⎠,

g+
sb(k = 0) = 1

2

⎛
⎜⎜⎜⎝

u2
0− z0− u2

0− z0−
z0− v2

0− z0− v2
0−

u2
0− z0− u2

0− z0−
z0− v2

0− z0− v2
0−

⎞
⎟⎟⎟⎠. (85)
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By taking the thermodynamic limit of �μφ (q, iω) [see
Eq. (72)] in the presence of symmetry-breaking field h, we
obtain

�μφ (q, iω) = 1
2 Tr
[
Gsp

n vφ Gsp
n uμ(q, iω)

]
+ 1

2 Tr
[
Gsp

n vφ Gsp
sb−c uμ(q, iω)

]
+ 1

2 Tr
[
Gsp

sb−c vφ Gsp
n uμ(q, iω)

]
+ 1

2 Tr
[
Gsp

sb−c vφ Gsp
sb−c uμ(q, iω)

]
δq,0. (86)

The first line vanishes because the noncondensed part of
the Green’s function preserves the SU(2) symmetry.2 The
remaining lines give nonzero contributions because Gsp

sb−c is
not invariant under the SU(2) symmetry group.

For the polarization matrix �φα1 φα2
, we have

�φα1 φα2
= 1

4 Tr
[
Gsp

n vφα1
Gsp

n vφα2

]
+ 1

4 Tr
[
Gsp

n vφα1
Gsp

sb−c vφα2

]
+ 1

4 Tr
[
Gsp

sb−c vφα1
Gsp

n vφα2

]
+ 1

4 Tr
[
Gsp

sb−c vφα1
Gsp

sb−c vφα2

]
δq,0. (87)

In this case, all the lines are nonzero because �φα1 φα2
is a

scalar under spin rotations.

IV. RESULTS

This section includes the results of the formalism presented
in Sec. II for the TLHM. The calculations are carried on finite-
size triangular lattices with Ns = l2 + m2 + n2 sites (l, m, n

are integer numbers), that have the same discrete symmetries
of the infinite triangular lattice, imposing periodic boundary
conditions. We have used cluster sizes up to Ns = 43 200 and
η+ = 0.01 for the analytic continuation.

In the following, we present the results of the local mag-
netization and the dynamical structure factor, and we analyze
the long-wavelength limit of the SB theory.

A. Local magnetization

Figure 3 shows the local magnetization m(h) = msp(h) +
mfl(h) of the 120◦ ordering as a function of the symmetry-
breaking field h for several lattice sizes. These curves are
obtained by taking the numerical derivative with respect to
h of the ground-state energy computed at the Gaussian level
Egs(h) = E

sp
gs (h) + Efl

gs(h) [see Eqs. (46) and (58)]. The full
circles indicate the magnetization value corresponding to
h = 1/Ns . In the inset, these points are extrapolated to the
thermodynamic limit along with the sp results (full squares,
not shown in the main figure). For the sp extrapolation, we
can access very large cluster sizes, while for the Gaussian
fluctuation approximation we are able to go up to Ns =
432 because of the inaccuracies inherent to the numerical
derivation. However, it is worth mentioning that the Gaussian
correction to the ground-state energy can be computed in a
reliable way for very large system sizes [79].

2Once again this is true because �μ is crossed susceptibility for
two fields that belong to different representations of SU(2).

48 sites
108 sites
192 sites
300 sites

sp
sp+fl

432 sites

FIG. 3. 1/N correction of the local magnetization m as a func-
tion of the symmetry-breaking field h for several lattice sizes. Full
circles correspond to h = 1/Ns . Inset: extrapolation to thermody-
namic limit of the magnetization for the sp approximation (full
squares) and the sp plus Gaussian fluctuations correction (full cir-
cles), using h = 1/Ns .

Notably, the Gaussian corrections reduce the sp magnetiza-
tion from msp = 0.274 to m = 0.224. The latter agrees quite
well with the value m = 0.205 ± 0.005 obtained with the
most sophisticated methods like QMC [22] and DMRG [23].
Then, at the Gaussian level, the SB theory seems to support
the hypothesis of proximity of the 120◦ Néel order to a QMP.
For small system sizes (48 and 108 lattices) and h much
smaller than the finite-size spinon gap 1/Ns , there is a small
region where m has a negative dip. This is a finite-size effect
that disappears upon increasing Ns .

B. Dynamical structure factor

Figure 4 shows a comparison between the S(q, ω) ob-
tained at the sp level [see Eq. (65)] and after including the
1/N Gaussian correction shown in Fig. 2(b) [see Eq. (71)].
Figures 4(a)–4(c) clearly show that by properly accounting
for the spontaneous symmetry breaking, we obtain differ-
ent responses for the out-of-plane Szz(q, ω) and in-plane
Sxx (q, ω) = Syy (q, ω) components of the magnetic structure
factor. This natural response of a magnetically ordered ground
state should be contrasted with the isotropic one that is
obtained with the singlet ground state [68,72]. As we have
already mentioned, the sp solution exhibits a branch of spu-
rious modes arising from density fluctuations that violate the
bosonic number constraint (3). However, the main weakness
of the sp solution is the lack of magnon modes expected for
a magnetically ordered state. The spectrum consists only of
a two-spinon continuum (branch cut) because the excitations
of the single-spinon condensate are noninteracting spinon
modes [49].

The 1/N contribution modifies S(q, ω) in a dramatic
way [see Figs. 4(d)–4(f)]. The auxiliary gauge field fluctua-
tions bind the spinons into magnons (collective modes) that
appear as isolated poles below the two-spinon continuum
(TSC) [49,82]. In addition, the cancellation of the density fluc-
tuations [75] produced by the diagram depicted in Fig. 2(b) re-
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FIG. 4. First column: dynamical structure factor obtained at the saddle-point level: (a) Szz
sp (q, ω), (b) Sxx

sp (q, ω) = Syy
sp (q, ω), and

(c) Ssp(q, ω) = Sxx
sp (q, ω) + Syy

sp (q, ω) + Szz
sp (q, ω). Second column: dynamical structure factor obtained after including the 1/N correction

(Gaussian fluctuations): (d) Szz(q, ω), (e) Sxx (q, ω) = Syy (q, ω), and (f) S(q, ω) = Sxx (q, ω) + Syy (q, ω) + Szz(q, ω). White dashed lines
indicate the magnon branches. The path within the hexagonal Brillouin zone is indicated in the inset of panel (a). The results correspond to
the triangular lattice size of Ns = 120 × 120 × 3 = 43 200, a value of the magnetic field h = 1/Ns , and analytic continuation iω → ω + iη+

with η+ = 0.01.

moves the spurious modes of the sp solution. This cancellation
does not persist if we include the other 1/N corrections shown
in Figs. 2(c)–2(e). The effects of the 1/N correction can be
better appreciated in the frequency dependence of Szz(q, ω)
for a fixed value of momentum k = (1.139, 0.337)π between
K ′ and M (see Fig. 5). The main contributions of the sp
solution are canceled exactly by the 1/N correction. This
cancellation is accompanied by the emergence of simple
poles associated with the collective modes of the ordered
state. A similar behavior (not shown in Fig. 5) is obtained
for the Sxx (q, ω) and Syy (q, ω) components. The removal
of the spurious modes and the emergence of magnon poles
are the most important qualitative changes relative to the
sp solution.

Closer inspection of the bottom and the top of the TSC
in Figs. 4(d)–4(f) reveals two additional differences. The sp
solution exhibits a large spectral weight at the bottom of the
TSC, which is transferred to the magnon peak after including
the Gaussian correction. In addition, a weak but sharp isolated
pole also appears right above the top edge of the TSC.
This sharp feature is expected to become overdamped upon

inclusion of four and higher spinon excitations resulting from
higher orders in the 1/N expansion.

Figure 6 shows a comparison of the resulting single-
magnon dispersion (white dashed line), coming from the out
of plane Szz(k, ω), with the one obtained from series expan-
sions [18] (white circles). The strong downward renormaliza-
tion with respect to LSWT predicted by SE is reproduced by
the SB theory at the Gaussian level, along with the appearance
of rotonic excitations around the M point. In particular, the
quantitative agreement becomes very good when the magnon
peaks are sharper, i.e., around the momenta K , K ′, and M.
Consistently with the fact that the ground state of the TLHM is
proximate to a quantum melting point, this result supports our
original hypothesis of describing the spin-1 magnon excitation
as a two-spinon bound state.

On the other hand, it is also important to analyze the qual-
itative differences between Figs. 4(d)–4(f) and the S(q, ω)
obtained from a large-S expansion [53]. The first obvious
qualitative difference is the structure of the high-energy con-
tinuum. In semiclassical approaches, this continuum arises
from two or more magnon modes. In large-N expansions, it
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FIG. 5. Intensity of Szz(q, ω) as a function of the energy ω/J

for k = (1.139, 0.337)π (between K ′ and M). The dashed (black)
and thin (blue) lines correspond to saddle point and 1/N correction,
separately. The thick (red) line corresponds to sp plus 1/N correction
(Gaussian fluctuations).

is dominated by two-spinon modes. Consequently, it extends
over a wider energy range that is three times bigger than the
single-magnon bandwidth for the case under consideration
[see Figs. 4(d)–4(f)].

Another qualitative difference with large-S expansions is
the origin of the magnon quasiparticle peak broadening. As
we discuss in the next subsection, the magnon branch gets
inside the two-spinon continuum in the long-wavelength limit.
The kinematic conditions then allow for single-magnon to
two-spinon decay that broadens the magnon peak [83]. Upon
moving away from the long-wavelength limit (region around
the � and the K points) the single-magnon branch is shifted
below the two-spinon continuum [see Figs. 4(d)–4(f)] and
the intrinsic broadening disappears. A simple phase-space
argument shows that the broadening of the magnon peak must
also go to zero in the q → 0 limit, around � and ±K points.
Consequently, the strongest effects of the single-magnon to
two-spinon decay are expected to occur near the momentum-
space region where the single-magnon branch is about to
emerge from the two-spinon continuum. These effects can be
observed in Figs. 7(a)–7(c) which display the magnon peak
for three representative wave vectors. The wave vector q =

FIG. 6. Comparison of Szz(q, ω) obtained after including the
1/N correction (Gaussian fluctuations) with the magnon dispersion
relation predicted by series expansions [18] (SE) (white circles). The
dashed line represents the dispersion of the magnon poles.

FIG. 7. Magnon quasiparticle peak for wave vectors (a) q =
(1.31, 0.04)π and (b) q = (1.21, 0.21)π near the ordering wave
vector K′. (c) Single-magnon peak at the M point. These wave
vectors are indicated in Fig. 4(d) with vertical dashed white lines.
The segments (thin black line) display the value 2η+ used for the
analytic continuation. In all cases, η+ = 0.01.

(1.31, 0.04)π in Fig. 7(a) is very close to the K point. This
explains the small broadening that is obtained for this par-
ticular wave vector. As expected from the above-mentioned
argument, the magnon peak acquires a much broader structure
for q = (1.21, 0.21)π [see Fig. 7(b)]. As shown in Fig. 4(f),
the magnon peak is emerging from the two-spinon continuum
at this particular wave vector. Finally, the broadening of the
magnon peak disappears at the M point [see Fig. 7(c)] because
the kinematic conditions no longer allow for single-magnon to
two-spinon decay (the magnon mode is below the edge of the
two-spinon continuum).

Furthermore, it is well known [62] that the sp solution
violates the sum rule

∫
dω
∑

q S(q, ω) = NS(S + 1) by a
factor of 1.5 due to the violation of the local constraint of the
SBs. We find that this factor reduces to 1.2 upon including the
Gaussian correction shown in Fig. 2(b).

Finally, by taking the large-S limit, for N = 2, we have
found that the 1/N correction recovers the dynamical struc-
ture factor predicted by LSW (to be published elsewhere).
This result should be contrasted with the failure of the mean
field SB theory to recover the semiclassical dispersion for
spiral states [67,84].

C. Long-wavelength limit

Linear spin-wave theory is expected to work well in the
long-wavelength limit [85]. Consequently, although the cur-
rent approach is motivated by the experimental observation of
anomalies in the dynamical spin structure factor that appear
at wavelengths comparable to the lattice parameter, it is still
interesting to analyze the outcome of our approach in the
long-wavelength limit. In this limit, the spectrum consists of
the three low-energy Goldstone modes around 0 and ± Q:
(i) |k| < �; (ii) |k − Q| < �; (iii) |k + Q| < �, where �

is a momentum cutoff below which the dispersion relation
is practically linear. These collective modes (magnons) are
obtained as poles of the RPA propagator

D(q, iω) = [�0 − �(q, iω)]−1, (88)
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where the polarization operator �(q, iω) is determined by the
degrees of freedom with wavelength longer than �−1. The ef-
fective low-energy action for the spinons and their coupling to
the gauge field is obtained by performing a gradient expansion
of the effective action (see Appendix D).

1. Around the � point

To obtain results in the long-wavelength limit, we must
expand the polarization operator in powers of q and ω.
According to Eq. (87), the polarization operator can be de-
composed into three contributions. The first line of Eq. (87)
corresponds to a contribution from the noncondensed bosons
only. We will refer to this contribution as �nn. The second and
the third lines of Eq. (87) correspond to a mixed contribution
from the condensed and noncondensed bosons and will be
denoted as �cn. Finally, the last line of Eq. (87) corresponds
to a contribution from the condensed bosons only, that will be
denoted as �cc.

The leading-order contribution to �(q, iω) is O(q−2):

�(−2)
cn (q, iω) = φZ/2

c2q2 + ω2
�, (89)

where φ refers to the density of condensed bosons, Z = λ +
γ B

Q/2, and � = θ |u1〉〈v1| after a singular value decomposition
(SVD) (see Appendix D). Given that �(−2)

cn (q, iω) diverges
for |q|, ω → 0, it is clear that the magnon mode belongs
to the null space P of �(−2)

cn (q, iω). Therefore, to extract
the magnon pole, we just need to consider the next-order
contributions to the polarization matrix projected into the null
subspace P:

�̄ = PL�PR, (90)

with the left/right projectors

PL =
∑
σ>1

|uσ 〉〈uσ |, (91)

PR =
∑
σ>1

|vσ 〉〈vσ |, (92)

where 〈uσ |u1〉 = 0 and 〈vσ |v1〉 = 0 for σ > 1. It turns out that
the projection of the O(q−1) contributions, that we denote
as �(−1), is equal to zero. However, �(−2) still connects the
subspace P with the orthogonal subspace, leading to a O(1)
contribution within the subspace P that is obtained via a
second-order process:

�̄
(0)
1 (q, iω) = −PL

�(−1)
cn |v1〉〈u1|�(−1)

cn

〈u1|�(−2)
cn |v1〉

PR, (93)

where

�̄(−1)
cn (q, iω) = φq

c2q2 + ω2

(
iω

2q
�̄ + Z

4
q̂ · M̄
)

. (94)

Here, we used the notation Ā ≡ PLAPR for any matrix A. �̄

and M̄ are defined in Appendix D. The noncondensed bosons
give no contribution to this second-order process.

In addition to �̄
(0)
1 (q, iω), we must consider the other

O(1) contributions to the polarization operator. The contribu-
tion �̄(0)

nn (q, iω) from the noncondensed bosons is a regular
integral that depends on the cutoff �. Finally, the O(1)

contribution arising from the combination of condensed and
noncondensed bosons is

�̄(0)
cn (q, iω) = φq2/2

c2q2 + ω2

(
�̄+ iω

q
q̂ · R̄+ Z

2
q̂ · D̄ · q̂

)
,

(95)

where these matrices �, R, and D are defined in Appendix D.
We note that �cc is not included in this analysis because it

only gives a finite contribution at the condensate wave vector,
while we are only interested in the behavior of � around these
points (q can be arbitrarily small but always finite).

In summary, the magnon mode in the long-wavelength
limit is obtained from the solution of the equation

det
[(

�̄0 − �̄(0)
nn − �̄(0)

cn − �̄
(0)
1

)] = 0. (96)

The left-hand side of this equation is a function of ω/q. Thus,
the root of this function gives ω = v�q, with magnon velocity
v� = 1.087J . The fact that v� turns out to be a real number
confirms that the magnon mode is a well-defined quasiparticle
in the long-wavelength limit. The magnon velocity at the
� point obtained with a 1/S expansion up to O(S−1) is
1.15J [26,30].

Near the magnon pole, the polarization operator takes the
form

lim
|q|,ω→0

�(q, ω > 0) = α

(
1 − ω

vq

)
|μm〉〈νm| + · · · , (97)

where |μm〉 and |νm〉 refer to the magnon mode in the null
subspace P and “· · · ” abbreviates the regular contributions
from the orthogonal subspaces. According to our derivation,
the leading-order correction to Eq. (97) is O(q ). The pole
equation is modified by the matrix element of ��(q, ω) ≡
�(q, ω) − lim|q|,ω→0 �(q, ω) in the subspace of the magnon
mode described by the left (or right) state |μm〉 (or |νm〉),
namely,

α

(
1 − iω

vq

)
= 〈μm|��(q, ω)|νm〉. (98)

The contribution from the condensed bosons is analytic at
|q| = 0 for a given ratio of ω/q. Consequently, the leading-
order contribution to the matrix element 〈um|��cn(q, ω)|vm〉
is

〈μm|��cn(q, ω)|νm〉 ∝ qF

(
ω

cq

)
. (99)

This contribution gives rise to a nonlinear correction ∼q2 to
the magnon dispersion, but no contribution to the magnon
decay because of the energy mismatch upon splitting the
magnon into a noncondensed (with momentum q) and a
condensed (with 0 momentum) spinon.

The contribution from the noncondensed bosons
�

reg
nn (q, ω) is not guaranteed to be analytic in q at q = 0

for given ratio of ω/q. Therefore, we assume

〈μm|��nn(q, ω)|νm〉 ∝ qγ H

(
ω

cq

)
. (100)

Because the magnon velocity is higher than the spinon veloc-
ity, the kinematic conditions enable the decay of one magnon
into two slow spinons [83]. This process gives rise to an
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imaginary part of H ( ω
cq

). Consequently, the magnon pole
moves away from the real axis leading to a finite decay
rate �q ∝ q1+γ . A numerical solution of the determinant of
�0 − �(q, iω) gives γ = 1, implying that �q ∝ q2.

2. Around the ±K points

The magnon modes around ±K are connected by inversion
symmetry. Thus, without loss of generality, we only consider
the magnon dispersion around the K point. The structure of
the polarization operator �(q + Q, iω) is much simpler than
the one obtained for the � point. The contribution from the
noncondensed bosons is regular in the long-wavelength limit

lim
q→0,ω→0

�nn(q + Q, iω) = �nn( Q, 0), (101)

while the contribution from the condensed bosons is

�cn(q + Q, iω) = φq2/2

c2q2 + ω2
(�K + Zq̂ · QK · q̂ ). (102)

By applying the procedure that we described for the � point,
we obtain a magnon velocity vK = 1.033J , which is very
close to the value vK = 0.9948J obtained by nonlinear spin-
wave theory [up to O(S−1)] [26,30]. The nonlinear correction
to the magnon dispersion is O(q2), while the decay rate �q

turns out to be proportional to q5/2.

V. DISCUSSION

In summary, we have demonstrated that the Gaussian cor-
rections of the Schwinger boson approach to the TLHAM
eliminates serious limitations of the sp approximation and
provides much better description of the order parameter and
the dynamical response of magnetically ordered states. This
description becomes particularly appealing in the proximity
of transitions into spin liquids. Here, we have focused on the
1/N correction introduced by the diagram shown in Fig. 2(b).
The main reason is that this is the only diagram that generates
poles in S(q, ω) at the 1/N level. The rest of the 1/N

diagrams shown in Figs. 2(c)–2(e) renormalize the interaction
vertex, as well as the single-spinon propagator. It is important
to note that these diagrams generate four-spinon contributions
that will extend the high-energy spectral weight beyond the
two-spinon continuum shown in Fig. 4.

The magnon excitations obtained from the 1/N correction
considered in this paper consist in two-spinon bound states.
Its dispersion agrees well with the magnon dipersion obtained
from series expansions [18] in the regions where the magnon
spectral weight is high. Moreover, the magnon velocities
obtained by taking the long-wavelength limit around the �

and the ±K points agree very well with the result obtained
from linear spin-wave theory plus 1/S corrections [26,30]. At
the 1/N level, the magnon decay occurs via emission of two
spinons. Given that spinons are not low-energy modes of the
Higgs phase (they are gapped out by the Higgs mechanism),
this mechanism should be replaced by the more traditional
single-magnon to two magnon-decay in the long-wavelength
limit of the theory. However, to capture the single-magnon
to two-magnon decay within this formalism, it is necessary
to include 1/N2 corrections, such as the diagram shown in
Fig. 8. While the inclusion of two-magnon and four-spinon

FIG. 8. Diagram of order 1/N2 for the RPA propagator that
accounts for the single-magnon to two-magnon decay process. Note
the similarity between this diagram and the lowest-order diagram in
a 1/S expansion that accounts for the single-magnon to two-magnon
decay (each wavy line must be interpreted as a magnon propagator,
while each internal loop must be interpreted as a cubic vertex).

processes is beyond the scope of this paper, we must keep
in mind that these corrections are necessary to reproduce
some aspects of S(q, ω), such as the magnon broadening in
the long-wavelength limit or high-energy contributions arising
from the four-spinon continuum.

Recent inelastic neutron scattering measurements in
Ba2CoSb2O9 [7] have revealed a three-stage energy
structure in S(q, ω) composed of single-magnon low-energy
excitations and two high-energy dispersive excitation continua
whose peaks are separated by an energy scale of order J .
Based on the results obtained in this paper, we speculate
that the two-stage high-energy structure arises from two- and
four-spinon contributions. Testing this conjecture requires
not only the inclusion of additional diagrams, but also an
extension of the formalism presented in this paper to the
case of a 3D lattice (vertically staked triangular layers) with
anisotropic exchange interaction (Ba2CoSb2O9 has a small
easy-plane exchange anisotropy).

Because of the proximity of the 120◦ Néel order ground
state to a spin-liquid state, we have used the S = 1

2 trian-
gular AFM Heisenberg model as an example of application.
However, this formalism can be applied to other magnetically
ordered states in the proximity of a spin-liquid phase. The
current quest for materials that can realize quantum spin
liquids calls for approaches that capture the signatures of
fractional excitations in the dynamical response. Given that
most of these materials exhibit some form of magnetic order-
ing at low enough temperatures, our approach is addressing
the increasing demand of modeling and understanding the
dynamical response of quantum magnets in the proximity of a
quantum melting point.
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APPENDIX A: COMPLEX GAUSSIAN INTEGRALS

In order to compute the Gaussian correction to the partition
function, we need to derive the necessary condition for the
convergence and the value of the complex Gaussian integral

Z =
∫

D[ φ†, φ]e−φ†·A· φ, (A1)
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where φ = (φ1, . . . , φn) ∈ Cn, φ† is the Hermitian conjugate

of φ, the measure is given by D[ φ†, φ] =∏n
μ=1

dφ̄μdφμ

2πi
, and

A is a n × n complex matrix diagonalizable, not necessarily
Hermitian.

As A is diagonalizable, there exists a nonsingular matrix
R such that A can be transformed into a diagonal matrix
�(�μν = λμδμν ) through the similarity transformation

A = R · � · R−1. (A2)

The diagonal entries of � are the (complex) eigenvalues of
A, while the vector columns of R are the corresponding
right eigenvectors A · φR

μ = λμ
φR
μ . On the other hand, the

rows of L ≡ R−1 are the left eigenvectors of A, that is,
φL
μ · A = λμ

φL
μ . Notice that if A is non-Hermitian, R is not

unitary and, as a consequence, the right eigenvectors are not
orthogonal among themselves. The same is valid for the set of
left eigenvectors. However, as L · R = I , right eigenvectors
are orthonormalized with respect to the left eigenvectors.

Using Eq. (A2) and performing the linear transformation
φ = R · z, whose Jacobian is given by det(R† · R), Z be-
comes

Z = det G
∫

D[z†, z]e−z†·G·�·z, (A3)

where the measure is D[z†, z] =∏n
μ=1

dz̄μdzμ

2πi
and we have

defined the Gram matrix G ≡ R† · R, whose elements are
given by the inner product of the right eigenvectors Gμν =
φR†
μ · φR

ν . G is Hermitian and positive definite as the bilinear
form

z† · G · z =
∥∥∥∥∥
∑

μ

zμ
φR
μ

∥∥∥∥∥
2

> 0 for z �= 0.

Now, we will prove that, given a n × n diagonal matrix �

whose diagonal entries λμ all have a positive real part, and a
n × n Hermitian positive-definite matrix G,

In(G,�) ≡
∫

D[z†, z]e−z†·G·�·z = 1

det(G · �)
. (A4)

We prove this result by induction. For n = 1,

I1(G,�) =
∫

dz̄1dz1

2πi
e−G11λ1|z1|2 ,

where G is the positive real number G11. The analytical
continuation of the well-known integral

∫
dz̄ dz
2πi

e−a|z|2 = 1
a
,

easily computed for real a > 0, shows that I1 converges if
Reλ1 > 0, and its value is given by

I1(G,�) = 1

G11λ1
≡ 1

det(G · �)
.

So, for n = 1 the integral (A4) is valid. Now, we calculate the
integral for a generic n, assuming its validity for n − 1:

In(G,�) =
∫ n−1∏

μ=1

dz̄μdzμ

2πi
exp

⎡
⎣− n−1∑

μν=1

z̄μGμνλνzν

⎤
⎦

×
∫

dz̄ndzn

2πi
exp[−S (n)(z†, z)], (A5)

where

S (n)(z†, z) = Gnnλn|zn|2 + z̄n

n−1∑
ν=1

Gnνλνzν + zn

n−1∑
μ=1

Gμnλnz̄μ.

(A6)

As G is positive definite, all its diagonal elements are
positive real numbers. Hence, the integral over z̄n, zn in
Eq. (A5) is convergent if Reλn > 0. Using the well-known
integral

∫
dz̄ dz
2πi

e−a|z|2+J z̄+J ′z = 1
a

exp[ JJ ′
a

], valid for Rea > 0
and complex J, J ′, the integral is given by

1

Gnnλn

exp

⎡
⎣ n−1∑

μν=1

z̄μ

GμnGnν

Gnn

λνzν

⎤
⎦. (A7)

After performing the integration over z̄n, zn, In [Eq. (A5)] is
given by an (n − 1)-dimensional complex Gaussian integral

In(G,�) = 1

Gnnλn

In−1((G/Gnn), �̃), (A8)

where the (n − 1) × (n − 1) matrix (G/Gnn) is the so-called
Schur complement of G with respect to Gnn [86], defined as

(G/Gnn)μν = Gμν − GμnGnν

Gnn

, (A9)

while �̃ is the diagonal (n − 1) × (n − 1) matrix that results
from taking out the nth row and the nth column in �.(G/Gnn)
is a Hermitian and positive-definite matrix. To prove this last
statement, we take into account that G is positive definite, that
is,

z† · G · z =
n−1∑

μ,ν=1

z̄μGμνzν + z̄n

n−1∑
ν=1

Gnνzν

+
n−1∑
μ=1

z̄μGμnzn + Gnn|zn|2 > 0

for all nonzero z ∈ Cn. In particular, if we take zn =
− 1

Gnn

∑n−1
ν=1 Gnνzν, we get z† · (G/Gnn) · z > 0 for all

nonzero z ∈ Cn−1. As (G/Gnn) is Hermitian positive definite,
and the real part of all the diagonal entries of �̃ are positive,
the (n − 1)-dimensional complex integral in Eq. (A8), by
hypothesis, equals 1/ det((G/Gnn) · �̃), and it results in

In(G,�) = 1

Gnn det(G/Gnn)
× 1

det �
. (A10)

The Schur’s identity [86] tell us that, if Gnn �= 0,

det G = Gnn det(G/Gnn). (A11)

Replacing the identity in Eq. (A10), we end the proof of the
Gaussian integral∫

D[z†, z]e−z†·G·�·z = 1

det(G · �)
. (A12)

The application of above equation to the integral Z as
expressed in Eq. (A3) allows us, on one hand, to establish
the convergence condition of the original Gaussian integral
(A1). That is, all the eigenvalues of the A matrix should have
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a positive real part. A matrix with this property is called a
positive-stable matrix. On the other hand, we get

Z =
∫

D[ φ†, φ]e−φ†·A· φ = 1

det A
(A13)

since det � = det A. This result is the generalization of the
usual complex Gaussian integral, where it is requested that A
or its real part be positive-definite matrices. It can be shown
that, while any matrix with a positive-definite real part is a
positive-stable matrix, the converse is not true.

An alternative way to arrive at the positive-stable condition
for the convergence of the Gaussian integral is to use the ana-
lytical continuation of the Gaussian integral with a Hermitian
matrix [87].

APPENDIX B: FADDEEV-POPOV TREATMENT
OF ZERO MODES

In this Appendix, we show how to derive the partition
function in the presence of zero gauge modes, by means of the
Faddeev-Popov prescription. Let Z be the Gaussian integral

Z =
∫

D[ φ†, φ]e−φ†·A· φ, (B1)

where A is a diagonalizable matrix that has a zero eigenvalue,
with its corresponding right φR

0 and left φL
0 eigenvectors. In

our case, this zero mode is the consequence of the invariance
of Z under a U(1) gauge transformation characterized by the
(complex) phase θ , whose expression is

φ → φ(θ ) = φ + θ φR
0 , φ† → φ†(θ̄ ) = φ† + θ̄ φL

0 . (B2)

In fact, the exponent of the Gaussian integral is gauge in-
variant, φ†(θ̄ ) · A · φ(θ ) = φ† · A · φ, and the transformation
(B2) has a unit Jacobian.

For a positive stable A, the Gaussian integral (B1) is
given by det−1( A) (see Appendix A). As a consequence, the
presence of a zero eigenvalue implies its divergence, and this
signals the absence of a restoring force along the zero-mode
direction, due precisely to the gauge symmetry. However,
using the Faddeev-Popov trick we can exactly extract from
Z the contribution of the gauge group volume

∫
dθ̄ dθ
2πi

, that
counts the redundant gauge degree of freedom that gives rise
to such divergence, remaining a physically sound result from
the integration of the genuine Gaussian fluctuations.

To proceed with the Faddeev-Popov trick, first we define
a Dirac delta function on the complex plane by means of the
integral representation

δ(z̄, z) =
∫

dᾱ dα

2πi
ei(ᾱz+z̄α), (B3)

such that δ(z̄, z) satisfies, for a given function F , the usual
relation ∫

dz̄ dz

2πi
δ(z̄, z)F (z̄, z) = F (0, 0). (B4)

Indeed,

δ(z̄, z) =
∫

dαRdαI

π
e2i(αRx+αI y) = πδ(x)δ(y), (B5)

where α = αR + iαI and z = x + iy. Replacing (B5) in
Eq. (B4), we get the usual property of the Dirac delta function.

To get rid of the (divergent) gauge fluctuations, we impose
natural gauge-fixing conditions that constrain the fluctuations
to be orthogonal to the zero mode [77]

g(θ̄ ) = φ†(θ̄ ) · φ̂R
0 = 0, h(θ ) = φ̂L

0 · φ(θ ) = 0, (B6)

where we have defined the zero-mode “versors” as φ̂L
0 ≡

φL
0 /

√
φL

0 · φR
0 and φ̂R

0 ≡ φR
0 /

√
φL

0 · φR
0 . Taking into account

Eq. (B2), the gauge-fixing conditions are given by

g(θ̄ ) = φ† · φ̂R
0 + θ̄

√
φL

0 · φR
0 ,

h(θ ) = φ̂L
0 · φ + θ

√
φL

0 · φR
0 , (B7)

and they are imposed in Z through the Faddeev-Popov trick,
that consists in the construction of the unit as

1 = �FP( φ†, φ) ×
∫

dθ̄ dθ

2πi
δ(g(θ̄ ), h(θ )), (B8)

where �FP is the so-called Faddeev-Popov determinant. To
compute it, we first replace the Dirac delta distribution by its
integral representation and express the gauge conditions by
means of Eq. (B7):

∫
dθ̄ dθ

2πi
δ(g(θ̄ ), h(θ ))

=
∫

dᾱ dα

2πi
ei(ᾱ φ†·φ̂R

0 +αφ̂L
0 · φ)
∫

dθ̄ dθ

2πi
ei

√φL
0 · φR

0 (θ̄α+θᾱ)

=
∫

dᾱ dα

2πi
ei(ᾱ φ†·φ̂R

0 +αφ̂L
0 · φ)δ
(√ φL

0 · φR
0 ᾱ,

√
φL

0 · φR
0 α
)

= 1
φL

0 · φR
0

.

Here, we have used the property δ(az̄, bz) = 1
ab

δ(z̄, z) valid
for complex a and b with Re(ab) > 0. Hence, we arrive at the
expression for the Faddeev-Popov determinant

�FP = φL
0 · φR

0 . (B9)

After computing �FP, we insert the unit (B8) in the partition
function (B1) and replace again the Dirac delta that fixes
the gauge choice with its integral expression. The partition
function becomes

Z = �FP

∫
dθ̄ dθ

2πi

∫
dᾱ dα

2πi

×
∫

D[ φ†, φ]ei(ᾱφ̂L
0 · φ(θ )+α φ†(θ̄ )·φ̂R

0 )e−φ†·A· φ. (B10)

To extract the gauge-group volume from Z, we perform a
gauge transformation φ† → φ†(−θ̄ ), φ → φ(−θ ) for given
phases θ̄ , θ . Given that the action and the measure are gauge-
invariant quantities, we get rid of the θ dependence of the
integrand and the (divergent) gauge-group volume can be
factored as an (irrelevant) multiplicative constant out of the
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integral:

Z =
[∫

dθ̄ dθ

2πi

]

× �FP

∫
dᾱ dα

2πi

∫
D[ φ†, φ]ei(ᾱφ̂L

0 · φ+α φ†·φ̂R
0 )e−φ†·A· φ.

(B11)

In what follows, we remove this gauge-group volume factor.
Next, we decompose the field vectors φ†, φ in the basis

of the right eigenvectors, separating explicitly the component
parallel to the zero mode

φ =
∑
μ �=0

zμφ̂R
μ + z0φ̂

R
0 , φ† =

∑
μ �=0

z̄μφ̂R†
μ + z̄0φ̂

R†
0 . (B12)

After applying this decomposition and taking into account that
the right eigenvectors are orthogonalized with respect to the
left eigenvectors, but not necessarily among each other, the ex-
ponent i(ᾱφ̂L

0 · φ + α φ† · φ̂R
0 ) in the integral (B11) becomes

i(ᾱz0 + αz̄0G00 + α(z†⊥ · G)0), (B13)

where G is the (Hermitian positive-definite) Gram matrix of

the right eigenvectors, Gμν = φ̂
R†
μ · φ̂

R

ν , and z⊥ is the vector
of complex coordinates {zμ} excluding z0.

On the other hand, the exponent φ† · A · φ becomes

z† · G · � · z = λ0G00|z0|2 + λ0z0(z†⊥ · G)0

+ z̄0(G · � · z⊥)0 + z†⊥ · G · � · z⊥,

where � is a diagonal matrix whose diagonal entries are the
eigenvalues of A.

Then, we make the change of variables { φ†, φ} →
{z†⊥, z⊥, z̄0, z0} in Z, whose Jacobian is det G, and we first
integrate over z̄0, z0. To properly treat the zero eigenvalue λ0,
as it has no “restoring force,” we assign a positive value to λ0

and take the limit λ0 → 0+ at the end of the calculation. After
the change of variables, we get

Z = �FP det G
∫

D[z†⊥, z⊥]e−z†⊥·G·�·z⊥

×
∫

dᾱ dα

2πi
eiα(z†⊥·G)0 × I0, (B14)

where

I0 ≡
∫

dz̄0dz0

2πi
exp[−λ0G00|z0|2 + z0(iᾱ − λ0(z†⊥ · G)0)

+ z̄0[iαG00 − (G · � · z⊥)0]]

= 1

λ0G00
exp

[
− 1

λ0
|α|2 − iα(z†⊥ · G)0 − iᾱ

(G · � · z⊥)0

λ0G00

+ (z†⊥ · G)0(G · � · z⊥)0

G00

]
. (B15)

We then collect all the terms that depend on ᾱ, α and
perform the integral∫

dᾱ dα

2πi
exp

[
− 1

λ0
|α|2 − iᾱ

(G · � · z⊥)0

λ0G00

]
= λ0. (B16)

At this stage, Z is expressed as

Z = �FP
det G
G00

∫
D[z†⊥, z⊥]e−z†⊥·(G/G00 )·�̃·z⊥ , (B17)

where the Hermitian positive-definite matrix (G/G00) is the
Schur complement [see Eq. (A9)] of G with respect to G00,
and �̃ is the matrix that results from extracting the zero-mode
column and row in �. Notice that the regularization parameter
λ0 goes away as we integrate over the zero-mode coordinates
and α, rendering the λ0 → 0+ limit trivial. The last step
is to perform the integral over z†⊥, z⊥ using the Gaussian
integral (A4):∫

D[z†⊥, z⊥]e−z†⊥·(G/G00 )·�̃·z = 1

det(G/G00) det �̃
. (B18)

As det G = G00 det(G/G00) [see Eq. (A11)] and det �̃ =
det A⊥, we finally arrive at the formula

Z = �FP

det A⊥
=

φL
0 · φR

0

det A⊥
. (B19)

Hence, the Gaussian correction to our Schwinger boson
partition function,

Zfl =
∏

k,iωn>0

�FP(k, iωn)

det S(2)
⊥ (k, iωn)

, (B20)

where the Faddeev-Popov determinant is given by Eq. (55).
Notice that the partition function for all the Hamiltonian pa-
rameters set to zero (exchange interactions, external sources,
breaking-symmetry magnetic field) is

Z0 =
∏

k,iωn>0

�FP,0(k, iωn)

det S(2)
⊥,0(k, iωn)

=
∏

k,iωn>0

ω2
n (B21)

since the saddle-point parameters Aδ = Bδ = 0, and the per-
pendicular matrix is the identity. Given that we want to
evaluate the free energy relative to this zero of energy, we
divide the partition function by Z0:

Zfl

Z0
=
∏

kiωn>0

�FP(k, iωn)

w2
n det S(2)

⊥ (k, iωn)
. (B22)

APPENDIX C: RELATIONSHIP BETWEEN THE
DETERMINANTS OF THE PERPENDICULAR AND

TRUNCATED MATRICES

Let A be a diagonalizable n × n complex matrix that is
taken to the diagonal form � through the similarity transfor-
mation (A2) A = R · � · R−1, where the diagonal entries of
� (�μν = λμδμν) are the eigenvalues, while the columns of
R are the right eigenvectors and the rows of L = R−1 are the
left eigenvectors of A. We assume that the nth eigenvalue of
A is zero, being φ̂R

0 and φ̂L
0 the right and left zero modes,

respectively. As L · R = I , the zero modes satisfy φ̂L
0 ·φ̂R

0 =1.
The truncated matrix Atr is defined as the (n − 1) × (n −

1) matrix that results from taking out the nth column and
the nth row of A, while the perpendicular matrix A⊥ is the
(n − 1) × (n − 1) diagonal matrix whose elements are the
same as the nonzero eigenvalues of A, that is, A⊥αβ = λαδαβ

for α, β = 1, . . . , n − 1.
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We will prove the following relationship between determi-
nants:

det Atr = φL
0nφ

R
0n det A⊥, (C1)

where φR
0n, φ

L
0n are the nth components of the “normalized”

zero modes φ̂L
0 , φ̂R

0 .
We start by separating explicitly the nth column and the

nth row of A:

A =
(

Atr A⊥n

An⊥ Ann

)
, (C2)

where A⊥n = ( A1n· · ·
An−1 n

)
and An⊥ = (An1, . . . , An,n−1). Analo-

gously, we write the vectors as φ = ( φ⊥
φn

)
. Using these defini-

tions, the right zero-mode equation A · φ̂R
0 = 0 can be written

as

Atr · φ̂R
0⊥ + A⊥nφ

R
0n = 0,

An⊥ · φ̂R
0⊥ + Annφ

R
0n = 0,

while for φ̂L
0 · A = 0 we have

φ̂L
0⊥ · Atr + φL

0n
An⊥ = 0,

φ̂L
0⊥ · A⊥n + φL

0nAnn = 0.

These equations allow us to write all the elements of A in
terms of the elements of the truncated matrix:

A⊥n = − 1

φR
0n

Atr · φ̂R
0⊥,

An⊥ = − 1

φL
0n

φ̂L
0⊥ · Atr, (C3)

Ann = 1

φL
0nφ

R
0n

φ̂L
0⊥ · Atr · φ̂R

0⊥.

Then, we right and left multiply A by the n × (n − 1) matrix
containing the first n − 1 right eigenvectors and the (n −
1) × n matrix containing the first n − 1 left eigenvectors,
respectively, in order to compute the (n − 1) × (n − 1) per-
pendicular matrix A⊥:⎛
⎜⎝

φ̂L
1

· · ·
φ̂L

n−1

⎞
⎟⎠ · A · (φ̂R

1 , . . . , φ̂R
n−1

) =
⎛
⎜⎝

λ1 0 · · ·
· · · · · · · · ·
· · · 0 λn−1

⎞
⎟⎠ = A⊥.

By replacing Eqs. (C3) in the above equation and after a little
algebra, we get

(L/Lnn) · Atr · (R/Rnn) = A⊥, (C4)

where (L/Lnn) and (R/Rnn) are Schur complements as de-
fined in Eq. (A9). The Schur’s identity tells us that det L =
Lnn det(L/Lnn) and det R = Rnn det(R/Rnn). As det L ×
det R = 1, and Lnn = φL

0n, Rnn = φR
0n, we obtain the desired

relationship between the determinants of the truncated and
perpendicular matrices from Eq. (C4):

det Atr = φL
0nφ

R
0n det A⊥. (C5)

For the SB case of interest, when we use the non-Hermitian
fluctuation matrix S(2), with its (non-normalized) right and left

zero modes [Eqs. (50) and (51)], we obtain φR
0n = iωn√

�FP
and

φL
0n = − iωn√

�FP
, with the Faddeev-Popov determinant given by

Eq. (55). This results in the relation

det S(2)
tr (k, iωn) = ω2

n

�FP(k, iωn)
det S(2)

⊥ (k, iωn). (C6)

A similar relation holds if we use the Hermitian fluc-
tuation matrix S̃

(2)
. In this case, the left zero mode is

just the Hermitian conjugate of the right zero mode φL
0 =

φR†
0 , so the Faddeev-Popov determinant results �H

FP(k, iω) =
φR†

0 (k, iωn) · φR
0 (k, iωn). In both cases, non-Hermitian and

Hermitian fluctuation matrices, we have numerically checked
that the above relation between determinants is satisfied.

APPENDIX D: LONG-WAVELENGTH LIMIT
OF THE SCHWINGER BOSON THEORY

We derive the Schwinger boson theory in the long-
wavelength limit by expanding the spinon dispersion around
its gapless points (� and ±K points of the Brillouin zone)
to provide asymptotic forms of the single-spinon Green’s
function and the polarization operator.

1. Linearized spinon dispersion and Green’s function

The spinon dispersion is approximated by

εkσ = ck, σ = ± (D1)

around the � point, where the spin velocity is

c =
√

2
3

[(
γ A

Q/2

)2 − γ B
Q/2

(
λ + γ B

Q/2

)]
. (D2)

The two gapless branches have the same velocity.
Around the ±K point, there is only one gapless branch

with the same velocity c:

εk± Q,− = ck. (D3)

After taking the thermodynamic limit according to Eq. (78),
the spinon Green’s function can be separated into the con-
densed and noncondensed contributions

Gsp(k, iω) = Gsp
n (k, iω)+(2π )2δ(k)Gsp

c (0, iω). (D4)

The first term describes the noncondensed bosons with k �= 0,
while the second term describes the condensed bosons at
k = 0:

Gsp
c (0, iω) = gcφ

(
1

ε0 − iω
+ 1

ε0 + iω

)
. (D5)

Here, φ is the density of condensed spinons at the saddle-point

level ε0 = limNs→∞
λ+γ B

Q/2

4φNs
, and

gc = 1

2

⎛
⎜⎜⎜⎝

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎞
⎟⎟⎟⎠. (D6)

The low-energy sector of the noncondensed boson con-
tains three types with momenta |k| < �, |k − Q| < �, or
|k + Q| < �. Correspondingly, we derive the asymptotic
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form of the Green’s function in the long-wavelength limit
around each of the three wave vectors.

a. Around � point: |k| < �

The leading-order contribution to the Green’s function has
the form

Gsp
n (k, iω) =

∑
α=1,2

Z

c2k2 + ω2
Iα, (D7)

where Z = λ + γ B
Q̄/2

and

I1 =

⎛
⎜⎜⎜⎝

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, I2 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

⎞
⎟⎟⎟⎠. (D8)

b. Around ±K point: |k ± Q| < �

Given that there is only one gapless branch for these two
wave vectors, we have

Gsp
n (k + Q, iω) = Z

c2k2 + ω2
IK

1 , (D9)

Gsp
n (k − Q, iω) = Z

c2k2 + ω2
IK

2 , (D10)

with

IK
1 =

⎛
⎜⎜⎜⎝

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, IK

2 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

⎞
⎟⎟⎟⎠.

(D11)

2. Polarization operator

The RPA propagator is determined by the polarization op-
erator �(q, iω), whose computation in the long-wavelength
limit q → 0, follows from Eq. (87).

a. Around � point: |k| < �

We first consider the leading-order contribution O(q−2)
arising from the condensed bosons:

�(−2)
cn (q, iω) = φZ/2

c2q2 + ω2
�, (D12)

where

�αβ = Tr[Ipvα (0, 0)Ipvβ (0, 0)], (D13)

and Ip = I1 + I2. The matrix � contains only one nonzero
matrix element: � = θ |u1〉〈v1|. The subspace Q⊥ with pro-
jector P⊥ = |u1〉〈v1| contains no pole, implying that the
magnon pole must appear in the orthogonal subspace Q
with projector P =∑ν>1 |uν〉〈vν |, where 〈uν |u1〉 = 0 and
〈vν |v1〉 = 0 for ν > 1.

We next consider O(q−1) terms. The noncondensed bosons
give a contribution

�(−1)
nn (q, iω) = Z2

2c3q
�0

(
iω

cq

)
�, (D14)

where

�0(x) =
∫ ∞

0

d2k
(2π )2

|k| + |k + q̂|
|k||k + q̂|[(|k| + |k + q̂|)2 − x2]

(D15)

is a dimensionless function and q̂ is the unit vector along the
q direction. Because this term has the same matrix structure
as the leading-order contribution �(−2)

cn (q, iω), it can be ne-
glected in the long-wavelength limit. The combination of con-
densed bosons with noncondensed bosons with momentum q
gives an additional O(q−1) contribution

�(−1)
cn (q, iω) = φq

c2q2 + ω2

(
iω

2q
� + Z

4
q̂ · M
)

, (D16)

where

� = Tr[Apvα (0, 0)Ipvβ (0, 0)] − Tr[Ipvα (0, 0)Apvβ (0, 0)],

(D17)

Ap = 1

2

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠, (D18)

and

Mαβ = −δα

{
Tr
[
Ipv(10)

α (0, 0)Ipvβ (0, 0)
]

− Tr
[
Ipvα (0, 0)Ipv

(01)
β (0, 0)

]}
+ δβ

{
Tr
[
Ipvα (0, 0)Ipv

(10)
β (0, 0)

]
− Tr
[
Ipv(01)

α (0, 0)Ipvβ (0, 0)
]}

. (D19)

Here, v10
α (k, q ) = ∂vα (k, q )/∂ (k · δα ) and v01

α (k, q ) =
∂vα (k, q )/∂ (k · δβ ) refer to the first derivative of the internal
vertex.

As explained in the main text, P†�(−1)
nn (q, iω)P =

P†�(−1)
cn (q, iω)P = 0. Thus, the magnon pole arises from

O(q0) contributions to the polarization matrix. The first
O(q0) contribution arises from the second-order process in
�(−1)

cn (q, iω) mentioned in the main text. Here, we provide
the explicit form of the remaining O(q0) contributions. The
noncondensed bosons give a contribution

�(0)
nn (q, iω)

= Z

2c2
�1

(
iω

cq

)
� + Z2

4c3
�0

(
iω

cq

)
q̂ · M + �reg

nn (0, 0),

(D20)

where

�1(x) =
∫ ∞

0

d2k
(2π )2

x

|k + q̂|[(|k| + |k + q̂|)2 − x2]
(D21)

is a dimensionless function. The first two terms are projected
to zero under the action of P , implying that they do not affect
the position of the magnon pole in the long-wavelength limit.
The last term, �

reg
nn (0, 0), is a regular integral, which depends

on the cutoff �.
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The last O(q0) contribution arises from a combination of
condensed bosons with noncondensed bosons with momen-
tum q. After applying the projector P , we obtain

�(0)
cn (q, iω) = φq2/2

c2q2 + ω2

[
� + iω

q
q̂ · R+ Z

2
q̂ · D · q̂

]
, (D22)

where

�αβ = Tr[gcvα (0, 0)Bpvβ (0, 0)]

= Tr[Bpvα (0, 0)gcvβ (0, 0)], (D23)

with

Bp = 1

3

⎛
⎜⎜⎜⎝

−γ B
Q/2 γ A

Q/2 0 0

γ A
Q/2 −γ B

Q/2 0 0

0 0 −γ B
Q/2 γ A

Q/2

0 0 γ A
Q/2 −γ B

Q/2

⎞
⎟⎟⎟⎠, (D24)

Rαβ = −δα

{
Tr
[
Apv(10)

α (0, 0)gcvβ (0, 0)
]

+ Tr
[
gcv

(01)
α (0, 0)Apvβ (0, 0)

]}
− δβ

{
Tr
[
Apvα (0, 0)gcv

(01)
β (0, 0)

]
+ Tr
[
gcvα (0, 0)Apv

(10)
β (0, 0)

]}
, (D25)

and

Dαβ = δαδβ

{
Tr
[
Ipv(10)

α (0, 0)gcv
(01)
β (0, 0)

]
+ Tr
[
gcv

(01)
α (0, 0)Ipv

(10)
β (0, 0)

]}
. (D26)

b. Around ±K point: |q ± Q| < �

The ±K points are related by inversion symmetry. Around
these points, the singular O(q−1) and O(1) contributions

to the polarization operator from the noncondensed bosons
and the singular O(q−2) and O(q−1) contributions from the
condensed bosons combined with noncondensed bosons with
momentum q are all equal to zero in the long-wavelength
limit. The ∼O(1) contribution from the noncondensed bosons
is a regular integral �

reg
nn ( Q, 0), while the contribution from

the condensed bosons combined with noncondensed bosons
with momentum q is

�cn(q + Q, iω)= φq2/2

c2q2 + ω2
(�K + Zq̂ · DK · q̂ ), (D27)

where

�K
αβ = Tr[gcvα (0, Q)BK

1 vβ ( Q, 0)]

= Tr[BK
2 vα (− Q, 0)gcvβ (0,− Q)], (D28)

with

BK
1 = 1

3

⎛
⎜⎜⎜⎝

−γ B
Q/2 γ A

Q/2 0 0

γ A
Q/2 −γ B

Q/2 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (D29)

BK
2 = 1

3

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −γ B
Q/2 γ A

Q/2

0 0 γ A
Q/2 −γ B

Q/2

⎞
⎟⎟⎟⎠, (D30)

and

DK
αβ = δαδβTr

[
IK

2 v(10)
α (− Q, 0)gcv

(01)
β (0,− Q)

]
= δαδβTr

[
gcv

(01)
α (0, Q)gcv

(10)
β ( Q, 0)

]
. (D31)

The polarization operator around the −K point is obtained by
applying the spatial inversion transformation to (D27).
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