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Abstract

Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in

a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway

includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a

regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal

microbiota of warm-blooded animals and insect guts. These bacteria can also cause infec-

tion and disease in immunocompromised individuals. In the present study, we performed

whole genome analysis in Enterococcus strains finding that the complete citrate pathway is

present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospi-

tals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this

metabolic preservation for persistence and growth of E. faecalis in different niches. We also

analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E.

faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella lar-

vae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxyl-

ase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type

strain. We also observed that citrate promoters are induced in blood, urine and also in the

hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. fae-

calis to grow better in blood, urine and G. mellonella. The results presented here clearly indi-

cate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic

behavior.

Introduction

Since all living organisms contain a certain intracellular level of citrate, this organic acid is

commonly found in nature. In addition, citrate is extensively used as preservative in food and

beverages. Different bacteria are able to utilize citrate via the citrate lyase pathway. This metab-

olism consists primarily of a transport system, which incorporates citrate into the cell, a citrate
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lyase complex (CL), which disrupts the molecule and an oxaloacetate decarboxylase enzyme

(OAD), which produces pyruvate as a final product. Expression of the complete route is also

subjected to fine regulation through different systems (Fig 1) [1, 2]. All of the proteins respon-

sible for this pathway are encoded in gene clusters named cit; two types of these were identified

in bacteria during the past years.

The Type I gene cluster was found in species of Lactococcus lactis [2, 5],Weissella parame-
senteroides [6], Leuconoctoc ssp. [7] and Enterococcus faecium [8]. It is characterized by the

presence of the citI activator gene (deoR family) [6], the citM gene encoding for a soluble oxa-

loacetate decarboxylase (malic enzyme family) [9, 10] and the citP transporter gene (member

of the 2-hydroxy-carboxylate transporter family (2-HCT)) [1, 11] (Fig 1A).

The second type, Type II, is disseminated in Gram negative as well as Gram positive micro-

organisms. Presence of the oad genes, which code for a membrane bound oxaloacetate decar-

boxylase complex (mOAD) differentiates both clusters (Fig 1B).

The cluster present in enterobacteria is depicted for Klebsiella pneumoniae in Fig 1 and is

similar to the one found in Vibrio cholerae [1]. In this microorganism, mOAD is composed of

three subunits (OadA, OadB and OadG). The OadA subunit is biotinilated and soluble, while

the OadB is a membrane-bound Na+ pump. The OadG subunit is proposed to be involved in

the OAD complex assembly and stabilization. The stoichiometry of the decarboxylase complex

was recently determined to be α, β, γ 4:2:2 in V. cholerae [12, 13]. In this microorganism, pyru-

vate molecules are then converted to less acidic compounds, such as acetoin or 2,3-butanediol

[14]. In both enterobacteria, a two component system, CitAB, is involved in the regulation of

this pathway expression.

In Gram positive bacteria, the Type II gene cluster has been described in several firmicutes

species, such as Streptococcus mutans, Lactobacillus casei and Enterococcus faecalis. In S.

mutans, citrate is taken up from the medium in the presence of Fe3+, and its degradation is

directed to the production of aspartate. However, at low pH, its metabolization can inhibit

growth and survival of this microorganism [15]. In L. casei, citrate is transported inside the

cells by a member of the CitHMS family associated to Ca2+. Then, it is metabolized to form

pyruvate through the mOAD activity, yielding acetate and acetoin as final products. In this

case, the microorganism benefits from citrate consumption during sugar fermentation in sta-

tionary growth phase by generating a homeostatic effect in the intracellular pH [16].

In E. faecalis, a complete characterization of citrate transport [17] and fermentation was

described [18]. In this bacterium, binding of the regulator CitO (a GntR superfamily member)

to its target sequences located upstream of the cit cluster promoters activates catabolic and

transporter genes in response to citrate available in the surrounding medium [18, 19]. Citrate

transport in E. faecalis is carried out by CitH, a CitMHS family transporter which catalyzes

proton motive force-driven uptake of the Ca2+–citrate complex [17]. On the other hand,

expression of this metabolic route is repressed by PTS-sugars through CcpA-dependent and

independent mechanisms [20] (Fig 1C). As observed in V. cholerae, the E. faecalismOAD

complex is composed of four subunits: the carboxyl transferase OadA, the Na+ membrane

pump OadB, the biotin acceptor protein OadD and the novel subunit OadH, proposed as a

functional homologous to OadG [21]. Activation of the citrate degradation pathway during

cheese ripening increases the concentration of pyruvate that could be condensed to produce

α-acetolactate by the α-acetolactate synthase enzyme (ALS). Then, α-acetolactate can be con-

verted to acetoin by the activity of α-acetolactate decarboxylase, or to diacetyl in a nonenzy-

matic oxidative decarboxylation reaction. The volatile compounds produced (specially

diacetyl), can help in the development of cheese aroma and flavor [22] (Fig 1C).

In the last decades, E. faecalis has been recognized as one of the leading causes of hospital-

acquired diseases in the United States and Europe [23]. Indeed, this microorganism can infect
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the bloodstream, urinary tract, endocardium and biliary tract [24, 25]. Because of its innate

and acquired resistance to many antibiotics, E. faecalis infections are progressively becoming

Fig 1. Citrate gene clusters and metabolic pathway. (A) and (B) Scheme of citrate metabolic pathway gene

organization. citM, soluble oxaloacetate decarboxylase; citI, transcriptional regulator (deoR family); citC, citDEF, citX,

and citG, citrate lyase subunits and accessory proteins; citP, citrate transporter (2-HCT family); ɸcitO, pseudo gen; citO,

transcriptional regulator (gntR family); citH, citrate transporter (citMHS family); H (oadH), G (oadG), oadD, oadB and

oadA, subunits of the membrane-bound oxaloacetate decarboxylase; citT, citrate transporter (2-HCT family); citAB,

two-component signal transduction system. (C) Citrate and pyruvate pathways and their regulation in E. faecalis.
Enzymes involved in citrate metabolism: 1, citrate lyase; 2, oxaloacetate decarboxylase. Enzymes involved in pyruvate

metabolism: 3, lactate dehydrogenase; 4, pyruvate formate lyase; 5, pyruvate dehydrogenase; 6, phosphotransacetylase; 7,

acetate kinase; 8, alcohol dehydrogenase; 9, non-enzymic oxidative decarboxylation, 10, α-acetolactate synthase and 11,

α-acetolactate decarboxylase. Green and red arrows indicate induced or repressed steps (respectively) during growth in

blood or urine [3, 4]. O1 and O2 binding sites of the activator CitO; c1, c2 and c3 binding sites of CcpA (cre sites).

https://doi.org/10.1371/journal.pone.0205787.g001
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more difficult to treat [23]. For this reason, new insights into the field of enterococci infection

prevention are needed, and continuous knowledge generation regarding virulence-associated

factors is mandatory. Well characterized virulence factors include the cytolysin CylL, the

aggregation substance Agg, the metalloendopeptidase GelE, the extracellular surface protein

Esp, the cell surface protein EfaA, the serine protease SprE, the adhesion to collagen protein

Ace, fibrinogen Ebp and collagen Acm [26]. Experiments with animal infection models are

often useful for identification of differentially expressed genes that could act as virulence traits

or fitness factors [27]. Despite this, infection mechanisms, especially the transcriptional modu-

lation occurring in living hosts, are still poorly understood.

In this study, we analyzed the role of citrate fermentation in the pathogenicity of E. faecalis
using the insect G.mellonella as infection model. Citrate metabolism deficient-E. faecalis JH2-

2 strains resulted less virulent than the wild type, suggesting that this process could be impor-

tant for this bacterium opportunistic behavior. We also found that an active citrate metabolism

allows E. faecalis to grow better in blood and urine, where citrate is present. Furthermore, an

α-acetolactate synthase-deficient strain was also less virulent than the wild type suggesting that

the increase of internal and external pH provided by pyruvate degradation could promote E.

faecalis survival during infection.

Materials and methods

Bioinformatic analysis

Enterococcuswhole genome sequences were downloaded from the NCBI Refseq database

(December 2017). Duplicated genomes were detected and removed prior to analysis. Proteins

belonging to E. faecalis TX4000 citrate metabolism were used as queries in local tblastn searches.

Cut-off values for searches in Enterococcus genomes were set to 70% of sequence coverage with

>70% or 57% amino acid identity for CitE and CitF, respectively. Cut-off values for searches car-

ried out in E. faecalis genomes were 70% of sequence coverage with>85% amino acid identity.

Bacterial strains and cultures

Bacterial strains and plasmids used in this study are listed in Table 1. E. coli strain DH5αwas used

as an intermediate host for cloning, and E. coli EC101 was used as host for pGhost9 constructs. E.

coli strains were grown at 37˚ C under aerobic conditions in Luria-Bertani medium (LB), or on

LB agar plates. Ampicillin (100 μg/ml), or erythromycin (150 μg/ml, 250 μg/ml) were included in

the medium to select cells harboring ampicillin- or erythromycin-resistant plasmids.

E. faecalis strains were routinely grown at 37˚ C without shaking in 100 ml sealed bottles

filled with 20–50 ml of LB medium containing 0.5% w/v glucose (LBG). Erythromycin (5 μg/

ml, 250 μg/ml), or chloramphenicol (10 μg/ml) were added when appropriate.

For urine or blood growth experiments, E. faecalis strains were grown overnight in LB sup-

plemented with glucose 0.5% (LBG), at 37˚ C. Cultures were subsequently diluted 100 x in 10

ml pre-warmed LBG, and further incubated at 37˚ C. When an OD600 value of 0.1 was reached,

cultures from each strain were centrifuged (10000 x g for 2 min) and resuspended in sterile

human urine [4] or defibrinated mouse blood [3] and incubated at 37˚ C. Samples were col-

lected at different times to determine CFU/ml or prepared for observation by fluorescence

microscopy.

Construction of E. faecalis JH2-2 mutant strains

The E. faecalis JH2-2-Cit- strain was constructed by interrupting the oadD gene by a single

recombination event using the thermosensitive vector pGhost9 [28]. A fragment of 417 bp
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comprising the 3´end of oadH and the 5´ end of oadD was amplified by PCR using chromo-

somal DNA of E. faecalis JH2-2 as template. Forward primer EfoadH (5´-GGGCTGTCAGA
AGAAGCTTAGCTAGTTG-3´) introduced aHindIII site, while reverse primer EfoadD_Up

(5´-ACATGAATTCCTGTTACCGTACCTG-3´) introduced an EcoRI site. After digestion, the

PCR product was ligated into the corresponding sites of the pGhost9 vector. The resulting

plasmid, named pmCit (Table 1), was introduced into E. coli EC101, isolated, and then electro-

porated into the E. faecalis JH2-2 strain. Citrate-deficient strain JH2-2-Cit- (Table1) was con-

structed as described in [18], and insertion verified by PCR.

pBV153 plasmid for complementation was constructed as follows. The promoter region

PcitM was PCR amplified with primers EcoPr (5´- GTAGATGAATTCCAAAAAAATAATG
CA-3´) and PrNde (5´- GATCAACCATATGTCTTCTTTCCTAAT-3´) using pBM02 plas-

mid as template (Table 1) [30]. The PcitM PCR product was cloned in pGemT-easy (Pro-

mega), this resulting plasmid was subsequently digested with EcoRI, and the released fragment

was ligated in the EcoRI site of pBM01 plasmid (Table 1) [30]. Desired PcitM orientation was

determined by restriction analysis and sequencing in the University of Maine, DNA sequenc-

ing Facility, US DNA Sequencing.

The JH2-2-OadA-/pOadA was constructed by electroporation of a pOadA plasmid into

the JH2-2-OadA- strain [21]. Briefly, E. faecalis JH2-2 oadA gene was PCR-amplified with

primers EfOadA-NdeI (5´-AGCCATATGAGTAAAAAAATTCGTTTTAC-3´) and EfOadA-

XbaI (5´-CGGTCTAGATGCCTGTTCTATTCTG-3´). After digestion, the PCR product was

ligated into NdeI-SpeI digested pBV153 plasmid (Table 1), thus allowing the constitutive

OadA expression for trans-complementation. Correct amplification of oadA was confirmed

by sequencing.

Table 1. Plasmids and strains used in this study.

Plasmid or Strain Description Source or

Reference

pGhost9 Thermosensitive plasmid carrying erythromycin resistance. [28]

pmCit pGh9-derivative carrying a 417 bp oadH-D fragment. This work

pTLGR Promoterless vector which allows gfp and cherry transcriptional fusion construction. [29]

pTLGR-Pcit pTLGR carrying citrate promoters. This work

pBM01 pUC18 derived plasmid with chloramphenicol resistance and Rep264 replicon. [30]

pBM02 Shuttle vector carrying chloramphenicol resistance, Rep264 replicon, pUC18 replicon and PcitM promoter with NcoI

cloning site.

[30]

pBV153 pBM01-derived plasmid with PcitM promoter and NdeI cloning site. This work

pOadA pBV153-derived plasmid for expression of oadA. This work

E. faecalis
JH2-2 Fusr Rifr; plasmid-free wild type strain. [31]

JH2-2/ pTLGR JH2-2 carrying fluorescent reporter plasmid This work

JH2-2/ pTLGR-Pcit JH2-2 carrying fluorescent reporter plasmid with citrate cluster promoter. This work

JH2-2-Cit- JH2-2 oadD::pGhost9; citrate metabolism defective strain (Cit-) This work

JH2-2-OadA- JH2-2 ΔoadA. [21]

JH2-2-OadA-/

pOadA

JH2-2 ΔOadA/ pOadA. This work

JH2-2-OadB- JH2-2 ΔoadB. [21]

E. coli
DH5α F− ϕ80d/lacZΔM15 Δ(lacZYA-argF) U169 recA1endA1hsdR17 (r−K,m+K ) phoA supE44 λ- thi-1 gyrA96 relA1
EC101 Kanr supE thi (lacproAB) (F’ traD36 proAB lacIq ZΔM15) repA [32]

https://doi.org/10.1371/journal.pone.0205787.t001
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Construction of a fluorescent reporter plasmid

The plasmid bearing the promoter-gfp and -cherry transcriptional fusion is derived from the

pTLGR plasmid [29]. The promoter region of the citrate divergent operons citHO and oadHDB-
citCDEFX-oadA-citMG, was amplified by PCR with primers BamHprom-Up (5´-AGGGGATCC
ATTACTAAAGATGTAAAC-3´) and BamHprom-Lo (5´-TTAGGATCCTAAATATTCTTTC
CC-3´) which introduced a BamHI restriction site, using chromosomal DNA of E. faecalis
JH2-2 as template. The fragment was digested with BamHI and ligated in the same site of

pTLGR plasmid. Fragment orientation was determined by PCR, and confirmed by sequencing.

After isolation, the pTLGR-Pcit plasmid was electroporated into the E. faecalis JH2-2 strain.

Infection and survival experiments

E. faecalis strains were grown overnight in LB medium without shaking at 37˚ C. Then, the

bacterial cultures were diluted in 50 ml of LB medium to a final OD of 0.1 and grown at 37˚ C

without shaking, until exponential phase was reached (4,5h). The cultures were centrifuged,

resuspended in PBS 1X + 20% glycerol and frozen at -80˚ C. Inoculums prepared in this way

were plated to determine CFU/ml. Larvae were inoculated by direct injection into the hemo-

coel using a Hamilton syringe 705 equipped with a repeating dispenser. Each larvae group of

16 individuals was inoculated with a fixed CFU/larva ratio ranging from 9 x 106 to 6 x 107.

After injection, larvae were incubated at 30˚ C. Survival of the individuals was monitored

every two to four hours, by direct observation and gently touching non-motile larvae to evi-

dence movement response or confirm death. Survival of the larvae group was evaluated until

72 h post-infection.

Determination of in vivo bacterial loads

For bacterial count in hemolymph, 45 larvae were inoculated with a total of 9 x 106 CFU/larva

for each strain. Fifteen larvae were separated from the group at 0, 24 and 48 h post-inoculation,

three sub-groups for each time were formed hemolymph extracted, pooled together and sus-

pended in cold Insect Physiological Saline (IPS) buffer (150 mM sodium chloride, 5 mM

potassium chloride, 10 mM Tris HCl pH 6.9, 10 mM EDTA and 30 mM sodium citrate) [33]

with Triton X-100 0.03% v/v. Pools were vortexed, incubated at room temperature for 15 sec-

onds and then plated in LBG for CFU counting. The assay was carried out in duplicate, with

three technical replicates for each time point.

Hemocyte collection and fluorescence assays

At different times, hemolymph was extracted and pooled from larvae inoculated with E. faeca-
lis strains JH2-2/pTLGR or JH2-2/pTLGR-Pcit carrying the fluorescent plasmid. Pools were

diluted 1/100 in cold IPS, centrifuged at 700 x g, washed twice and finally resuspended in PBS

1X containing glucose 5 mM, MgCl2 1 mM, and CaCl2 0.5 mM [33]. Samples were fixed with

formaldehyde and slides mounted in VectaShield (Vector Laboratories, BIOARS S.A., Argen-

tina). Images were acquired in a Nikon E600 microscope, using a 60×1.4 WD Plan-ApoVC

objective with a Nikon DXM1200 digital camera using ACT-1 software. Fiji software [34] was

used to pseudocolor images.

Data analysis

Data analysis was done using R software. Survival curves were constructed according to

the Kaplan-Meier method, using the LogRank and Holm-Sidak tests [35] for multiple

comparisons.
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To determine differences between bacterial count in blood, urine and hemolymph, a one-

way analysis of variance was performed for each time point and the Tukey´s test was selected

for multiple comparisons. In our model the fixed effect are the strains and random effect is the

time. For the hemolymph experiment the experimental unit is the pool of 5 larvae; for the

experiment with blood and urine the experimental unit is each tube where bacteria was grown.

CFU/ml data was converted to Log(CFU/ml) and then analysis was performed, Normality of

the Log(CFU/ml) data was confirmed with Shapiro-Wilks test. P value was set at 0.05 in all

cases.

Results

Diversity of citrate fermentation pathways in the Enterococcus genus

Citrate fermentation-associated genes were searched in silico in the Enterococcus genomes

available at the NCBI RefSeq database. A total of 1478 genomes comprising different entero-

cocci species were selected for further analysis. Using the citrate lyase citE and citF genes from

E. faecalis TX4000 strain, we found that more than half of the genomes (758) encoded these

genes. Consequently, we focused the search on the E. faecalis species. From 501 available

genomes, we found that citrate metabolism is present in almost all of them, since 500 genomes

encoded the citrate lyase genes. Next, all the genes of the cit cluster in the E. faecalis TX4000

strain were found by BLAST searches in the 500 E. faecalis cit+ genomes analyzed indicating

that citrate metabolism is highly conserved among E. faecalis strains.

Gene context analysis of Enterococcus genus representative strains revealed that Type I cit-

rate metabolism cluster is present only in E. faecium [8, 36], E. ratii and E. durans species. On

the other hand, Type II was found in at least fifteen species: E. faecalis, E. faecium, E. casselifla-
vus, E. caccae, E. haemoperoxidus, E.moraviensis, E. silesiacus, E. phoeniculicola, E. gallinarum,

E. flavescens, E. saccharolyticus, E. durans, E. pallens, E. columbae and E.malodoratus.
These results suggest that this metabolism could be playing an important role in these

microorganisms ability to grow, persist or colonize different niches. In particular, the genes

and arrangement described for the E. faecalis JH2-2 strain [18] (Fig 1B) are conserved in all of

the strains, despite their different origins (hospital, water, food or plant). In all of the E. faecalis
analyzed genomes, the transcriptional activator CitO, responsible for the induction of the clus-

ter in the presence of citrate, the citrate transporter CitH, the citrate lyase complex (CitD,

CitE, CitF) and its accessory proteins (CitC, CitG and CitX), the four subunits of the mem-

brane OAD (OadH, OadA, OadD and OadB) and the soluble OAD (CitM) were found

encoded.

G. mellonella as a model to study the role of citrate fermentation in

virulence

The connection between citrate metabolism and aroma compound production pathways has

been extensively studied as well as the regulatory mechanisms involved [8, 18–22, 37]. Although

many E. faecalis strains are known opportunistic pathogens, the relationship between citrate uti-

lization route and pathogenicity has not been previously analyzed.

Thus, G.mellonella was selected as a suitable infection model to investigate this link. Use of

this moth´s larvae as an alternative model has proven useful in simple infection experiments,

giving fast and reliable results, which at the same time correlate with those obtained with more

traditional models [27, 38–40]. Thus, to determine if genes responsible for citrate fermentation

are expressed in E. faecalis-infected larvae, a fluorescent probe was used. The divergent pro-

moter region of the cit cluster was cloned in the pTLGR fluorescent reporter plasmid [29],
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generating the pTLGR-Pcit construct (Table 1). In pTLGR-Pcit, PcitCL (the promoter of the

catabolic operon) controls the expression of GFP whereas PcitH (the promoter of the citrate

transporter and regulator) controls the expression of the Cherry protein (Fig 2A).

E. faecalis JH2-2 strain was electroporated with pTLGR or pTLGR-Pcit plasmids. Next, E.

faecalis strains harboring pTLGR or pTLGR-Pcit plasmids were grown in LB and LB with

0.5% citrate (LBC); to assess promoter induction samples were withdrawn after 16 hs of

growth at 37˚C and observed by fluorescence microscopy. As shown in Fig 2B, in LB a few

cells showed a faint GFP and Cherry fluorescence indicating a low basal activity of the promot-

ers [18]; on the contrary, as expected in LBC E. faecalis cells showed strong fluorescent signals,

demonstrating induction of both promoters. No fluorescence was detected in the empty

pTLGR plasmid (not shown).

Next, G.mellonella larvae groups were injected with 1 x 107 CFU/larva of E. faecalis JH2-2

pTLGR-Pcit or pTLGR. Hemolymph of sample individuals was extracted at different time

points after inoculation and fluorescent bacteria were detected. After 24 hours of inoculation

(Fig 2C), evidence of active cit promoters was found, both free in the hemolymph and associ-

ated to hemocytes. A strong fluorescent signal is observed around the hemocytes, indicating

that several bacteria are in contact with them, at 48 h. Also during the assay, melanization and

deterioration of larvae health conditions was observed for individuals inoculated with E. faeca-
lis JH2-2 pTLGR-Pcit or pTLGR strains (Fig 2C). Production of melanin by G.mellonella lar-

vae is part of the insect innate immune response; melanin is synthesized after infection and it

is often found around encapsulated microorganisms [41]. In our case, distinctive dark spots

were observed after 24 h of infection while at 48h melanization extended to the rest of the larva

as a consequence of infection progression. No fluorescence was detected in the hemolymph of

larvae inoculated with E. faecalis JH2-2 harboring empty pTLGR plasmid (not shown).

Citrate metabolism deficiency impairs E. faecalis virulence in G. mellonella
Taking into consideration the above data, contribution of the cit cluster to E. faecalis pathogen-

esis in this insect model was evaluated. Larvae group survival was monitored up to 72 h post-

infection and resulting data were analyzed through Kaplan-Meier curves [35, 42].

E. faecalis JH2-2 injection with 4 x 107 (Fig 3A) and 6 x 107 CFU/larva (S1 Fig) led to high

mortality rates; the first dead larva was detected after 25 and 20h (respectively) and a 30% and

5% survival rate was observed at 72h post-infection (respectively). On the other hand, Lacto-
coccus lactis IL1403 (4 x 107 CFU/larva) hardly appeared to be lethal (Fig 3A and 3F). No mor-

tality was observed in PBS-injected G.mellonella larvae (data not shown). Larvae inoculated

with E. faecalis JH2-2 acquired a complete melanization of the body after 48 h (Fig 3F), while

L. lactis inoculated larvae remained healthy (Fig 3F).

Next, citrate fermenting-deficient E. faecalis JH2-2 strains were used to establish cit genes

contribution to this bacterium infection capacity. A JH2-2-Cit- strain, impaired at citrate use

(final CFU/ml in LBC (1.47 ± 0.01) x108 vs (1.89 ± 0.04) x108 for the wildtype, S2 Fig), was

constructed with an interruption within the cit gene cluster (Table 1). We carried out larvae

inoculations with a total of 4 x 107 CFU/larva of this strain. Despite the low survival percentage

observed for the wild type (WT) strain, almost no larvae mortality was obtained over the

course of a 72 h experiment for the JH2-2-Cit- strain (Fig 3A). Even with a higher inoculum

concentration (6 x 107 CFU/larva) this mutant strain resulted barely lethal to G.mellonella (S1

Fig). A representative group of larvae inoculated with the JH2-2-Cit- strain can be observed in

Fig 3F. Remarkably, these low lethality levels are similar to those observed with the nonpatho-

genic innocuous L. lactis IL1403 strain. These findings suggest that larvae mortality induced

by E. faecalis could be dependent on the presence of an active citrate metabolism.
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In order to extend our knowledge about the role of citrate metabolism in E. faecalis infec-

tion of G.mellonella, mutants in the subunits of the membrane decarboxylase OAD were used.

The JH2-2-OadA- strain cannot metabolize citrate beyond oxaloacetate; on the contrary the

JH2-2-OadB- strain is capable of slowly degrading oxaloacetate to pyruvate by the action of the

cytoplasmic OadAHD complex [21]. Thus, survival of G.mellonella inoculated with these

strains was monitored to analyze involvement of the mOAD complex in E. faecalis virulence.

Since lethality is influenced by inoculum concentration, we injected larvae with several CFU

values to observe variations in strain pathogenicity. Virulence of the JH2-2-OadB- strain in G.

mellonella larvae was tested in a CFU range varying from 9 x 106 to 3 x 107 CFU/larva. This

strain resulted less virulent than the WT when inoculated at CFU of 9 x 106, 1 x 107 and 3 x 107

Fig 2. Induction of cit promoters in G. mellonella. (A) Scheme of citrate metabolism genes and fluorescent reporter

plasmid pTLGR-Pcit used for microscopy. Fluorescence microscopy at different time points of E. faecalis JH2-2 cells

harboring pTLGR-Pcit plasmid grown in LB and LB with 0.5% citrate (LBC), scale bar 5 μm (B); or G.mellonella
hemolymph extracted at different time points after E. faecalis JH2-2 pTLGR-Pcit infection, scale bar 50 μm (C).

Representative individuals of inoculated larvae are shown in (C). Two independent experiments were carried out and

representative images acquired are shown.

https://doi.org/10.1371/journal.pone.0205787.g002
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per larva (P<0.006), with more than 68% survival (JH2-2-OadB-) vs. less than 44% survival

(WT) for the two lowest concentrations. Results for 1 x 107 CFU/larva are shown in Fig 3B, all

the CFU/larva values tested are shown in S1 Fig. The JH2-2-OadA- strain also resulted less vir-

ulent than the WT in the same CFU/larva range (P<0.001), with 87.5% survival, for the two

lowest concentrations. Fig 3C shows the results for the 1 x 107 CFU inoculum.

To corroborate the role of citrate metabolism in E. faecalis JH2-2 virulence, the mOAD

complex mutation was complemented by expressing the OadA subunit in trans using the

pOadA plasmid (Materials and methods and Table 1). JH2-2-OadA- cells harboring pOadA

recovered their ability to metabolize citrate resulting in an increase in final CFU/ml counts for

cells grown in LBC ((2.1 ± 0.09) x108 CFU/ml vs (1.57 ± 0.02) x108 CFU/ml for the mutant, S2

Fig). Once the cit+ phenotype was confirmed, the complemented strain (JH2-2-OadA-/

pOadA) was used to inoculate G.mellonella larvae, again a range of CFUs were assayed. As

Fig 3. Survival of G. mellonella inoculated with different strains of E. faecalis. (A) Kaplan-Meier survival plots of G.mellonella upon injection with 4 x 107 CFU/larva

of E. faecalis JH2-2, or JHCit-. L. lactis IL1403 (4 x 107 CFU/larva) was employed as a control. (B, C, D and E) Kaplan-Meier survival plots of insects upon injection with

1 x 107 CFU/larva of E. faecalis JH2-2-OadB-, JH2-2-OadA-, JH2-2-OadA-/pOadA, or JH2-2-AlsS-, respectively; E. faecalis JH2-2 1 x 107 CFU/larva was used as

pathogenic control. (F) Images of innoculated larvae showing different degrees of disease.G.mellonella last instar larvae inoculated with L. lactis or E. faecalis citrate-

deficient strains showed a typical healthy creamy color, conversely larvae infected with E. faecalis JH2-2 or oadA- complemented strain showed different stages of

disease.

https://doi.org/10.1371/journal.pone.0205787.g003
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shown in Fig 3D, JH2-2-OadA-/pOadA cells were as virulent as the WT (P>0.001) for the low-

est concentrations (9 x 106 and 1 x 107 CFU/larva), with values of 3 x 107 CFU/larva the com-

plemented strain was slightly more virulent than the WT (P<0.001) (S1 Fig). A group of larvae

inoculated with 1 x 107 CFU/larva of the complemented strain is shown in Fig 3F where body

melanization to the same extent to that of the WT strain can be observed.

Repizo et al [21] showed that the JH2-2-OadA- strain cannot metabolize citrate and, conse-

quently, does not show growth improvement in the presence of this compound. On the other

hand, in LB growth medium supplemented with citrate, JH2-2-OadB- is able to reach final

OD600 levels similar to those of the parental strain, with a delay in the beginning of the second

growth phase, i.e., when citrate pathway is induced [18]. Thus, despite the ability of JH2-

2-OadB- to grow in citrate-containing media (LBC), it seems that under infection conditions,

the delay observed in its growth is strongly detrimental for the cells and they cannot cope with

the immune system of G.mellonella as well as the WT. This leads to higher larvae survival

rates. Nonetheless, citrate metabolism deficiency makes strains less virulent than the WT, con-

firming the observation made for the JH2-2-Cit- strain.

Given the connection between aroma compound production from pyruvate and citrate

metabolism (Fig 1C), an α-acetolactate synthase deficient strain (JH2-2-AlsS-) was also used in

survival experiments and compared with the other strains tested. The JH2-2-AlsS- [37] strain

is unable to further convert pyruvate into α-acetolactate. As a consequence, this strain exhibits

growth deficiency in the presence of pyruvate at pH 5.5, and is unable to grow at pH 4.5. This

indicated that the pathway involved in aroma compound generation is an important mecha-

nism which allows growth in acidic media [37]. Inoculums of JH2-2-AlsS- were prepared and

used to inject G.mellonella larvae. After examination of larvae health status during 72h, KM

curves were plotted (Fig 3E). When 1 x 107 CFU/larva were injected, JH2-2-AlsS- was less viru-

lent than the WT (P<0.001). With a 3 x 107 inoculum, the AlsS deficient strain was as virulent

as the WT (P = 0.37). suggesting that the “pyruvate to acetoin” pathway could be affecting E.

faecalis virulence.

Citrate metabolism enhances E. faecalis growth in insect hemolymph,

blood and urine

In previous sections we showed that citrate metabolism plays an important role during E. fae-
calis infection of G.mellonella. Consequently, an analysis of cit cluster induction in other ani-

mal fluids associated to common diseases caused by E. faecalis was performed. To this end, E.

faecalis JH2-2-pTLGR or pTLGR-Pcit was grown in mouse defibrinated blood, and activity of

Pcit promoters was analyzed at different time points. GFP and Cherry fluorescent signals were

detected as early as 2 hours after exposition to blood (Fig 4A), indicating that both promoters

were quickly induced. No fluorescence was detected at time 0 for pTLGR-Pcit or with the

empty pTLGR plasmid during a 24 h assay. When E. faecalis JH2-2 pTLGR-Pcit was incubated

in human urine, induction of Pcit promoters was observed after 2 h with increasing signal dur-

ing the time assayed (Fig 4B). These results suggest that citrate metabolism in E. faecalis is

probably being induced during blood and urine infection and could have a role in infection of

higher animals as well as in G.mellonella. To confirm this hypothesis in G.mellonella, bacterial

load after infection was determined. Larvae groups were infected with the WT and citrate

metabolism-mutant strains. At different time points, hemolymph was extracted from sample

individuals, diluted and plated onto an appropriate medium to determine total bacterial CFU/

ml of hemolymph.

Comparative analysis of CFU/ml at times 0, 24 and 48 h post-inoculation, allowed us to

confirm that, after 24h of inoculation, the JH2-2 WT strain can effectively reach higher CFU
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values in vivo than JH2-2-Cit-, JH2-2-OadA- and JH2-2-OadB- (Fig 5A, P<0.01 for all the WT

vs mutant comparisons). Moreover, at 24 and 48 h no statistically significant differences were

found for the total bacterial count in the hemolymph between mutant strains (Fig 5A, P>0.4

for all the comparisons).

These results suggest that citrate metabolism-deficient strains are unable to proliferate as

well as the WT in the hemolymph and are probably eliminated by the larvae immune system,

thus provoking a less aggressive infection.

Since we showed that citrate genes are induced in blood, we analyzed the growth behavior

of the various mutants and the OadA- complemented strain to determine if their differential

capacity for citrate utilization can be correlated with a differential growth. As shown in Fig 5B,

no differences in growth were found among strains up to 6 h (P = 1). But, after 24 h of growth,

E. faecalis JH2-2 and JH2-2-OadA-/pOadA reached a higher cell density than citrate metabo-

lism mutants (Fig 5B). Statistical analysis indicated that these differences were significant

(P<0.05), showing that induction of citrate metabolism could give E. faecalisWT strain an

advantage in the overall growth process.

When strains were grown in urine (Fig 5C) a clear difference in growth among WT, JH2-

2-OadA-/pOadA and mutant strains was observed at 6 h of incubation. After this point, the

JH2-2-OadA- and JH2-2-Cit- mutants did not grow any further while JH2-2-OadB-, JH2-2

WT and JH2-2-OadA-/pOadA continued with a slow growth. Statistical analysis indicated that

Fig 4. Induction of cit promoters in blood and urine. Fluorescence microscopy at different time points of E. faecalis JH2-2 cells harboring pTLGR or pTLGR-Pcit

plasmids grown in defibrinated blood (A) or urine (B). Two independent experiments were carried out and representative images acquired of three technical replicates

are shown. Scale bar 5 μm.

https://doi.org/10.1371/journal.pone.0205787.g004
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the differences observed were significant (P<0.05), meaning that mutant strains grow less

effectively in urine than the WT or JH2-2-OadA-/pOadA.

Discussion

E. faecalis is a natural member of the gastro-intestinal microbiota of warm-blooded animals

and insect guts. The intrinsic ability of this bacterium to resist harsh conditions allows it to

persist in hospital environments and to survive host defenses [43]. Nevertheless, many of these

microorganisms are associated with food production and some strains also possess probiotic

properties [22, 44, 45]. Accordingly, E. faecalis is often found in diverse types of fermented

food products, making them part of the human diet around the world [22, 45]. In this context,

citrate fermentation is a desired trait of lactic acid bacteria since it contributes to aroma devel-

opment [2, 8, 37].

In this study, citrate fermentation operons were detected in 758 out of 1478 genomes ana-

lyzed comprising 17 species of the Enterococcus genus. Although citrate-negative strains were

found in some of the species remarkably all of the E. faecalis genomes analyzed encoded the

thirteen genes necessary for citrate fermentation. Furthermore, this Type II cit cluster was

Fig 5. E. faecalis strains growth in G. mellonela larvae (A), blood (B) and urine (C). (A) G.mellonella was

inoculated with 9 x 106 CFU/larvae. Bacterial burden was quantified using pools of hemolymph extracted from

different larvae at the time points indicated. Growth was monitored by measuring colony forming units per milliliter

(CFU/ml). JH2-2-OadA- (purple), JH2-2-oadB- (orange), JH2-2-Cit- (green) and JH2-2 (red). Data points correspond

to the mean ± standard error of six replicates, significative difference is indicated by � or ��. (B and C) Growth of E.

faecalis strains in blood and urine, respectively; E. faecalis JH2-2 (red circle), JH2-2-OadA- (purple square), JH2-

2-oadB- (orange up triangle), JH2-2-Cit- (green down triangle) and JH2-2-OadA-/pOadA (cyan diamond). Data points

correspond to the mean ± standard error of four and three replicates, respectively.

https://doi.org/10.1371/journal.pone.0205787.g005
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found conserved independently of strain origin, suggesting the importance of pathway preser-

vation in this species.

In this work, we further demonstrate that the presence of cit genes contributes to the patho-

genic behavior of E. faecalis in the G.mellonellamodel. Citrate metabolism-defective strains

showed a reduced capacity of infection. When the cit cluster is interrupted (JH2-2-Cit- strain),

E. faecalis ability to metabolize citrate is abolished and, as a consequence, a remarkably lower

mortality of G.mellonella was observed (Fig 3A). On the other hand, in mOAD mutants, cit-

rate metabolism is affected to different extents; the oadAmutant allows the conversion of cit-

rate to oxaloacetate but not to pyruvate (Fig 1C) [21], whereas the oadBmutant conserves a

soluble OAD complex (OadADH) which could allow the complete conversion of citrate to

pyruvate, but at a lower rate [21]. These metabolic differences between the JH2-2-Cit- strain

and the mOAD mutants can probably account for the observed differences in the G.mellonella
survival rates after inoculation (Fig 3). In addition, an α-acetolactate synthase deficient strain

(JH2-2-AlsS-) was also found less virulent than the E. faecalisWT strain.

Examples of metabolic pathways associated with virulence in E. faecalis are not common,

Maadani et al. reported that an E. faecalis strain unable to metabolize ethanolamine was less

virulent in the C. elegansmodel [46]. Ethanolamine is found in the intestine and can be used

as a source of both carbon and nitrogen. The capacity to use this organic compound has been

related with intestinal pathogens, for example, Salmonella species and Listeria monocytogenes
[47].

Its ability to survive in hospital environments and to infect immunocompromised patients

has made E. faecalis a commonly found cause of bacteremia and urinary tract infections [23–

25, 48]. In fact, many of the sequenced enterococci strains available at the NCBI GenBank

database were isolated from blood or urine of hospitalized patients. In this work, activation of

the citrate degradative pathway was observed in larvae but also in urine and blood (Fig 4). In

this media, concentration of preferred carbon sources such as glucose or fructose may fluctu-

ate between 1 to 6 mM or 0.01 to 0.5 mM, respectively [49]. Under these conditions, only

when glucose concentration reaches the higher value its repressive effect could be relevant on

the cit cluster reducing approximately 50% the activity of PcitHO promoter and 15% the activ-

ity of the catabolic operon PcitCL promoter [20]. Nevertheless, this concentration could allow

cometabolism of citrate and glucose. In urine, glucose concentration can reach 1.1 mM [49] a

value too low to cause citrate pathway repression. As a consequence, citrate present in both

media could be used as a carbon and energy source during E. faecalis infection.

It has been proposed that the ability of E. faecalis to cause infection would not only impli-

cate an organized regulation of several virulence factors and expression of genetic determi-

nants, but also an adaptation of the bacterial cell physiology during the infection process [3].

This suggests that various metabolic pathways could contribute differently to virulence and its

ability to persist in diverse environments.

Transcriptomic data of E. faecalis grown in blood and urine has shown that several known

virulence factors, such as the fsrB (EF1821), gelE (EF1818), cpsC (EF2493), ace (EF1099) and

efaA (EF2076) were modulated in their expression under both growth conditions [3, 4]. Also,

the data reflected the cells necessity for fast adjustments to withstand nutritional changes [3,

4]. In fact, the iron, manganese, sugar and oligo-peptide ABC-transport systems were found

up-regulated. Furthermore, in agreement with our results the gene cluster responsible for cit-

rate metabolism (EF3315-27) was up-regulated (Fig 1C). These results correlate with those

obtained in a recent study of E. faecalis infection in subdermal chambers, where citrate metab-

olism induction was also observed [50]. Transcription of pyruvate metabolism enzymes was

also modified during growth in blood and urine: α-acetolactate synthase (alsS, EF1213), α-

acetolactate decarboxylase (alsD, EF1214), pyruvate dehydrogenase complex (pdH, EF1353-

Citrate fermentation and virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0205787 October 18, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0205787


56) and lactate dehydrogenase (ldH, EF0255) were induced (Fig 1C); whereas phosphotransa-

cetylase (EF0949), acetate kinase (acK, EF1983, pyruvate formate lyase (pflB, EF1613), alcohol

dehydrogenase (adhE, EF0900) were repressed (Fig 1C). The up-regulation of citrate and some

enzymes of pyruvate metabolism favor the proton consuming reactions and also contribute to

increase the Acetyl-CoA pool that can be used as a precursor of the FASII pathway also up-reg-

ulated in blood and urine [3, 4].

These analyses demonstrated that E. faecalis is capable to adapt its physiology depending on

its surroundings and that the induction of virulence factors is probably a piece of a larger phys-

iological adaptation displayed when E. faecalis invades a niche as a pathogen.

In this work, we demonstrated that citrate metabolism gives E. faecalis an advantage to

grow in blood and urine. We have also proved that an active citrate metabolism allows the bac-

terium to proliferate inside living G.mellonella larvae to higher CFU/ml hemolymph counts.

This suggests that citrate metabolism is a key feature in E. faecalis, possibly allowing this

microorganism to overcome adverse conditions resulting in better growth conditions.
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S1 Fig. G. mellonella Kaplan-Meier survival plots after injection with different CFU/larvae

ratios of several E. faecalis strains. Complete set of KM survival plots, using 9 x 106, 1 x 107, 3

x 107, 4 x 107 or 6 x 107 CFU/larva of E. faecalis JH2-2, JH2-2-Cit-, JH2-2-OadA-, JH2-2-oadB-,

JH2-2-OadA-/pOadA and JH2-2-AlsS-.

(TIF)

S2 Fig. E. faecalis strains growth in LB medium. (A) Growth of E. faecalis JH2-2 (red circle)

and JH2-2-Cit- (green down triangle) strains in LB (empty symbols) or LB supplemented with

citrate (closed symbols). (B) Growth of E. faecalis JH2-2-OadA- (yellow up triangle) and JH2-

2-OadA-/pOadA (cyan diamond) strains in LB (empty symbols) or LB supplemented with cit-

rate (closed symbols). The data points correspond to the mean ± standard error of three repli-

cates.

(TIF)

S1 Table. Fig 5 raw data.
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