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H I G H L I G H T S

• The concept of transient effectiveness
factor TEF is applied to kinetic studies.

• TEF allows analyzing the evolutions of
reactant concentrations in batch re-
actors.

• Kinetic, diffusion and adsorption
parameters are determined simulta-
neously.

• A few catalytic experiments in a well
stirred batch reactor are needed.

• The approach is more general than
those resulting from steady state as-
sumptions.
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A B S T R A C T

A method to determine kinetics, diffusion and adsorption equilibrium parameters simultaneously in porous
catalyst particles, where a first order chemical reaction occurs under diffusion control conditions in batch re-
actor, was proposed. The method is based on the use of observable magnitudes from a few experiments in a well
stirred batch reactor. By means of a model considering the accumulation of reactant in the catalyst particles, the
transient effectiveness factor allows analyzing the time response of systems with different adsorption capacities.
The analysis basis and consequent methodology are more general and precise that those resulting from the
conventional assumption, which consider that the concentration profiles in the particles, fulfill the steady state
condition. Once an initial period elapsed after the reactant injection, the transient effectiveness factor reaches a
pseudo-equilibrium state, condition under which an analytical expression can be used to describe the evolution
of the reactant concentration in the fluid phase as a function of time. The parameters characterizing that ex-
pression of the dynamic response of the reactor, i.e., the exponential decaying constant and the concentration
extrapolated at time zero, allow using data from a few experiments to determine the corresponding system’s
diffusion, adsorption and chemical reaction parameters under reaction conditions.

1. Introduction

Solid porous catalysts are usually prepared in the form of small

crystals that are later agglomerated into particles with various shapes in
order to ease its use in chemical reactors. Consequently, various steps
can be distinguished in the overall process of a chemical reaction
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occurring in those catalyst particles: transport of reactants from the
bulk of the fluid phase to the external surface of the particles, diffusion
through the porous system to the inner sections of the particles, ad-
sorption and desorption, and reaction of the adsorbed reactants. The
inverse sequence can be drawn for the products.

The efficiency in the operation of a chemical reactor depends on
many issues but, in relation to the solid catalyst, the characteristics of
the adsorption equilibrium, the chemical reaction kinetics, the re-
sistances to mass transfer in different locations, and the relative mag-
nitudes of the capacities of the solid and fluid phases to retain reactant
can be mentioned. In many cases the chemical reaction rate and the
diffusion processes are slow as compared to the adsorption-desorption
events and an equilibrium between adsorbed species and molecules in
the fluid phase can be assumed [1]. Thus, the assessment of the in-
dividual transport, adsorption and chemical reaction parameters is a
key issue in reactor analysis and design, many laboratory techniques
having been developed to determine them, which have advantages and
disadvantages [2,3]. For instance, the recently introduced microima-
ging infrared microscopy technique can be mentioned [4]. By means of
this advanced technique, it is possible to know the transient con-
centration profiles resulting from diffusion and reaction processes in a
one-piece catalyst wafer after a step perturbation in the concentration
of reactant in the inlet stream of a flow reactor. Then, the intrinsic
diffusivities and chemical reaction rate constants are determined.

Well stirred reactors are frequently used in kinetic studies given
some inherent benefits, particularly the lack of temperature and

concentration gradients external to the catalyst particles [5], which
allows focusing on the diffusion mass transfer process in the pores.One
of the basic assumptions in the analysis of chemical kinetics data is that,
provided catalyst deactivation is negligible, a steady state can be as-
signed to the concentration profiles in the catalyst particles, that is, the
accumulation terms in the mass balances are neglected [6,7]. Together
with the fundamental concept of effectiveness factor η( ,ss [6]), the
Weisz-Prater parameter θ( , [8]) is a tool usually employed in chemical
reaction kinetics analysis by means of which the chemical reaction rate
constants k( )s can be determined from experimental observations,
provided the equilibrium adsorption constant K( ) and the effective
particle diffusivity D( )p are known [1]. However, it has been shown that
the assumption of steady state in the particles is only valid in systems
where the adsorption capacity =α V K

V
p e

f
, that is, the relationship be-

tween the amount of reactant which can be retained in the solid and the
fluid phase, respectively, is very low [9]. This fact makes the individual
determination of ks (the first order kinetic constant) and K (the Henry’s
adsorption constant) impossible and, in order to overcome this point, α
should be increased in the experiments [9]; for instance, by increasing
the load of catalyst in the batch reactor. Recently, a pseudo-homo-
genous model for batch reactors has been developed based on the
concept of transient effectiveness factor η( )ts , which allows these tools
to be used in systems where the adsorption capacities are not negligible
[10,11]. Again considering that K and Dp are known, this novel model
contemplates the accumulation of reactant in the catalyst particles,
predicts a constant value for the transient effectiveness factor after a

Notation

Symbols

C Reactant concentration (gmol/m3)
D Diffusivity (m2/s)
F Function of Thiele modulus for the smallest particles given

by Eq. (19)
f Function
I Correction factor given by Eq. (9) (dimensionless)
K Henry’s constant (dimensionless).
k Reaction rate constant (1/s)
m Mass (kg)
m Relationship between particle sizes (dimensionless)
Q Concentration in the solid phase, adsorbed compounds

(gmol/m3)
R Catalyst particle radius (m)
r Radial distance (m)
r Reaction rate per unit volume of porous catalyst particles

(gmol/m3s)
s Coefficients of expansion in Eq. (B.7), defined in Eq. (B.8)

(dimensionless)
t Time (s)
V Volume (m3)

Greek symbols

α System’s adsorption capacity defined by Eq. (A.10) (di-
mensionless)

χ Dimensionless concentration in the fluid phase of the re-
actor

ε Porosity (dimensionless)
ϕ Thiele modulus (dimensionless)
η Effectiveness factor (dimensionless)
λ Eigenvalues in Eq. (B.7), defined in Eq. (B.9) (di-

mensionless)
θ Weisz-Prater parameter (dimensionless)

ρ Dimensionless radial distance
τ Dimensionless time
ξ Dimensionless concentration in solid phase

Subscripts

1 Refers to experiments performed with the smallest parti-
cles

2 Refers to experiments performed with the biggest particles
a Adsorption
Approx Approximate
c Catalyst
e Equivalent or effective
f Fluid phase
i Order of coefficients si in Eq. (B.8)
I Refers to experiments performed with the highest load of

catalyst
II Refers to experiments performed with the lowest load of

catalyst
n Order of the eigenvalues in Eq. (B.9)
0 At time zero
obs Observed
p Particle
pE Pseudo-equilibrium
R Reactor
s Solid phase
TIPB 1,3,5-tri-isopropylbenzene, reactant

Superscripts

– Volume averaged variable
∗ Extrapolation to time zero of the concentration (and di-

mensionless concentration) in the fluid phase defined by
Eq. (10))

o Initial
ss Steady state
ts Transient state
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certain time has elapsed and allows determining ks from experimental
observations, even though the steady state conditions are not fulfilled.
If the classical approach (which considers steady state in particles) is
assumed and the accumulation term in the mass balance is not negli-
gible, errors can be important [11].

It is the objective of this work to show that the pseudo-homo-
geneous model is the basis for a new methodology to simultaneously
determine ks, K and Dp in systems with different adsorption capacities,
using data from a few laboratory experiments with a catalytic, well
stirred batch reactor.

2. Theoretical model

The dynamic response of a reacting system with the following as-
sumptions and conditions is analyzed. The reactor is a well stirred batch
reactor where a pulse of reactant is injected over spherical, uniform size
catalyst particles. Two phases can be distinguished for the reactant, one
diffusing through the particle pores, the other adsorbed on the catalytic
surface. The adsorption and desorption rates are much faster than those
of the diffusion (Fick’s law-type) and first order chemical reaction
processes; then, a linear (Henry’s law-type) adsorption equilibrium is
assumed. The operation is isothermal and the resistance to the mass
transfer external to the catalyst particles and the catalyst deactivation
are neglected. All the necessary equation developments and variable
and parameters definitions are extensively described in Notation,
Appendix A and Appendix B sections.

The reactant mass balances in the catalyst particles and the reactor
can be respectively described by means of the following dimensionless
equations (see Appendix A) [9–11],

∂
∂

= ∇ −
ξ
τ

ξ ϕ ξ2 2
(1)

= −
∂
∂ =

dχ
dτ

α
ξ
ρ

3
ρ 1 (2)

and the boundary and initial conditions

∂
∂

= = = =
=

ξ
ρ

ξ χ ξ χ0, , 0, 1
ρ

τ τ ρ
0

(1, ) ( ) ( ,0) (0)
(3)

where χ = C C/f f
o represents the dimensionless fluid phase concentra-

tion of reactant meanwhile ξ = C C/ f
o is the dimensionless local con-

centration of reactant in the porous of the catalytic particles. τ = tD R/e
2

is the dimensionless time and ρ = r R/ is the dimensionless radial co-

ordinate. The classical Thiele modulus =ϕ R k
D

e
e
and the system’s ad-

sorption capacity parameter =α V K
V
p e

f
include the respective diffusion,

chemical reaction kinetics and adsorption parameters (see Appendix A)

=D
D
K

,e
p

e (4)

=
−

k
ε Kk
K

(1 )
e

p s

e (5)

and

= + −K ε ε K(1 ) .e p p (6)

Examples exist of reactions for which these analysis assumptions are
applicable under conditions typical of kinetic studies. Among them, the
oxidation of CO [12,13], the biodegradation of phenol [14,15] and the
conversion of hydrocarbons in cases where it is possible to distinguish
between a diffusing phase and a phase immobilized on the pore’s inner
surface. Eqs. (1)(3) can still be used in crystals of fine structures such as
zeolites provided the expression of the diffusion coefficient is redefined
[9].Even though the classical effectiveness factor was defined con-
sidering that the concentrations at the external surface and inside the

catalyst particles are at the steady state η( ,ss which only depends on ϕ
[6]), indeed it is always an inherently transient system parameter

∫
= = =η

πρ k ξ dρ

πk χ

ξ
χ

η
4

,τ
e ρ τ

e τ

τ

τ

ts
( )

0
1 2

( , )
4
3 ( )

( )

( ) (7)

where ξ is the volume averaged concentration of reactant in the pores
of the catalyst particles (see Eq. (A.11), Appendix A). The assumption of
steady state concentration profiles in the catalyst particles which,
mathematically, can be achieved by making nil the accumulation term
in the mass balances, has been widely used to represent the reactor’s
dynamics [7]. However, when the concentration of reactant in the fluid
phase changes fast and the system’s adsorption capacity is not negli-
gible, the concentration profiles in the particles can not be described
properly if the steady state is assumed [9–11].

In a well stirred batch reactor ηts depends not only on the Thiele
modulus but also on the system’s adsorption capacity α( ) [10,11].
Moreover, it was shown that ηts reaches a constant value η( )pE

ts once a
certain dimensionless time after the injection of reactant has elapsed,
thus defining a pseudo-equilibrium state condition [9–11]. Interest-
ingly, such a constant value can be approximated, with a small error,
from ηss and the correction factor I ϕ α( , )a (see Eq. (B.16) in Appendix B),
which derives from considering the accumulation term in the particles,
and includes the characteristic system’s dimensionless time constants
[10,11],

≅ = = +η η η I η τ τ(1 / ).pE
ts

Approx
ts ss

a
ss

p obs (8)

Here τp = s s/2 1 (where = ∑ +=
∞s ϕ n π6/( )i n

i
1

2 2 2 , see Eqs. (B.8) and (B.9)
in Appendix B and [10] is the dimensionless time constant for diffusion,
adsorption and reaction in the particles, indicating their inertia in
reaching the steady state whose approximate value is ≅ +τ ϕ1 /(15 )p

2

[16,17], and = − −τ d χ dτ[ (ln )/ ]obs
1 is the observable system’s di-

mensionless characteristic time. It can be seen in Eq. (8) that how much
ηpE

ts differs from ηss depends on the relationship between the corre-
sponding particle and overall inertias.

It can be shown that Ia is a function of α and ϕ (see Appendix B) [10]

= +
+ −

I α s
α s α s ϕ

(1 )
1

.a ϕ α( , )
1

1 2
2 (9)

Fig. 1 shows the evolution of the concentration of reactant in the re-
actor fluid phase χ( ) and the volume-averaged concentration in the
particles ξ( ) after the injection. The resulting transient effectiveness
factor η( ts, Eq. (7)) and its asymptotic value η( )pE

ts are compared with the
classical effectiveness factor η( ss, [6]) obtained with the same Thiele
modulus assuming the reactant concentrations in the particle are at the

Fig. 1. Evolution of the system concentrations and effectiveness factors as a
function of time. ϕ( =5; α =1).
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steady state. The approximated value η( )Approx
ts was calculated after Eqs.

(8) and (9).
Accepting that ηts has reached its constant value η( )pE

ts , then it is
possible to find an analytical solution for the evolution of the di-
mensionless reactant concentration in the reactor’s fluid phase, χ [11]

= − = −∗
∗

χ χ τ τ
C
C

t texp( / ) exp( / ),obs
f

obs0
0
o

(10)

where

=
+

∗χ
τ τ
αη

exp ( / )
1

p obs

pE
ts0

(11)

and

=
+

τ
αη

αη ϕ

1
.obs

pE
ts

pE
ts 2

(12)

Both the concentration extrapolated to time zero ∗C( )0 and the ex-
ponential decaying time constant t( )obs can be determined from the
experimental observation of the evolution of the reactant concentration
in the fluid phase in the reactor C( )f as a function of reaction time t( )
(see Eq. (10)). Fig. 2 shows the evolution of the concentrations as a
function of time. For each pair of parameters ϕ and α, the dimensionless
concentrations were calculate from the exact solution to the system of
Eqs. (1)(3) and Eq. (A.11) (Appendix A). Numerical solutions were
obtained by means of a finite difference method with a Crank-Nicholson
scheme [18]. Regard to the analytical solutions, the fluid phase di-
mensionless concentration χ( ) was calculated according to Eqs. (10)
(12), and the volume averaged concentration in the particle ξ( ) was
calculated with Eq. (B.14) (Appendix B) [11]. As it can be seen, in

systems where →α 0, the χ value at →τ 0 is ≈∗χ 10 (Fig. 2a and b);
however, the larger the α the larger the difference <∗χ 10 . The ap-
proach shows that the closeness of ∗χ0 to one is a direct evidence about
the validity of the assumption of steady state in the particles [11].

The well-known Weisz-Prater parameter is defined as the relation-
ship between the observed chemical reaction rate per unit volume of
catalyst particles (r )obs and a characteristic diffusion rate [1,8]

=θ R
D C

r
p f

obs
2

(13)

which can be conveniently expressed in this case as [11]

= = −⎡
⎣⎢

⎤
⎦⎥

−

θ R
D

V
V t

t
d C C

dt
1 ,

ln( / )
.

p

f

p obs
obs

f f2 o 1

(14)

In systems with first order kinetics and linear adsorption equili-
brium at the steady state, both ηss and =θ η ϕss 2 only depend on ϕ.
However, it has been recently shown that in transient conditions, θ
depends not only on ϕ but also on α, according to [11]

=
+

θ
η ϕ

αη1
.pE

ts

pE
ts

2

(15)

These facts constitute the basis for the individual determination of
ks, Dp and K after a reduced number of simple experiments with a
stirred batch catalytic reactor where pulse injections of the reactant are
made. Moreover, it is very important to note that the parameters are
determined at the actual conditions at which the chemical reaction
proceeds.

Fig. 2. Dynamic responses in a batch reactor after the injection of a pulse of reactant. Lines: solid, χ (exact solution); , ξ (exact solution); , χ (analytical
solution); , ξ (analytical solution).
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3. Results and discussion

3.1. Method’s arrangement

If experiments are made in a well stirred batch reactor with different
particle sizes, for example =R m R2 1, of a given catalyst of known
porosity ε( )p , the rest of conditions (temperature, catalyst load, initial
concentration, etc.) being constant, then =ϕ mϕ2 1 and = =α α α2 1 . The
evolutions of the reactant concentration C( )f as a function of time t( )
are observed in these experiments, the time table of the gathered values
allowing to fit them to Eq. (10), that is, the well-known exponential
decaying function, so as to determine the two parameters defining it:
the concentration extrapolated to time zero ∗C( )0 and the exponential
decaying time constant t( )obs . Moreover, considering Eqs. (A.8) and
(A.9) (Appendix A), Eq. (12) can be written as

=
+

t
αη

α η k

1
.obs

pE
ts

pE
ts

e (16)

The results in the set of Experiments 1 (particle size R )1 and 2 (particle
size =R m R )2 1 will yield the concentrations extrapolated to time zero

∗C( 01 and ∗C )02 , and the exponential decaying time constants t( obs 1 and
t )obs 2 , respectively. Then, the relationship between both decaying time
constants (see Eq. (16)) is

= ⎛

⎝
⎜

+

+
⎞

⎠
⎟

t
t

η

η

αη

αη

1

1
.obs

obs

pE
ts

pE
ts

pE
ts

pE
ts

2

1

1

2

2

1 (17)

Following Eq. (8) as applied to both experiments, noticing that
≅η η I ϕ α( , )pE

ts
ϕ

ss
a1 ( 1) 1 and ≅η η I ϕ α( , )pE

ts
ϕ

ss
a2 ( 2) 2 , Eq. (17) becomes

= ⎡

⎣
⎢

+

+
⎤

⎦
⎥

t
t

η

η
I
I

α η I

α η I

(1 )

(1 )
.obs

obs

ϕ
ss

ϕ
ss

a

a

ϕ
ss

a

ϕ
ss

a

2

1

( 1)

( 2)

1

2

( 2) 2

( 1) 1 (18)

Moreover, =ϕ m ϕ2 1 and, given that the conventional effectiveness
factor, based on the assumption of steady state, depends only on the

Thiele modulus, the relationship
η

η
ϕ

ss

ϕ
ss
( 1)

( 2)
in Eq. (18), which can be ex-

pressed analytically, will only include the Thiele modulus for one of the
experiments, e.g. ϕ1, as the unknown parameter. If the particles are
spherical, then

⎜ ⎟= = ⎛
⎝

−
−

⎞
⎠

F ϕ
η

η
m

ϕ ϕ
mϕ mϕ

( )
coth ( ) 1
coth ( ) 1

ϕ
ss

m ϕ
ss1
( 1)

( 1)

2 1 1

1 1 (19)

and Eq. (18) can be rewritten as

= ⎡

⎣
⎢

+

+
⎤

⎦
⎥

t
t

F ϕ I
I

α η I

α η I
( )

(1 )

(1 )
.obs

obs

a

a

ϕ
ss

a

ϕ
ss

a

2

1
1

1

2

( 2) 2

( 1) 1 (20)

The following considerations apply in relation to the second parameter
defining the evolution of the concentration as a function of time in the
fluid phase of the reactor according to the pseudo-homogeneous model,
that is, the concentration extrapolated to time zero ∗C( ,0 see Eq. (10)).
Given that the conditions in the experiments imply that the initial
concentrations are the same = =C C C( )f f f1

o
2

o o , it should be noted that
for different Thiele moduli the concentrations extrapolated to time zero
are not ≠∗ ∗C C( ,01 02 see Fig. 2). The only particular condition assuring
that = =∗ ∗C C Cf01 02

o is that of →α 0, which corresponds to the steady
state situation.

It has been shown that in a wide range of ϕ and α values the cor-
rection factor Ia will be significantly lower than 2 [10], thus implying
that τ τ/p obs is lower than 1 (see Eq. (8)) and, considering that an ex-
ponential function can be approximately expressed as ≅ +x xexp ( ) 1
(provided <x 1), the numerator in Eq. (11) can be written as (see Eq.
(8))

≅ + =τ τ τ τ Iexp ( / ) 1 ( / ) .p obs p obs a (21)

and, consequently,

=
+

=∗
∗

χ I
α η I

C
C1

.a
ss

a f
0

0
o

(22)

Then,

= =
+

+

∗

∗G ϕ α
C
C

I
I

α η I

α η I
( , )

(1 )

(1 )
,a

a

ϕ
ss

a

ϕ
ss

a
1

02

01

2

1

( 1) 1

( 2) 2 (23)

where I ϕ α( , )a 1 1 and I ϕ α( , )a 2 2 are given by Eq. (9).
The right hand side in Eq. (23) is the reciprocal of the term between

brackets in Eq. (20), and then

= ⎡
⎣⎢

⎤
⎦⎥

∗

∗
t
t

F ϕ
C
C

( ) .obs

obs

2

1
1

01

02 (24)

If Eq. (24) is used in Eq. (19),

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

=
∗

∗
t
t

C
C

m
ϕ ϕ

mϕ mϕ
F ϕ

coth ( ) 1
coth ( ) 1

( )obs

obs

2

1

02

01

2 1 1

1 1
1

(25)

Now Eq. (25) allows determining the Thiele modulus for the first
experiment ϕ( )1 , and, consequently, =ϕ m ϕ2 1. Once ϕ1 and ϕ2 are
known, Eq. (23) together with Eq. (9) will provide α .

The system’s parameters can be now determined. Ke can be calcu-
lated with the help of Eq. (A.10) and K with Eq. (6). The constant value
of the transient effectiveness factor for the smallest particles η( )pE

ts
1 can

be calculated by means of Eq. (7), or approximately by means of Eqs.
(8) and (9), and Eq. (15) allows to calculate the corresponding Weisz-
Prater parameter θ( )1 . Then Dp can be obtained from Eq. (14) using the
characteristic time constant tobs determined in the experiments with the
particles having R1 size (i.e., t )obs 1 . ke can be calculated according to Eq.

Fig. 3. Scheme of calculations in the method. Parameters R1, =R m R2 1, Vf , Vp, εp and Cf
o are previously known from the catalytic experiments.
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(A.9) and, finally, ks will be provided by Eq. (5). The flow of calcula-
tions in the method is shown in Fig. 3.

An interesting limit case can be discussed. If = =∗ ∗χ χ 101 02 (this is
the consequence of α being much smaller than one, see Fig. 2a and b),
the concentration profiles in the catalyst particles can be considered to
be at the steady state and the procedure to determine Dp from magni-
tudes which can be observed in experiments is the usual one, which is
described, e.g., in the textbook by Fogler [1]. However, K and ks cannot
be obtained individually, but their product Kk( ,s [9]). If so, new ex-
periments should be performed at the same temperature with higher
catalyst loads and, consequently, higher α values, until ≠ <∗ ∗χ χ 101 02
is observed, so as to be in position to follow the method described
previously.

The method also opens to an attractive option to determine K and ks
provided Dp is previously known. In that case, the batch reactor could
be operated with different loads of catalyst particles with the same size,
e.g., =V V2pII pI (consequently, =α α2 )II I , the other conditions being
constant. If it is verified that ≠ <∗ ∗χ χ 1I II0 0 , then (refer to Eqs. (14) and
(15))

= =
+

+
θ
θ

t
t

η

η

α η

α η
2

(1 2 )

(1 )
obs

obs

pE
ts

pE
ts

pE
ts

pE
ts

I

II

II

I

I

II

I II

I I (26)

The only unknown parameter in Eq. (26) is alphaI, since the left
hand side is known from the experimental observations (see Eq. (13)),
and both ηpE

ts
I and ηpE

ts
II can be obtained from θI and θII respectively,

according to the methodology recently described in the Ref. [11],
where it was shown that the relationship between θ and ηpE

ts is essen-
tially unique and independent of the value of α. Then αI can be calcu-
lated, and consequently Ke (see Eq. (A.10)) and K (Eq. (6)). Finally,
given that now both K and Dp are already known, ks can be determined
following a procedure recently shown by Bidabehere et al. [11] by
using the pseudo-homogeneous model here described.

Even though this method was developed, strictly, for systems with
irreversible first order kinetics and linear adsorption equilibrium, it is
possible to apply it to reactions other than first order, as long as their
kinetic expressions could be linearized and described by equations si-
milar to Eqs. (1)(3). It could result in those cases that the kinetic
parameters are indeed combinations (for example, k C Ks T L, when the
kinetics is Langmuir-Hinshelwood-Hougen-Watson type

= +( )r k Cs s T
K C

K C1
L

L
[19]).

3.2. Parametric sensitivity and error analysis

The sensitivity and error analysis on the determination of ϕ1 and α
from dimensionless parameters =

∗

∗F ϕ( ) t
t

C
C1

obs
obs

2
1

02

01
and =

∗

∗G ϕ α( , ) C
C1

02

01
will

show the practical limitations of the method.
Fig. 4 shows the relationship between the Thiele modulus for the

smaller particles ϕ1 and F ϕ( )1 (Eq. (19)), for various values of m. Eq.
(19) shows that F ϕ( )1 is always larger than one, and then two limit
situations arise. If ϕ1 ≪ 1 (that is, no diffusion restrictions), considering
that ≈ ≈η η 1pE

ts
pE
ts

1 2 , the curves tend to the asymptotic value =F ϕ( ) 11 .

If ϕ1 ≫ 1 (that is, neat diffusion control), →ηpE
ts

ϕ1
1

1
and the curves tend

to the asymptotic value =F ϕ m( )1 . It is obvious that in these extreme
conditions the curves are near vertical and small errors in the experi-
mental determination of F ϕ( )1 (Eq. (25)) may impact severely on the
calculated value of ϕ1. Then, error propagations would be inadmissible
if working in those zones.

Fig. 5 shows, for various values of m, the relative errors produced in
the calculation of ϕ1 according to Eq. (19), provided the error in the
experimental determination of F ϕ( )1 according to Eq. (25) is 5%. It can
be seen that for every value of m, covering the range of practical par-
ticle size relationships, the values of ϕ1 leading to small errors are al-
ways equal or smaller than 3, suggesting that the effectiveness factor
are located in the transition zone. The range of values of F ϕ( )1 which

guarantee that the relative error in ϕ1 does not exceed a certain value,
for example, 20%, increases together with the particle size relationship
m. The lower limit, close to 1.2, is very similar for every m, the upper
limits increasing with m (they are close to 1.5, 1.8, 3.7 and 8, when m is
2, 2.38, 5 and 10, respectively).Restrictions on F ϕ( )1 provided by
Figs. 4 and 5 are necessary but not sufficient, given that, additionally,
the correlation between α and ϕ1 should be as small as possible. Fig. 6
shows the relationship between α and = ∗ ∗G ϕ α C C( , ) /1 02 01 for different
values of ϕ1 and m (Eq. (23)). Curves were drawn in the range
0.1 < α < 2, as prescribed by the method. The upper limit in α in-
sures that the error involved in assuming that the approximation to the
pseudo-equilibrium state is correct (Eq. (8)), is smaller than 5% [11]).
The consequences of operating under the lower limit α( < 0.1) were
discussed in Section 3.1. It can be seen in Fig. 6 that α and ϕ1 are not
strongly correlated, thus allowing to use G ϕ α( , )1 values to determine α
regardless the value of ϕ1. Moreover, the larger the m (Fig. 6b and c),
the smaller the value of ϕ1 at which −α G ϕ α( , )1 does not depends on ϕ1.
This has the additional positive effect of widening the range of ad-
missible F ϕ( )1 values (refer to Figs. 4 and 5).

Based on this analysis, the shaded areas in Fig. 7 show the method’s
operational windows, where the correlation between α and ϕ1 and the
error in the determination of ϕ1 are minimum. Fig. 7 shows that in all
cases ϕ1 is equal to or less than 3 if low levels of error are desired, thus
indicating that the conditions for the experiment with the smaller cat-
alyst should always ensure that the diffusive resistance does not
prevail.Fig. 8 shows the values of F ϕ( )1 and G ϕ α( , )1 as a function of m
which lead to reliable determinations of the parameters ϕ1 and α, thus
constituting an operative guide to the proper selection of experimental
conditions, which are implicit in Fig. 7. Note that m is known previous
to the experiments and that F ϕ( )1 and G ϕ α( , )1 can be determined di-
rectly from experimental results. Different zones in the figure show the
different system’s adsorption capacities. It should be noted that the
larger the restrictions on the F ϕ( )1 range, the smaller the restriction on
the G ϕ α( , )1 range.

3.3. Application example

3.3.1. Experimental
1,3,5-tri-isopropylbenzene (TIPB, Aldrich) was converted at 550 °C

over a commercial amorphous mesoporous silica-alumina catalyst (HA-
HPV Ketjen, Amsterdam, Netherlands) in order to show the method’s
application. Catalyst properties are shown in Table 1. The as-received
catalyst was sieved and separated into various particle size fractions,
two of them being used in the experiments: 200–270 mesh and 80–120

Fig. 4. Thiele modulus for the smallest particles ϕ1 as a function of F ϕ( )1 (Eq.
(19)).
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mesh (that is, 53–75 μm and 125–180 μm).
The experiments of conversion of TIPB were performed in a flui-

dized bed, internal recirculation batch laboratory reactor where the
catalyst is confined in a basket between two metal porous plates [20],
as it can be seen in Fig. 9. The reactor’s configuration allows satisfying
essentially all the hypothesis considered in section “System model”. The
experimental conditions are summarized in Table 2. Once the target
temperature and mixing conditions were achieved, a given amount of
TIPB was injected to the reactor and the sample was instantaneously

vaporized due to the high temperature. Simultaneously to the injection,
a timer was started. When the reaction time was reached, a valve
connecting the reactor with a large volume evacuation chamber was
automatically opened, so that both the products and unreacted TIPB in
the reactor were instantly evacuated. Then a sampling loop was filled
and the sample was finally injected into a gas chromatograph by means
of a six-way valve. The reaction products were analyzed on-line with
the help of standard capillary gas chromatography using a non-polar
column and flame ionization detection (FID). A 30m long, 250 μm
diameter and 0.25 μm film thickness, non-polar, dimethylpolysiloxane
column was used. Coke deposited on the catalyst surface was de-
termined by means of temperature-programmed oxidation and further
methanation of the carbon oxides. Methane was quantified with the
help of a FID detector. Mass balances (recoveries) closed to ±5% in all
the cases.

3.3.2. Determination of system parameters K , Dp and ks
Catalyst activity was considered constant, given that coke yields

were very small in all the experiments. Fig. 10 shows the evolutions of
the dimensionless concentration C C( / )f f

o observed in the cracking of
TIPB at 550 °C over the two different particle sizes, as a function of
reaction time t( ). Fitting data which satisfy that the ηpE

ts value has been
reached (Eq. (10) was derived under that condition), which ensures the
exponential matching with the final portion of the curves concentration
versus time curves (see Fig. 2) to Eq. (10), shows that

- Particle size R1:

=t s53.480obs 1 (27)

= =∗ ∗χ C C/ 0.773f01 01
o

(28)

=R 0.99982 (29)

Fig. 5. Error (%) in the determination of ϕ1 for different values of m when the
error in the determination of F ϕ( )1 is 5%.

Fig. 6. Relationship between α and G ϕ α( , )1 at various ϕ1. Lines: ϕ1 =0.6 ( ), ϕ1 =0.8 ( ), ϕ1 =1 (solid), ϕ1 =1.5 ( ), ϕ1 =2 ( ), ϕ1 =2.5
( ), ϕ1 =3 ( ). a) m=2, b) m=5, c) m=10.
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- Particle size R2:

=t s70.000obs 2 (30)

= =∗ ∗χ C C/ 0.866f02 02
o

(31)

=R 0.9999.2 (32)

In this way,

= =
∗

∗G ϕ α
C
C

( , ) 1.120,1
02

01 (33)

and

= =
∗

∗F ϕ t
t

C
C

( ) 1.466.obs

obs
1

2

1

02

01 (34)

The experimental results and the values shown in Tables 1 and 2 allow

Fig. 7. Thiele modulus ϕ1 as a function of F ϕ( )1 (Eq. (19)) for: a) 0.1 < α < 1, b) 0.1 < α < 2. The shaded areas indicate the method’s operational windows.

Fig. 8. F ϕ( )1 and G ϕ α( , )1 as a function of m. The shaded areas indicate the recommended zones when 0.1 < α < 1 (a and b) and when 0.1 < α < 2 (c and d). The
point in Fig. 8a and b refers to the experimental example (see Section 3.3.2.).

Table 1
Catalyst properties.

BET specific surface area (m2/g) 343
Total pore volume (cm3/g) 0.699
BJH Average mesopore diameter (Å) 93
Particle density (kg/m3) 758
Porosity ε( ,p m3/m3) 0.530
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calculating the various parameters that characterize the system. Given
that the relationship between the two particle sizes is known

= =m R R( / 2.38)2 1 , the only unknown in Eq. (25) is ϕ1. The value of the
Thiele modulus for the smallest catalyst particles leading to
F ϕ( )1 =1.466 is ϕ1 =1.553, and for the largest ones is

=ϕ m ϕ2 1 =3.701. It is possible to calculate the corresponding effec-
tiveness factors under the assumption of steady state by means of the
classical approach [6], which are η ϕ

ss
( 1) =0.869 and η ϕ

ss
( 2) =0.593, re-

spectively. Consequently, given that = ∗ ∗G ϕ α C C( , ) /1 02 01 =1.120, the
value of α satisfying Eq. (23) is 0.404.

The constant value of the transient effectiveness factor once the
pseudo-steady state condition was reached, ηpE

ts , can be calculated very
precisely by means of the approximation given by Eq. (8) [11]. Then,

Fig. 9. Schematic representation of the CREC Riser Simulator reactor. a) Reactor; b) Experimental set-up.

Table 2
Experimental conditions in the conversion of TIPB.

Smallest particle size, average R1 (m) 3.2× 10−5

Size ratio m (dimensionless) 2.38
Volume of reactor VR (m3) 4.69× 10−5

Reaction time t (s) 5–30
Mass of catalyst mc (kg) 5.0× 10−4

Volume of catalyst particles in the reactor Vp (m3) 6.60× 10−7

Mass of reactant injected mTIPB (kg) 4.1× 10−5

Fig. 10. Experimental evolutions of the dimensionless fluid phase concentra-
tion in the cracking of TIPB at 550 °C over particles with sizes R1= 3.2 10−5 m
( ) and R2= 7.6 10−5 m ( ). Lines: solid, exponential fitting (Eq. (10)); dash,
exact solution of the model with Dp =8.45×10−10 m2/s, K=59.05 and
ks =0.0716 1/s.
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≅ =η η η IpE
ts

Approx
ts

ϕ
ss

a ϕ α1 1 ( 1) ( 1 , ) =0.898.
The Weisz-Prater parameter for the smallest catalyst particles can

now be calculated directly from Eq. (15)

=
+

=θ
η ϕ

α η1
1.589pE

ts

pE
ts1

1 1
2

1 (35)

which allows calculating the diffusion coefficient (see Weisz-Prater
parameter’s definition, Eq. (14)), which is Dp =8.45×10−10 m2/s.
Then, the adsorption parameter Ke can be assessed from the definition
of the system’s adsorption capacity, =K α V V( / )e f p = 28.30 (see Eq.
(A.10)). Given that the porosity in the particles is known (Table 1), the
equilibrium adsorption constant is provided by Eq. (6)

= − −K K ε ε( )/(1 )e p p =59.05.
Finally, the definition of the Thiele modulus (Eq. (A.9)) shows that

=k ϕ R D K( / ) ( / )e p e1 1
2 =0.0703 1/s, from where the intrinsic kinetic

constant is calculated from Eq. (5), resulting ks =0.0716 1/s.
The resulting value of Dp is in close agreement with the theoretical

estimation of Knudsen diffusion coefficient [3], with a typical porosity/
tortuosity factor ratio of about 0.1. It is, as expected, much larger than
the diffusivities determined for zeolite catalysts [21,22].

Fig. 11 shows the evolutions of the reactant concentration, both in
the fluid phase χ( ), which is compared against the experimental ob-
servations, and volume averaged in the catalyst particles ξ( ), as simu-
lated for the R1 size particles. The transient η( )ts and steady state η( )ss

effectiveness factors were also included.
As it can be seen in Fig. 8, the experimental conditions in this ex-

ample (see point in the figure) are appropriate to determine the para-
meters characterizing the system. It can be observed in Fig. 5, with

= =m R R/ 2.382 1 , that =F ϕ( )1 1.466, as obtained from the experi-
mental information, is very close to the value producing the minimum
error propagation in the calculation of ϕ1. Fig. 8b shows that
G ϕ α( , )1 =1.120, also from the experimental information, is located in

the proper zone, in turn yielding α =0.404, that is, a low-medium
system’s adsorption capacity.

4. Conclusions

Kinetic, equilibrium and transport parameters can be determined
under reaction conditions in porous catalytic particles based on a
pseudo-homogeneous model, which includes the concept of transient
effectiveness factor. The method is based on the use of experimental
magnitudes observed in a few experiments with different catalyst par-
ticle sizes in a well stirred batch reactor where a first order chemical
reaction occurs under diffusion control conditions.

If the accumulation of reactant in the catalyst particles is con-
sidered, the transient effectiveness factor allows analyzing the time
response of systems with different adsorption capacities. Once a period
elapsed after the pulse reactant injection, the transient effectiveness
factor reaches a pseudo-equilibrium state under which an analytical
expression can be used to describe the evolutions of the reactant con-
centration, both in the fluid phase and averaged in the solid, as a
function of time. The parameters characterizing the dynamic response
of the reactor according to the pseudo-homogeneous model, that is, the
exponential decaying constant and the concentration extrapolated at
time zero, allow using data from a few experiments to determine the
system’s diffusion, adsorption and chemical reaction parameters.

The case example of the conversion of 1,3,5-tri-isopropylbenzene
over a silica-alumina catalyst with two different particle sizes showed
that when the Dp, K and ks parameters obtained with the proposed
method are used in the exact and pseudo-homogeneous model mass
balances, the corresponding evolutions of the concentrations closely
agree with the experimental observations.

The approach is independent of the system’s adsorption capacity,
thus being applicable to cases where the assumption of steady state
concentration profiles in the catalyst particles is no longer admissible.
The analysis basis and the consequent methodology are more general
than those resulting from the conventional assumption, which considers
that the concentration profiles in the particles fulfill the steady state
condition. The particular case of extremely low adsorption capacity
constitutes a limiting case in the model, which enables to determine the
coefficient Dp and the product Kks (not the isolated parameters) by
means of classical approaches considering steady state in the catalyst
particles. Moreover, provided the diffusive coefficient is previously
known, the method also enables to determine the kinetic constant and
the adsorption equilibrium parameter after experiments performed
with a single particle size.
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Appendix A

The mass balance for the reactant in the catalyst particles can be written as

∂
∂

= ∇ − − ∂
∂

− −ε C
t

ε D C ε Q
t

ε k Q(1 ) (1 )p p p p s
2

(A.1)

where =Q K C is the concentration of reactant adsorbed in the solid. If Eq. (A.1) is expressed in terms of the concentration of reactant diffusing
through the particle pores, the balance can be written as

∂
∂

= ∇ −C
t

D C k Ce e
2

(A.2)

Fig. 11. Evolution of the system concentrations and effectiveness factors as a
function of time. Simulations for particles with size R1 ϕ( 1 =1.553; α =0.404).
Lines: , χ ; , ξ ; , ηts; dot, ηss. Symbols: , χ (experimental
observations).
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subjected to the following boundary and initial conditions:

=C 0r( ,0) (A.3)

∂
∂

=
=

C
r

0
r 0 (A.4)

=C CR t f t( , ) ( ) (A.5)

with = =D D K ε D K/ /e p e p e, = −k ε Kk K(1 ) /e p s e and = + −K ε ε K(1 )e p p . K is the Henry’s adsorption constant (linear equilibrium) of the reactant, ks is
the first order reaction rate constant and =D ε Dp p is the diffusivity in the particle, which can be evaluated from the estimation of the Knudsen and
molecular diffusion coefficients and the tortuosity factor [23].

The overall mass balance in the reactor is

= − ∂
∂ =

V
dC
dt

V
R

ε D C
r

3
f

f
p p

r R (A.6)

subjected to the following initial condition:

==C C .f t f
o

( 0) (A.7)

If dimensionless variables are used according to

= = = =τ tD
R

ρ r
R

ξ C
C

χ
C
C

, , , ,e

f
o

f

f
o2 (A.8)

where Cf
o is the initial concentration =N V( / )o

f , the following parameters can be defined

=ϕ R k
D

,e

e (A.9)

=α
V K

V
.p e

f (A.10)

The parameter ϕ is the well-known Thiele modulus and the parameter α is the system’s adsorption capacity, which relates the magnitudes of the
capacities of the solid and fluid phases to retain reactant [10].

By using Eqs. (4)(6), (A.8) and (A.9) into Eqs. (A.2)(A.7) their corresponding dimensionless forms are given by Eqs. (1)(3).
The solution of the system of Eqs. (1)(3) provides the profiles of concentration of reactant in the spherical particles as a function of the di-

mensionless time =ξ f ρ τ( , ) for given parameters ϕ and α. Additionally, the evolution of the concentration of reactant in the fluid phase =χ f τ(1, ) is
obtained. Once the problem has been solved, it is easy to find the volume average concentration of reactant in the pores of the catalyst particles

∫=ξ ξ ρ dρ3 .
0

1 2
(A.11)

Appendix B

Eq. (A.2), averaged in the particles’ volume, is

∫= ∇ ∇ −dC
dt V

D C dV k C1 . ( ) .
p V e e

p (B.1)

If the Gauss’ theorem is applied on the first term in the right hand side of Eq. (B.1),

∫ ∇ ∇ = ∂
∂ =V

D C dV
R

D C
r

1 . ( ) 3
p V e e

r Rp (B.2)

and then

∂
∂

= +
=R

D C
r

dC
dt

k C3
e

r R
e

(B.3)

or

∂
∂

= +
=R

ε D C
r

K dC
dt

k C3 [ ].p
r R

e e
(B.4)

If Eq. (B.4) is used in the mass balance in the reactor (Eq. (A.6)) it yields

= − ⎡
⎣⎢

+ ⎤
⎦⎥

V
dC
dt

V K dC
dt

k Cf
f

p e e
(B.5)

which can be written in its dimensionless form by means of Eq. (A.8)(A.10)

= − ⎡
⎣⎢

+ ⎤
⎦⎥

dχ
dτ

α
dξ
dτ

ϕ ξ .2

(B.6)

It was shown that the volume average concentration in the particle ξ( , Eq. (A.11)) can be expressed by means of a series expansion in terms of the

C.M. Bidabehere et al. Chemical Engineering Journal 345 (2018) 196–208

206



fluid phase concentration of reactant χ( ) and its derivatives [16]

∑ ⎜ ⎟= − + − + ⎛
⎝

⎞
⎠

⎛

⎝
⎜− + − + ⎞

⎠
⎟

=

∞ −

=
= =

ξ s χ s dχ
dτ

s d χ
dτ

e
λ

χ
λ

dχ
dτ λ

d χ
dτ

... 1 1 ...
n

λ τ

n
τ

n τ n τ
1 2 3

2

2
1

( 0)
( 0)

2

2

2
( 0)

n

(B.7)

with

∑=
=

∞

s
λ
6 ,i

n n
i

1 (B.8)

where the eigenvalues λn are

= +λ ϕ n π .n
2 2 2 (B.9)

The exponential terms in Eq. (B.7) can be considered negligible if the time elapsed is longer than > +τ π ϕ1/( )2 2 . Then, Eq. (B.7) becomes

= − + −ξ s χ s dχ
dτ

s d χ
dτ

...1 2 3

2

2 (B.10)

If Eq. (B.10) is truncated in the second term

≅ −dχ
dτ s

s χ ξ1 ( ).
2

1 (B.11)

The derivative of Eq. (B.10) is

= − + −
dξ
dτ

s dχ
dτ

s d χ
dτ

s d χ
dτ

...1 2

2

2 3

3

3 (B.12)

and, neglecting the terms corresponding to the second and higher order derivatives,

≅
dξ
dτ

s dχ
dτ

.1 (B.13)

If Eqs. (B.11) and (B.13) are used in the overall mass balance for the reactant in the reactor (Eq. (B.6)), the dimensionless average reactant
concentration in the particle can be obtained,

= ⎡
⎣⎢

+
+ −

⎤
⎦⎥

ξ s α s
α s α s ϕ

χ(1 )
1

.1
1

1 2
2 (B.14)

From Eqs. (B.8) and (B.9) it can be seen that the coefficient s1 in this equation is

∑= + = − =
=

∞

s ϕ n π
ϕ

ϕ ϕ η6/( ) 3 ( coth 1)
n

ss
1

1

2 2 2
2 (B.15)

i.e., the steady state effectiveness factor η( )ss . The term between brackets in Eq. (B.14) is

= +
+ −

I α s
α s α s ϕ

(1 )
1

.a
1

1 2
2 (9)

According to Eq. (7) the transient effectiveness factor is given by the relationship between ξ and χ which, after an initial period (see Fig. 1),
becomes constant. Then, as it can be derived from Eqs. (7) and (B.14),

= = ⎡
⎣⎢

+
+ −

⎤
⎦⎥

=
> +

η
ξ
χ

s α s
α s α s ϕ

η I(1 )
1

.pE
ts

τ π ϕ

ss
a

1/( )
1

1

1 2
2

2 2 (B.16)

Eq. (B.16) shows that the correction factor Ia represents the relationship between the constant value of the transient effectiveness factor η( )pE
ts and

the steady state effectiveness factor η( )ss in a well stirred batch reactor. Ia considers the accumulation term in the particles and is always higher than
one due to inertia of the particles to respond to the changes in the fluid phase concentration [10].
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