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Abstract. The purpose of this work is to study a finite element method for

finding solutions to the eigenvalue problem for the fractional Laplacian. We
prove that the discrete eigenvalue problem converges to the continuous one and

we show the order of such convergence. Finally, we perform some numerical
experiments and compare our results with previous work by other authors.

1. Introduction and Main Results

Anomalous diffusion phenomena are ubiquitous in nature [33, 42], and the study
of nonlocal operators has been an active area of research in different branches of
mathematics. Such operators arise in applications as image processing [13, 26, 28,
39], finance [15, 18], electromagnetic fluids [41], peridynamics [53], porous media
flow [8, 19], among others.

One striking example of a nonlocal operator is the fractional Laplacian (−∆)s,
defined by

(−∆)su(x) := 2C(n, s)

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Rn.

Here the integral is understood in the principal value sense and the normalization
constant C(n, s) is given by

C(n, s) :=
22s−1sΓ(s+ n

2 )

πn/2Γ(1− s)
.

In the theory of stochastic processes, this operator appears as the infinitesimal
generator of a stable Lévy process, see for instance [9, 55]. Moreover, the fractional
Laplacian is also one of the simplest examples of a pseudo-differential operator,
because its symbol is just P (ξ) = |ξ|2s.

An interesting problem concerning the fractional Laplacian is to find its eigenspaces
on bounded domains. Namely, to find a positive number λ (eigenvalue) and a func-
tion u 6≡ 0 (eigenfunction) such that

(1.1)

{
(−∆)su = λu in Ω,

u = 0 in Ωc = Rn \ Ω,
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where Ω is a bounded domain in Rn and s ∈ (0, 1). Observe that, due to the
fact that pointwise values of (−∆)su depend on the value of u over the whole
space, boundary conditions need to be substituted by volume constraints on the
complement of Ω.

A natural application of the problem we are considering in this paper is given
by the fractional Schrödinger equation. This equation arises from extending the
Feynman path integral approach from Brownian-like quantum mecanical paths –
that lead to the classical Schrödinger equation– to Lévy-like paths [37]. In this
regard, eigenfunctions of the fractional Laplacian correspond to the energy states
of the system being modeled. This has motivated researchers to study this problem,
both from the physical, mathematical and computational point of view. Among
the various references in these subjects, we refer the reader to [4, 5, 7, 16, 23, 40]
for further details.

Even if Ω is an interval, it is very challenging to obtain closed analytical ex-
pressions for the eigenvalues and eigenfunctions of the fractional Laplacian. This
motivates the utilization of discrete approximations of this problem (see, for exam-
ple, [27, 36, 57]); in this work we consider a finite element method. In first place,
we prove that the discrete eigenvalue problem converges to the continuous one.
Then, we show the order of convergence for eigenvalues and eigenfunctions, both
in the energy and the L2-norm. Orders of convergence are increased by considering
suitably graded meshes that stem from a precise characterization of the behavior
of eigenfunctions near the boundary of Ω. Finally, we perform some numerical
experiments and compare our results with previous work by other authors. These
results are in good agreement with our theory.

The finite element method is flexible enough to deal with non-convex domains,
and enables us to provide estimates and sharp upper bounds for eigenvalues even
in this context. Moreover, as a consequence of our numerical experiments in the
L-shaped domain Ω = [−1, 1]2 \ [0, 1]2, we conjecture that the first eigenfunction
for this domain is as regular as the first one in any smooth domain.

Due to the nonlocal nature of the problem, a straightforward implementation of
the finite element method demands a double loop over the elements to assembly
the stiffness matrix. Thus, the complexity of this routine is quadratic with respect
to the number of elements. As reported in [1], this step requires about 99% of the
total CPU time. This issue has been tackled in [3], where sparse approximations of
the stiffness matrix have been proposed and analyzed. Furthermore, the condition
number of the stiffness matrix A (κ(A)) corresponding to the fractional Laplacian
of order s using standard piecewise linear finite elements over a mesh with size h
scales as κ(A) ' h−2s. Therefore, in the numerical examples performed for this
work we have solved the discrete systems by using a direct solver.

Main Results. In order to state our results we need to collect some notation and
definitions. The natural functional space for the eigenvalue problem (1.1) is

H̃s(Ω) :=
{
v ∈ Hs(Rn) : supp v ⊂ Ω̄

}
,

where Hs(Rn) is the space of all functions u ∈ L2(Rn) such that

|v|2Hs(Rn) :=

¨
R2n

|v(x)− v(y)|2

|x− y|n+2s
dx dy <∞.
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Moreover, (V, ‖ · ‖V) :=
(
H̃s(Ω),

√
C(n, s) | · |Hs(Rn)

)
is a Hilbert space with the

inner product

〈u, v〉 := C(n, s)

¨
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

Obviously, the constant
√
C(n, s) has no effect on the definition of the space; it

is included in order to make the notation simpler in the rest of the paper. The
fractional space Hs(Rn) can also be defined for any s > 1. If s = m + σ, where
m ∈ N and σ ∈ (0, 1), Hs(Rn) is the space of all functions v ∈ Hm(Rm) such that
its weak derivatives of order m belong to Hσ(Rn). For more details, see Section 2.

In this context, the eigenvalue problem (1.1) has the following variational for-
mulation: find λ ∈ (0,+∞) and u ∈ V such that u 6≡ 0 and

(1.2) 〈u, v〉 = λ(u, v) for all v ∈ V,
where (·, ·) : L2(Ω)× L2(Ω)→ R is the bilinear form

(u, v) :=

ˆ
Ω

u(x)v(x) dx.

It is well-known (see, for example, [49]) that there is an infinite sequence of
eigenvalues {λ(k)}k∈N,

0 < λ(1) < λ(2) ≤ · · · ≤ λ(k) ≤ · · · , λ(k) →∞ as k →∞,
where the same eigenvalue can be repeated several times according to its multiplic-
ity. The corresponding eigenfunctions u(k), normalized by ‖u(k)‖L2(Ω) = 1, form a

complete orthonormal set in L2(Ω). See also [47, 50, 52] and the references therein
for further details on the fractional eigenvalue problem.

Let us now introduce the discrete space. Let Th be a family of triangulations of
Ω satisfying

∃σ > 0 s.t. hT ≤ σρT ,(Regularity)

for any element T ∈ Th, where hT is the diameter of T and ρT is the radius of the
largest ball contained in T . This is the only requirement we need to impose to our
family of triangulations.

We consider continuous piecewise linear functions on Th, namely

Vh :=
{
v ∈ V : v

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
.

Our Galerkin approximation consists in looking for discrete eigenvalues λh ∈ R and
uh ∈ Vh such that uh 6≡ 0 and

(1.3) 〈uh, v〉 = λh(uh, v) ∀v ∈ Vh.
We can order the discrete eigenvalues of (1.3) as follows

0 < λ
(1)
h ≤ λ

(2)
h ≤ · · · ≤ λ

(k)
h ≤ · · · ≤ λ(dimVh)

h ,

where the same eigenvalue is repeated according to its multiplicity. The corre-

sponding eigenfunctions u
(k)
h (normalized by ‖u(k)

h ‖L2(Ω) = 1) form an orthonormal

set in L2(Ω).

The purpose of this work is to prove the convergence of the discrete problem
(1.3) to the continuous (1.2).
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Our first result concerning the convergence is to determine it in gap distance,
that is, we prove that the discrete eigenvalue problem converges to the continu-
ous, following the definition of convergence given in [32, 11] (see also [10]). More
precisely, we define the gap between Hilbert spaces E,F ⊂ H by

δ(E,F ) = sup
u∈E,‖u‖H=1

inf
v∈F
‖u− v‖H , δ̂(E,F ) = max(δ(E,F ), δ(F,E)).

Then, taking H = V, we say that the discrete eigenvalue problem (1.3) converges
to the continuous one (1.2) if, for any ε > 0 and k > 0, there is h0 > 0 such that

max
1≤i≤m(k)

|λ(i) − λ(i)
h | ≤ ε, δ̂

m(k)⊕
i=1

E(i),

m(k)⊕
i=1

E
(i)
h

 ≤ ε,
for all h < h0. Here, m(k) is the dimension of the space spanned by the first distinct

k eigenspaces and E(i) and E
(i)
h are the eigenspace and the discrete eigenspace

associated to λ(i) and λ
(i)
h , respectively.

Remark 1.1. We remark here that to obtain convergence in gap distance, we only
need to assume that the extension Hs(Ω)→ Hs(Rn) is continuous. This is in turn
equivalent to the following condition [56]: there is a constant C > 0 such that for
all x ∈ Ω and all r ∈ (0, 1],

(1.4) |Ω ∩B(x, r)| ≥ Crn ∀x ∈ Ω.

Theorem 1.2. If Ω is a fractional extension domain, then the discrete eigenvalue
problem (1.3) converges to the continuous one (1.2).

Having established the convergence of the discrete problem to the continuous,
we next state the order of such a convergence. To this end, we need to provide a
Sobolev regularity result. This, in turn, requires some additional assumptions on
the domain. We prove the following.

Proposition 1.3. Let Ω ⊂ Rn be a Lipschitz domain satisfying the exterior ball
condition and let u be an eigenfunction of (−∆)s in Ω with homogeneous Dirichlet

boundary conditions. Then, u ∈ H̃s+1/2−ε(Ω) for any ε > 0.

Moreover, considering the weighted Sobolev scale (cf. (2.3) below) it also holds
that u ∈ H1+s−ε

1/2−2ε (Rn) for any ε > 0.

The regularity in standard spaces in the previous proposition is utilized to prove
an a priori error bound for the finite element approximations with meshes satis-
fying (Regularity). Moreover, the weighted regularity above enables to consider
suitably graded meshes (see the definition (H) in Subsection 2.4), and these deliver
an enhanced order of convergence. Upon proving approximation properties of the
discrete spaces considered, an application of Babuška-Osborn theory [6] allows to
deduce the rate of convergence for the eigenvalues and for the eigenfunctions in the
energy norm, both for uniform and graded meshes.

Theorem 1.4. Let Ω ⊂ Rn be a Lipschitz domain satisfying the exterior ball
condition and let λ(k) be an eigenvalue of multiplicity m (that is, λ(k) = λ(k+1) =
· · · = λ(k+m−1) and λ(i) 6= λ(k) for i 6= k, . . . , k + m − 1). Consider the Galerkin
approximations given by (1.3) on a shape-regular familiy of meshes.
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(1) For any ε > 0, there exists a positive constant C independent of h such that

0 ≤ λ(j)
h − λ

(k) ≤ Ch1−ε ∀k ≤ j ≤ k +m− 1.

Moreover, if u(k) is an eigenfunction associated to λ(k), there is

{w(k)
h } ⊂ E

(k)
h ⊕ . . .⊕ E(k+m−1)

h

such that
‖u(k) − w(k)

h ‖V ≤ Ch
1/2−ε.

(2) On the other hand, if s > 1/2 and the meshes are graded according to (H)
with µ = 2, then the estimates above can be refined to be

0 ≤ λ(j)
h − λ

(k) ≤ Ch2−ε ∀k ≤ j ≤ k +m− 1.

and
‖u(k) − w(k)

h ‖V ≤ Ch
1−ε.

Finally, to prove convergence orders in the L2 norm, we require smoothness on
the domain. This regularity assumption is required in order to apply an Aubin–
Nitsche duality argument. We obtain the following.

Theorem 1.5. Assume Ω is a smooth domain and let α = min{s, 1/2− ε} for any
ε > 0. Then, if λ(k) is an eigenvalue of multiplicity m and if u(k) is an eigenfunction
associated to λ(k), there is

{w(k)
h } ⊂ E

(k)
h ⊕ . . .⊕ E(k+m−1)

h

such that

(1.5) ‖u(k) − w(k)
h ‖L2(Ω) ≤ Chα+1/2−ε.

In order to illustrate the convergence estimates obtained in Theorems 1.4 and
1.5, we present the results of numerical tests for finite element discretizations of
one and two-dimensional eigenvalue problems. Moreover, in the latter case, some
examples in domains that do not satisfy the hypotheses of Proposition 1.3 are
displayed. These examples provide numerical evidence that the assertion of this
proposition still holds true under weaker assumptions about the domain.

The paper is organized as follows. Section 2 collects the notation we employ,
and reviews some previous works on the problem under consideration. In particu-
lar, regularity of eigenfunctions is proved. The section concludes with a discussion
of certain aspects of finite element approximations of the fractional Laplacian. Af-
terwards, Section 3 deals with the convergence of the discrete eigenvalue problem to
the continuous one in gap distance. In Section 4, proof of the orders of convergence
for eigenvalues and eigenfunctions are given, including estimates for graded meshes.
Finally, numerical experiments are discussed in Section 5.

2. Preliminaries and Definitions

In this section we review the basic aspects of the problem under consideration.
In first place, we set notation regarding Sobolev spaces. Afterwards, we analyze
theoretical properties of the eigenvalue problem (1.1). Regularity results for weak
solutions of fractional Laplace equations are recalled next. The section concludes
with the introduction of the finite element spaces we work with.
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2.1. Sobolev spaces. Given an open set Ω ⊂ Rn and s ∈ (0, 1), define the frac-
tional Sobolev space Hs(Ω) as

Hs(Ω) :=
{
v ∈ L2(Ω): |v|Hs(Ω) <∞

}
,

where | · |Hs(Ω) is the seminorm

|v|2Hs(Ω) :=

¨
Ω2

|v(x)− v(y)|2

|x− y|n+2s
dx dy.

Obviously, Hs(Ω) is a Hilbert space endowed with the norm ‖ ·‖Hs(Ω) = ‖ ·‖L2(Ω) +
| · |Hs(Ω). If s > 1 and it is not an integer, the decomposition s = m + σ, where
m ∈ N and σ ∈ (0, 1), allows to define Hs(Ω) by setting

Hs(Ω) :=
{
v ∈ Hm(Ω): |Dαv|Hσ(Ω) <∞ for all α s.t |α| = m

}
.

Let us also define the space of functions supported in Ω,

H̃s(Ω) :=
{
v ∈ Hs(Rn) : supp v ⊂ Ω̄

}
.

For 0 ≤ s ≤ 1 and if Ω is a Lipschitz domain, this space may be defined through
interpolation,

H̃s(Ω) =
[
L2(Ω), H1

0 (Ω)
]
s
.

Moreover, depending on the value of s, different characterizations of this space are

available (see, for example [38, Chapter 11]). If s < 1/2 the space H̃s(Ω) coincides
with Hs(Ω), and if s > 1/2 it may be characterized as the closure of C∞0 (Ω) with
respect to the | · |Hs(Ω) norm. In the latter case, it is also customary to denote it
by Hs

0(Ω). The particular case of s = 1/2 gives raise to the Lions-Magenes space

H
1/2
00 (Ω), which can be characterized by

H
1/2
00 (Ω) :=

{
v ∈ H1/2(Ω):

ˆ
Ω

v(x)2

dist(x, ∂Ω)
dx <∞

}
.

Note that the inclusion H
1/2
00 (Ω) ⊂ H1/2

0 (Ω) = H1/2(Ω) is strict.

It is apparent that 〈·, ·〉 defines an inner product on H̃s(Ω). In addition, the norm
induced by it, which is just the Hs(Rn) seminorm, is equivalent to the full Hs(Rn)
norm on this space, because of the following well known result. See for instance
[20, Lemma 2.5].

Proposition 2.1 (Poincaré inequality). Let Ω be a bounded domain, then there is
a constant c = c(Ω, n, s) such that

(2.1) ‖v‖L2(Ω) ≤ c|v|Hs(Rn) ∀v ∈ H̃s(Ω).

For the proof of the following result, see e.g. [21, 22].

Proposition 2.2. Let Ω be an extension domain (cf. Remark 1.1). Then, the

inclusion H̃s(Ω) ↪→ L2(Rn) is compact.

Weighted spaces are a customary tool when dealing with singular solutions. As
in [2], we define the following weighted fractional Sobolev spaces. The weights
we consider are powers of the distance to the boundary of Ω. We introduce the
notation

(2.2) δ(x, y) = min{dist(x, ∂Ω),dist(y, ∂Ω)}.
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Let s = m+ σ, with m ∈ N and σ ∈ (0, 1), then

(2.3) Hs
α(Ω) =

{
v ∈ Hm(Ω): |Dβv|Hσα(Ω) <∞ ∀β ∈ Nn s.t. |β| = m

}
,

where

|w|Hσα(Ω) =

¨
Ω×Ω

|w(x)− w(y)|2

|x− y|n+2σ
δ(x, y)2αdx dy.

We equip this space with the norm

‖v‖2Hsα(Ω) = ‖v‖2Hm(Ω) +
∑
|β|=m

|Dβv|Hσα(Ω).

We also need to define spaces over Rn. The global weighted Sobolev space
Hs
α,Ω(Rn) is

Hs
α,Ω(Rn) =

{
v ∈ Hm(Rn) : |Dβv|Hσα,Ω(Rn) <∞ ∀β ∈ Nn s.t. |β| = m

}
,

where

|w|Hσα,Ω(Rn) =

¨
Rn×Rn

|w(x)− w(y)|2

|x− y|n+2σ
δ(x, y)2αdx dy.

The norm on this space is

‖v‖2Hsα,Ω(Rn) = ‖v‖2Hm(Rn) +
∑
|β|=m

|Dβv|Hσα,Ω(Rn).

Whenever the set Ω is clear from the context, we drop the reference to it in the
global case and simply write Hs

α(Rn).

Remark 2.3. Although we are interested in the case α ≥ 0, we recall that in the
definition of weighted Sobolev spaces Hm

α (Ω), with m being a nonnegative integer,
arbitrary powers of δ(x) can be considered [34, Theorem 3.6]. On the other hand,
for general weights some restrictions must be taken into account in order to get an
adequate definition of the spaces, namely, to ensure their completeness. A classical
family of weights is that of the Muckenhoupt A2 class. In the global version Hs

α(Rn)
we need to restrict the range of α to |α| < 1/2 in order to have δ2α ∈ A2.

2.2. Eigenvalue problem. In the sequel, we work within the Hilbert space

(V, ‖ · ‖V) := (H̃s(Ω),
√
C(n, s) | · |Hs(Rn)).

In [49], the authors prove that for any k ∈ N the eigenvalues of (1.2) can be
characterized as follows:

λ(k) = min

{
‖u‖2V
‖u‖2L2(Ω)

: u ∈ V(k) \ {0}

}
,

where V(1) = V and

V(k) :=
{
u ∈ V :

〈
u, u(j)

〉
= 0 ∀j = 1, . . . , k − 1

}
for all k ≥ 2. Therefore, by the min-max theorem,

λ(k) = min
E∈S(k)

max
u∈E

‖u‖2V
‖u‖2L2(Ω)

where S(k) denotes the set of all k−dimensional subspaces of V.
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The first eigenvalue λ(1) is simple (see, for example, [49]). We now state some
regularity properties of the eigenfunctions.

2.3. Regularity results. Given a function f ∈ Hr(Ω) (r ≥ −s), let us consider
the homogeneous Dirichlet problem for the fractional Laplacian,

(2.4)

{
(−∆)su = f in Ω,

u = 0 in Ωc.

Existence and uniqueness of a weak solution u ∈ H̃s(Ω) of the above equation is an
immediate consequence of the Lax-Milgram lemma. We are interested in regularity
estimates for such solution in standard and graded Sobolev spaces. In [2], these are
obtained in terms of the Hölder regularity of the data.

Proposition 2.4 (See [2]). Let Ω be a Lipschitz domain satisfying the exterior ball
condition and consider β = 1/2−s if s < 1/2 or β > 0 if s ≥ 1/2. Then, if f ∈ Cβ(Ω)

for every ε > 0, the solution u of (2.4) belongs to H̃s+ 1
2−ε(Ω), with

‖u‖
H̃s+

1
2
−ε(Ω)

≤ C(Ω, s, n)

ε
‖f‖Cβ(Ω).

Moreover, if s > 1/2 and f ∈ C1−s(Ω), then for every ε > 0, it holds that
u ∈ Hs+1−2ε

1
2−ε

(Ω), with

‖u‖Hs+1−2ε
1/2−ε (Ω) ≤

C(Ω, s, n)

ε
‖f‖C1−s(Ω).

On the other hand, smoothness of eigenfunctions is deduced from the regularity
theory for the fractional Laplacian. See [14, 44, 48, 51, 54].

Proposition 2.5. If Ω is a Lipschitz domain satisfying the exterior ball condition
then any solution of (1.1) is in C∞(Ω) ∩ L∞(Ω).

Sobolev regularity of eigenfunctions is a consequence of the two previous propo-
sitions.

Proof of Proposition 1.3. Since u ∈ C∞(Ω) (cf. Proposition 2.5), the claim follows
easily applying Proposition 2.4. �

Following Grubb [30], it is also possible to obtain Sobolev regularity results for
the solution to (2.4) in terms of Sobolev regularity of the right hand side. In

that paper, the author deals with Hörmander µ−spaces H
µ(s)
p ; see that work for a

definition and further details. The following result is a particular case of Theorem
7.1 therein:

Theorem 2.6. Let Ω be a smooth domain, ` > s− 1/2 and assume u ∈ H̃σ(Ω) for
some σ > s − 1/2 and consider a right hand side function f ∈ H`−2s(Ω). Then, it
holds that u ∈ Hs(`)(Ω).

In particular, considering ` = r + 2s in the previous theorem and taking into
account that

Hs(r+2s)(Ω)

{
= H̃2s+r(Ω) if 0 < s+ r < 1/2,

⊂ H̃s+1/2−ε(Ω) ∀ε > 0, if 1/2 ≤ s+ r < 1,

(see [30, Theorem 5.4]), we obtain:
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Proposition 2.7. Let Ω be a smooth domain, f ∈ Hr(Ω) for r ≥ −s and u ∈
H̃s(Ω) be the solution of the Dirichlet problem (2.4). Then, the following regularity
estimate holds

|u|Hs+α(Rn) ≤ C(n, α)‖f‖Hr(Ω).

Here, α = s+ r if s+ r < 1/2 and α = 1/2− ε if s+ r ≥ 1/2, with ε > 0 arbitrarily
small.

Remark 2.8. Assuming further Sobolev regularity in the right hand side function
does not imply that the solution will be any smoother than what is given by the pre-
vious proposition. Indeed, if f ∈ Hr(Ω), then Theorem 2.6 gives u ∈ Hs(r+2s)(Ω),
which can not be embedded in any space sharper than Hs+1/2−ε(Ω) if r + s ≥ 1/2.

Moreover, other regularity estimates for eigenfunctions of the fractional Lapla-
cian in smooth domains are derived in [31, 45]. These estimates are formulated in
terms of Hölder norms. Letting d be a smooth function that behaves like dist(x, ∂Ω)
near the boundary of Ω, it is shown that any eigenfunction u of (1.1) lies in the
space dsC2s(−ε)(Ω), where the ε is active only if s = 1/2 and that u/ds does not
vanish near ∂Ω. This shows that no further regularity than Hs+1/2−ε(Ω) should be
expected for eigenfunctions.

2.4. Finite element approximations. Let Th be a family of shape-regular tri-
angulations of Ω (see introduction). Observe that for all h > 0 the discrete space
Vh is a subset of the continuous space.

We have the analogue min-max characterization for eigenvalues of the discrete
problem,

λ
(k)
h = min

E∈S(k)
h

max
u∈E

‖u‖2V
‖u‖2L2(Ω)

,

where S
(k)
h denotes the set of all k dimensional subspaces of Vh.

Remark 2.9. It follows from Vh ⊂ V that

λ(k) ≤ λ(k)
h .

The second part of Proposition 1.3 is exploited by using finite element approxi-
mations on adequately graded meshes. This idea is standard, in problems with cor-
ner singularities or to cope with boundary layers arising in convection-dominated
problems. The following construction of graded meshes is based on [29, Section
8.4]. We assume that in addition to being shape-regular, our sequence of meshes
enjoys satisfies the following graded hypotheses. First, we pick an arbitrary mesh
size parameter h > 0 and define, for ε small enough, a number 1 ≤ µ. Then, we
assume that for any T ∈ Th,

(H)
if T ∩ ∂Ω 6= ∅, then hT ≤ C(σ)hµ;
otherwise, hT ≤ C(σ)hdist(T, ∂Ω)(µ−1)/µ.

Constructing graded meshes as above, finite element approximations to solutions
of (2.4) were proved to deliver an enhanced order of convergence (see [2]).

Lastly, we want to mention that in the following sections we will consider a
quasi-interpolation operator Ih : H l(Ω) → Vh satisfying the following estimate:
there exists C > 0 such that for any w ∈ H l(Ω),

(2.5) ‖w − Ihw‖V ≤ Chl−s|w|Hl(Ω).
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Quasi-interpolation operators were introduced in [17] (see also [46]), and an estimate
like (2.5) is derived, for example, in [2].

3. Convergence of eigenvalues and eigenfunctions in gap distance

In this section we prove Theorem 1.2, stating that the discrete eigenvalue problem
(1.3) converges to the continuous (1.2) in the gap distance (recall the definition of
convergence given in the introduction). We only assume that the domain Ω satisfies
(1.4), so that the embedding V ↪→ L2(Rn) is compact (cf. Proposition 2.2).

Let us start by defining the solution operators of the continuous and discrete
problems, T : L2(Ω) → V and Th : L2(Ω) → Vh. Given f ∈ L2(Ω), we define
Tf ∈ V as the unique solution of

(3.1) 〈Tf, v〉 = (f, v) ∀v ∈ V,

and Thf ∈ Vh as the unique solution of

〈Thf, vh〉 = (f, vh) ∀vh ∈ Vh.

Observe that if (u, λ) is an eigenpair, then T (λu) = u and Th(λu) = Πhu.

To prove Theorem 1.2, by [10, Proposition 7.4 and Remark 7.5], we only need
to show that the operators T and Th are compact and

‖T − Th‖L(L2(Ω),V) → 0 as h→ 0.

Lemma 3.1. The operators T and Th are compact.

Proof. Let {fk}k∈N be a bounded sequence in L2(Ω). Then, there exists a subse-
quence of {fk}k∈N (still denoted by {fk}) and f ∈ L2(Ω) such that fk ⇀ f weakly
in L2(Ω). Taking v = Tfk in (3.1), we get

‖Tfk‖2V = (fk, Tfk) ≤ C‖Tfk‖L2(Ω) ∀k ∈ N.

Therefore, by Poincaré inequality (2.1), we have that {Tfk}k∈N is bounded in V.
Thus, there exists a subsequence of {fk}k∈N (still denoted by {fk}k∈N) and u ∈ V
such that Tfk ⇀ u weakly in V. Hence

〈u, v〉 = lim
k→∞

〈Tfk, v〉 = lim
k→∞

(fk, v) = (f, v) ∀v ∈ V,

that is, u = Tf.

On the other hand, since the inclusion V ↪→ L2(Rn) is compact, passing if
necessary to a subsequence we may assume

Tfk ⇀ Tf weakly in V,
T fk → Tf strongly in L2(Rn).

Then,

‖Tfk‖2V = (fk, T fk)→ (f, Tf) = ‖Tf‖2V
as n→∞. Since the space V is uniformly convex, it follows that

Tfk → Tf strongly in V.

For the operators Th the result follows since they are finite-rank operators. �
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Lemma 3.2. The following norm convergence holds true:

‖T − Th‖L(L2(Ω),V) → 0 as h→ 0.

Proof. For each h, take fh ∈ L2(Ω) such that ‖fh‖L2(Ω) = 1 and

sup
‖f‖L2(Ω)=1

‖Tf − Thf‖V = ‖Tfh − Thfh‖V.

Then, to prove the result, it is enough to show that for any sequence hk → 0
there is a subsequence {hkj}j∈N such that

‖Tfhkj − Thkj fhkj ‖V → 0 as j →∞.

Let {hk}k∈N be a sequence sucht that hk → 0. It follows from ‖fhk‖L2(Ω) = 1

for all k ∈ N that there exist a subsequence {fhkj }j∈N of {fhk}k∈N and f ∈ L2(Ω)

such that fhkj ⇀ f weakly in L2(Ω). Proceeding as in the proof of Lemma 3.1 (and

passing if necessary to a subsequence), we may assume

Thkj fhkj ⇀ v weakly in V,

Thkj fhkj → v strongly in L2(Rn).

On the other hand, it follows from (2.5) that

Ihϕ→ ϕ strongly in V,
Ihϕ→ ϕ strongly in L2(Rn),

for any ϕ ∈ C∞0 (Ω). Therefore,

〈v, ϕ〉 = lim
j→∞

〈
Thkj fhkj , Ihkjϕ

〉
= lim
j→∞

(fhkj , Ihkjϕ) = (f, ϕ) ∀ϕ ∈ C∞0 (Ω),

which means that v = Tf . Then,

‖Tfhkj − Thkj fhkj ‖
2
V = (fhkj , Tfhkj − Thkj fhkj )→ 0.

�

Now we conclude the convergence of the discrete eigenvalue problem to the con-
tinuous in the gap distance.

Proof of Theorem 1.2. The proof follows by Lemmas 3.1 and 3.2 and using Propo-
sition 7.4 and Remark 7.5 of [10]. �

4. Order of convergence

Assuming certain regularity on the domain Ω, we are able to deduce orders of
convergence of the finite element approximations. This is attained as an application
of the Babuška-Osborn theory [6]; an important tool in this regards is given by
considering approximation properties of Πh : V → Vh, the projection with respect
to the ‖ · ‖V norm. To be specific, given u ∈ V, this is the only function in Vh such
that the Galerkin orthogonality

〈u−Πhu, vh〉 = 0 ∀vh ∈ Vh
holds, or equivalently,

(4.1) ‖u−Πhu‖V = inf
vh∈Vh

‖u− vh‖V.
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Observe that if u is the solution of (2.4), then Πhu corresponds to the solution of
the corresponding discrete problem on Vh.

Proposition 4.1. Let Ω be a Lipschitz domain satisfying the exterior ball condition
and u be an eigenfunction of (1.2). Then, for any ε > 0 there exists a positive
constant C independent of h such that

(4.2) ‖u−Πhu‖V ≤ Ch
1/2−ε.

Also, if s > 1/2, constructing meshes according to grading hypothesis (H) (setting
the parameter µ equal to 2), it holds that

(4.3) ‖u−Πhu‖V ≤ Ch
√
| lnh|.

Proof. Upon considering estimate (4.1) and Proposition 1.3, the proof follows as in
[2, Theorem 4.7]. �

Remark 4.2. In view of the previous proposition, and applying the abstract theory
from [6] Theorem 1.4 follows.

In the remainder of this section, we study convergence of discrete eigenfunctions
in the L2 norm. We first prove the L2 convergence of the energy projection over
the discrete space. Notice that smoothness of the domain is required in order to
apply Proposition 2.7.

Proposition 4.3. Let Ω be a smooth domain and u be an eigenfunction of (1.2).
Then, for any ε > 0 there is a positive constant C independent of h such that

(4.4) ‖u−Πhu‖L2(Ω) ≤ Ch
1/2+α−ε.

Here, α = s if s < 1/2 and α = 1/2− ε if s ≥ 1/2.

Proof. We apply an Aubin–Nitsche duality argument. Let w ∈ V be the weak
solution of the boundary value problem{

(−∆)sw = u−Πhu in Ω,
w = 0 in Ωc.

Then, resorting to Galerkin orthogonality again we obtain

‖u−Πhu‖2L2(Ω) = 〈w, u−Πhu〉 ≤ ‖w − Ihw‖V‖u−Πhu‖V,

where Ihw ∈ Vh is the interpolator of w.

Taking into account the regularity given by Proposition 2.7 with r = 0, interpo-
lation estimate (2.5) gives

‖w − Ihw‖V ≤ Chα|w|Hs+α(Ω) ≤ Chα‖u−Πhu‖L2(Ω).

Finally, using the error estimate (4.2) we obtain

(4.5) ‖u−Πhu‖2L2(Ω) ≤ Ch
1/2+α−ε|u|Hs+1/2−ε(Ω)‖u−Πhu‖L2(Ω),

and then estimate (4.4) follows. �

The proof of Theorem 1.5 follows as in [43, Lemma 6.4-3], using Proposition
(4.3). We include a proof here for completeness.
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Proof of Theorem 1.5. In first place, we assume that m = 1 since the case m > 1
is similar (see [10, 43]). We define

ω
(k)
h :=

(
Πhu

(k), u
(k)
h

)
u

(k)
h ,

and the quantity

ρ
(k)
h := max

i 6=k

λ(k)

|λ(k) − λ(i)
h |

.

Then

‖u(k) − u(k)
h ‖L2(Ω) ≤ ‖u(k) −Πhu

(k)‖L2(Ω)

+ ‖Πhu
(k) − ω(k)

h ‖L2(Ω) + ‖ω(k)
h − u

(k)
h ‖L2(Ω).

(4.6)

We are going to estimate the terms in the right hand side separately.

Given ε > 0, it follows from our regularity estimate (4.4) that there exists C > 0
independent of h such that

(4.7) ‖u(k) −Πhu
(k)‖L2(Ω) ≤ Chα+1/2−ε.

Moreover, since(
Πhu

(k), u
(i)
h

)
=

1

λ
(i)
h

〈
Πhu

(k), u
(i)
h

〉
=

1

λ
(i)
h

〈
u(k), u

(i)
h

〉
=
λ(k)

λ
(i)
h

(
u(k), u

(i)
h

)
,

we have ∣∣∣(Πhu
(k), u

(i)
h

)∣∣∣ ≤ ρ(k)
h

∣∣∣(u(k) −Πhu
(k), u

(i)
h

)∣∣∣ .
So,

‖Πhu
(k) − ω(k)

h ‖
2
L2(Ω) =

∑
i 6=k

(
Πhu

(k), u
(i)
h

)2

≤
[
ρ

(k)
h

]2∑
i 6=k

(
u(k) −Πhu

(k), u
(i)
h

)2

≤
[
ρ

(k)
h

]2
‖u(k) −Πhu

(k)‖2L2(Ω) ≤ Ch
α+1/2−ε.

(4.8)

Finally, let us show that

(4.9) ‖ω(k)
h − u

(k)
h ‖L2(Ω) ≤ ‖ω

(k)
h − u

(k)‖L2(Ω),

so that

‖ω(k)
h − u

(k)
h ‖L2(Ω) ≤ ‖u(k) −Πhu

(k)‖L2(Ω) + ‖Πhu
(k) − ω(k)

h ‖L2(Ω).

Indeed, on one hand we have

u
(k)
h − ω

(k)
h =

[
1−

(
Πhu

(k), u
(k)
h

)]
u

(k)
h .

On the other hand, due to the normalizations ‖u(k)‖L2(Ω) = ‖u(k)
h ‖L2(Ω) = 1, we

have ∣∣∣1− ‖ω(k)
h ‖L2(Ω)

∣∣∣ ≤ ‖u(k) − ω(k)
h ‖L2(Ω)

and

‖ω(k)
h ‖L2(Ω) =

∣∣∣(Πhu
(k), u

(k)
h

)∣∣∣ .
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Therefore, if we choose the sign of u
(k)
h in such a way that

(
Πhu

(k), u
(k)
h

)
≥ 0,

we deduce

‖u(k)
h − ω

(k)
h ‖L2(Ω) =

∣∣∣1− (Πhu
(k), u

(k)
h

)∣∣∣
=
∣∣∣1− ∣∣∣(Πhu

(k), u
(k)
h

)∣∣∣ ∣∣∣
≤ ‖u(k) − ω(k)

h ‖L2(Ω),

as stated in (4.9).

Thus, estimate (1.5) is obtained by combining (4.6), (4.7), (4.8) and (4.9).

�

5. Numerical results

This section exhibits the outcome of a variety of experiments carried out by the
authors in one- and two-dimensional domains. Since in general no closed formula
for the eigenvalues of the fractional Laplacian is available, we have estimated the
order of convergence by means of a least-squares fitting of the model

λ
(k)
h = λ(k) + Chα.

This allows to extrapolate approximations of the eigenvalues as well (in the tables

we denote this extrapolated value of λ(k) as λ
(k)
ext).

Throughout this section, the results are compared with those available in the
literature. In first place we consider one-dimensional problems, which have been
widely studied both theoretically and from the numerical point of view. Next, we
show some examples in two-dimensional domains: the unit ball, a square and an
L-shaped domain. As for the ball, the deep results of [24] allow to obtain sharp
estimates on the eigenvalues, and thus provide a point of comparison for the validity
of the FE implementation. Regarding the square, some estimates for the eigenvalues
are found in [36]. The main interest of the L-shaped domain is that, although it does
not satisfy the “standard” requirements to regularity of eigenfunctions to hold, the
numerical order of convergence is the same as in problems posed on smooth, convex
domains. Finally, Subsection 5.3 is concerned with the computation of higher-order
eigenspaces.

General estimates for eigenvalues, valid for a class of domains, are obtained by
Chen and Song [16]. In that paper, the authors state upper and lower bounds
for eigenvalues of the fractional Laplacian on domains satisfying the exterior cone
condition. Calling µ(k) the k-th eigenvalue of the Laplacian with Dirichlet boundary
conditions on the domain Ω, they prove that there exists a constant C = C(Ω) such
that

(5.1) C
(
µ(k)

)s
≤ λ(k) ≤

(
µ(k)

)s
.

If Ω is a bounded convex domain, then C can be taken as 1/2. It is noteworthy that,
due to the scaling property of the fractional Laplacian, eigenvalues for the dilations
of a domain Ω are obtained by means of λ(k)(γΩ) = γ−2sλ(k)(Ω).

Since we are working with conforming methods, as well as providing approxima-
tions, the discrete eigenvalues yield upper bounds for the corresponding continuous
eigenvalues. This is of special interest in those cases in which theoretical estimates
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are not sharp, or the non-symmetry of the domain precludes the possibility of
developing arguments such as the ones in [24].

5.1. One-dimensional intervals. Eigenvalues for the fractional Laplacian in in-
tervals have been studied by other authors previously. In [57], a discretized model of
the fractional Laplacian is developed, and a numerical study of eigenfunctions and
eigenvalues is implemented for different boundary conditions. In [35], the authors
deal with one dimensional problems for s = 1/2, and provide asymptotic expan-
sion for eigenvalues. Later, Kwaśnicki [36] extended this work to the whole range
s ∈ (0, 1). Namely, he showed the following identity for the k-th eigenvalue in the
interval (−1, 1):

(5.2) λ(k) =

(
kπ

2
− (1− s)π

4

)2s

+
1− s√
s
O
(
k−1

)
.

Moreover, in that work a method to obtain lower bounds in arbitrary bounded
domains is developed, and it is proved that, on one spacial dimension, eigenval-
ues are simple if s ≥ 1/2. As eigenvalues are simple and we are working in one
dimension, it is not difficult to numerically estimate the order of convergence of
eigenfunctions in the L2-norm. Indeed, normalizing the discrete eigenfunctions so

that ‖u(k)
h ‖L2(−1,1) = 1 and choosing their sign adequately, these are then compared

with a solution on a very fine grid.

On the other hand, in [23] it is performed a numerical study of the fractional
Schrödinger equation in an infinite potential well in one spacial dimension. The
authors find numerically the ground and first excited states and their corresponding
eigenvalues for the stationary linear problem, which corresponds to the first two
eigenpairs of our equation (1.1).

In Table 5.1, our results for the first 2 eigenpairs are displayed, computed over
a sequence of uniform meshes with 800, 1600, 3200 and 6400 elements. The ex-
trapolated numerical values are compared with the estimates from [23, 36]; the
orders of convergence are in good agreement with those predicted correspondingly
by Theorems 1.4 and 1.5. Moreover, we illustrate the sharpness of Proposition 1.3
by displaying in Figure 5.1 the first two L2-normalized eigenfunctions for s = 0.1
and s = 0.9. As predicted by Remark 2.8, these functions are smooth within the
interval, but behave as d(x, ∂Ω)s near the boundary of the domain.

5.2. Two-dimensional experiments. The theoretical order of convergence for
eigenvalues is also attained in the following examples in R2. The implementation
for these experiments is based on the code from [1].

Unit ball. Let us consider the fractional eigenvalue problem on the two-dimensional
unit ball. In [25], the weighted operator u 7→ (−∆)s(ωs u) is studied, where
ωs(x) = (1 − |x|2)s+. In particular, explicit formulas for eigenvalues and eigen-
functions of this operator are established. Furthermore, in [24] the same authors
exploit these expressions to obtain two-sided bounds for the eigenvalues of the frac-
tional Laplacian in the unit ball in any dimension. This method provides sharp
estimates; however, it depends on the decomposition of the fractional Laplacian as
a weighted operator, and the weight ωs is only explicitly known for the unit ball.
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Figure 5.1. First (left panel) and second (right panel) L2-
normalized discrete eigenfunctions in the interval (−1, 1). Color
blue corresponds to s = 0.1, while green corresponds to s = 0.9.

Table 5.1. First 2 eigenpairs in the interval (−1, 1). On the left,
the extrapolated numerical values are compared with the results
from [23] and with approximation (5.2), obtained in [36]. On the
right, orders of convergence for eigenvalues and eigenfunctions in
the L2-norm (obtained by a least-square fitting) are displayed.

Numerical values Orders

s λ
(1)
ext λ(1) [23] λ(1) [36] λ

(2)
ext λ(2) [23] λ(2) [36] λ(1) λ(2) u(1) u(2)

0.05 0.9726 0.9726 0.9809 1.0922 1.0922 1.0913 1.108 1.149 0.551 0.568
0.1 0.9575 0.9575 0.9712 1.1965 1.1966 1.1948 1.071 1.102 0.612 0.625
0.25 0.9702 0.9702 0.9908 1.6015 1.6016 1.5977 1.021 1.038 0.762 0.782
0.5 1.1577 1.1578 1.1781 2.7548 2.7549 2.7488 1.001 0.979 0.961 0.969
0.75 1.5975 1.5976 1.6114 5.0598 5.0600 5.0545 0.998 0.999 0.998 0.998
0.9 2.0487 — 2.0555 7.5031 — 7.5003 1.004 1.021 0.999 0.999
0.95 2.2481 2.2441 2.2477 8.5958 8.5959 8.5942 1.035 1.142 0.999 0.999

In Table 5.2, our results for the first eigenvalue are compared with those of [24]
for different values of s, computed over a family of uniform meshes with mesh sizes
h ∈ {1/30, 1/35, 1/40, 1/45, 1/50}. This comparison serves as a test for the validity
of the code we are employing. As well as the extrapolated value of λ(1) and the
numerical order of convergence, for every s considered we exhibit an upper bound
for the first eigenvalue. These outcomes are consistent with those from [24] and the
theoretical order of convergence given by Theorem 1.4.

Computations with graded meshes were carried out for this domain as well. The
grading parameter µ in (H) was set to be equal to 2, and meshes were taken with
about the same total of degrees of freedom as in the experiments with uniform
meshes. For a description of how to build these graded meshes, we refer the reader
to Section 5.2 in [2]. In Table 5.3 we summarize our findings. For s ≥ 1/2, we
estimated the order of convergence towards the first eigenvalue both with uniform
and graded meshes, and also compared the extrapolated value of this eigenvalue.
An increase in the convergence rate, in agreement with Theorem 1.4, is observed.
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Table 5.2. First eigenvalue in the unit ball in R2. Estimate from
[24]; extrapolated value of λ(1); upper bound obtained by the finite
element method with a meshsize h ∼ 0.02; numerical order of
convergence.

s λ(1) λ
(1)
ext λ

(1)
h (UB) Order

0.005 1.00475 1.00475 1.00480 0.9462
0.05 1.05095 1.05094 1.05145 0.9455
0.25 1.34373 1.34367 1.34626 0.9497
0.5 2.00612 2.00607 2.01060 0.9686
0.75 3.27594 3.27632 3.28043 1.0092

Table 5.3. Computational results in the unit ball in R2, for uni-
form and graded meshes. Orders of convergence are stated in terms
of the mesh parameter h; this behaves like N−1/2, N being the
number of nodes.

s Order (unif.) Order (graded) λ
(1)
ext (unif.) λ

(1)
ext (graded)

0.5 0.9686 2.1528 2.0061 2.0061
0.6 0.9808 2.1720 2.4165 2.4165
0.7 0.9969 2.1066 2.9506 2.9507
0.8 1.0348 2.0497 3.6494 3.6498
0.9 1.1654 2.0943 4.5691 4.5695

The grading parameter µ = 2 is optimal for every s. Indeed, this parameter is
in correspondence with the weight in the regularity estimate from Proposition 1.3.
In this sense, the greater µ is, the greater the weight can be taken, and thus, the
greater the differentiability order of solutions is. Therefore, increasing µ leads to
an increment on the order of convergence with respect to the mesh size parameter.
However, if µ > 2 this effect is compensated by the growth in the number of degrees
of freedom. We refer the reader to [12] for details.

Square. Eigenvalue estimates for the case in which the domain Ω is a square in R2

were also addressed in [36]. However, in order to obtain upper bounds, the method
proposed in that work depends on having pointwise bounds of the Green function
for the fractional Laplacian on Ω. The estimates from [16, 36] are compared with
our results in Table 5.4, where numerical orders of convergence are also displayed.
The computations were carried over a sequence of unstructured uniform meshes
with sizes h ∼ {0.1, 0.08, 0.06, 0.04}. The upper bound displayed in Table 5.4
corresponds to the computed result over the finest mesh in this sequence.

L-shaped domain. To the authors knowledge, there is no efficient method to esti-
mate eigenvalues of the fractional Laplacian if the domain Ω lacks symmetry. The
bound (5.1) remains valid as long as Ω satisfies the assumptions required, but the
range that estimate provides is quite wide.



18 J. P. BORTHAGARAY, L. M. DEL PEZZO, AND S. MARTÍNEZ

Table 5.4. First eigenvalue in the square [−1, 1]2. Best lower
(LB) and upper (UB) bounds known before; upper bound obtained
by the finite element method with a meshsize h ∼ 0.04; extrapo-
lated value of λ(1); numerical order of convergence.

s λ(1) (LB) λ(1) (UB) λ
(1)
h (UB) λ

(1)
ext Order

0.05 1.0308b 1.0831a 1.0412 1.0405 0.9229
0.1 1.0506b 1.1731a 1.0895 1.0882 0.9230
0.25 1.1587b 1.4905a 1.2844 1.2813 0.9283
0.5 1.3844b 2.2214a 1.8395 1.8344 0.9622
0.75 1.6555a 3.3109a 2.8921 2.8872 0.9940
0.9 2.1034a 4.2067a 3.9492 3.9467 1.0654
0.95 2.2781a 4.5562a 4.4083 4.4062 1.1496
aSee [16]. bSee [36].

The main advantage of employing the finite element method is that it is flexible
enough to cope with a variety of domains. Moreover, as we are working with con-
forming approximations, sharp upper bounds for the eigenvalues may be obtained
by considering discrete solutions on refined meshes.

In Proposition 1.3, which states that eigenfunctions belong to H̃s+1/2−ε(Ω), it was
assumed that the domain Ω satisifies the exterior ball condition. For the Laplacian,
in order to prove regularity of solutions, it is customary to assume that Ω is either
smooth or at least convex. In those cases, it is well known that if f ∈ Hr(Ω) for
some r, then the solutions of the Dirichlet problem with right hand side f belong to
Hr+2(Ω). However, if the domain has a re-entrant corner, solutions are less regular.
This also applies to eigenfunctions: in the L-shaped domain Ω = [−1, 1]2 \ [0, 1]2,
the first eigenvalue of the Laplacian is known not to belong to H3/2(Ω).

Surprisingly, numerical evidence indicates that eigenvalues of the fractional Lapla-
cian on this L-shaped domain converge with the same order as in the previous ex-
amples. This motivates us to conjecture that eigenfunctions and solutions to the
Dirichlet equation (2.4) have the same Sobolev regularity than in smooth domains.

Our findings for the first eigenvalue, computed over unstructured, uniform meshes
with sizes h ∼ {0.1, 0.08, 0.06, 0.04}, are summarized in Table 5.5.

5.3. Approximation of high-order eigenspaces. In Theorems 1.4 and 1.5, we
showed convergence rates of the discrete eigenpairs with respect to the meshsize.
The constants involved in the convergence estimates depend on the domain, on
s, the mesh regularity parameter σ (cf. (Regularity)), and importantly, on the
eigenvalue number k.

We refer to eigenvalues λk corresponding to a ‘large’ k as high-order eigenval-
ues. We point out that high-order eigenvalues need not to be large in magnitude;

it follows from (5.1) that, for every k, lims→0 λ
(k)
s = 1, where λ

(k)
s denotes the

k-th eigenvalue of the fractional Laplacian of order s. Nevertheless, for a fixed dis-
cretization, the quality of the approximation of the k-th eigenspace deteriorates as
k grows; the discrete system cannot approximate more eigenvalues than the number
of degrees of freedom, and the finer-scale oscillations corresponding to high-order
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Table 5.5. First eigenvalues in the L−shaped domain [−1, 1]2 \
[0, 1]2. Upper bound obtained by the finite element method with
a meshsize h ∼ 0.04; extrapolated value of λ(1); numerical order of
convergence.

s λ
(1)
h (UB) λ

(1)
ext Order λ(1)

0.1 1.1434 1.1413 0.9085
0.2 1.3386 1.3342 0.9103
0.3 1.6025 1.5956 0.9160
0.4 1.9593 1.9499 0.9267
0.5 2.4440 2.4322 0.9459
0.6 3.1072 3.0936 0.9812
0.7 4.0228 4.0069 0.9822
0.8 5.2994 5.2831 1.0609
0.9 7.0975 7.0790 1.1891

Table 5.6. One-hundredth eigenvalue in the interval (−1, 1),
computed over a uniform partition of the interval with 8000 nodes.
We compare our approximation with the asymptotic estimate (5.2).

s λ
(100)
h λ(100) [36] Relative difference

0.05 1.65735 1.65732 2.3054× 10−5

0.1 2.74690 2.74683 2.6087× 10−5

0.25 12.5100 12.5096 3.2075× 10−5

0.5 156.681 156.687 3.9854× 10−5

0.75 1965.06 1965.01 2.3987× 10−5

0.9 8966.95 8966.54 4.6387× 10−5

0.95 14874.9 14873.8 7.4828× 10−5

eigenvalues cannot be well captured by a coarse mesh. A relevant question that
arises is, for a fixed k, how many degrees of freedom are needed to provide an
approximation of the k-th eigenspace within a given tolerance.

The examples considered in subsections 5.1 and 5.2 illustrate the order of con-
vergence obtained in theory by examining the first eigenvalues. Here, we provide
numerical examples of the computation of higher-order eigenvalues. In Table 5.6,

we compute the difference between the finite element approximation of λ
(100)
h and

the asymptotic estimate (5.2) in the interval (−1, 1). We observe that, indepen-
dently of the value of s, the finite element solutions with 8000 degrees of freedom
offer approximations within a relative difference of about 5 × 10−5 with respect
to the asymptotic estimate. Since the relative error of the approximation (5.2) is
of the order of k−(1+2s), we deduce that, roughly, the relative error of the finite
element approximations of λ(100) have a relative error of the order of 10−(2+4s) if
s ≤ 3/4 and of the order of 10−5 if s > 3/4.

Computation of high-order eigenvalues is also feasible in more complex geome-
tries. In the experiments carried out over the L-shaped domain [−1, 1]2 \ [0, 1]2,
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it was observed that the eigenvalue λ
(91)
h is simple, independently of s. Figure 5.2

(top) displays L2-normalized eigenfunctions for s = 0.05 and s = 0.95 respectively,
computed on a mesh with 11120 elements (h ∼ 0.04). Even though these functions
seem to have a similar qualitative behavior, an important difference becomes ap-
parent when inspecting cross sections of these plots (cf. Figure 5.2 (bottom)): the
eigenfunction corresponding to s = 0.05 exhibits steeper gradients near the bound-
ary of the domain. The boundary behavior predicted by the regularity theory
discussed in Subsection 2.3 extends robustly to high-order eigenvalues.
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Figure 5.2. Finite element approximations of u(91) in the domain

[−1, 1]2 \ [0, 1]2. Top: plots of u
(91)
h for s = 0.05 (left) and s = 0.05

(right), respectively. Bottom: cross sections at y = 0 (left) and
y = 0.4; color blue corresponds to s = 0.05 whereas color green
corresponds to 0.95.
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[24] B. Dyda, A. Kuznetsov, and M. Kwaśnicki. Eigenvalues of the fractional Laplace operator in

the unit ball. J. Lond. Math. Soc., 95(2):500–518, 2017.

[25] Bart lomiej Dyda, Alexey Kuznetsov, and Mateusz Kwaśnicki. Fractional Laplace operator
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Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983.

[44] Xavier Ros-Oton and Joaquim Serra. The Dirichlet problem for the fractional Laplacian:
Regularity up to the boundary. Journal de Mathématiques Pures et Appliquées, 101(3):275
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