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DOMINIONS AND PRIMITIVE POSITIVE FUNCTIONS

MIGUEL CAMPERCHOLI

Abstract. Let A ≤ B be structures, and K a class of structures. An element b ∈ B is

dominated by A relative to K if for all C ∈ K and all homomorphisms g, g′ : B→ C such

that g and g′ agree on A, we have gb = g′b. Our main theorem states that if K is closed

under ultraproducts, then A dominates b relative to K if and only if there is a partial

function F de�nable by a primitive positive formula in K such that FB(a1, . . . , an) = b

for some a1, . . . , an ∈ A. Applying this result we show that a quasivariety of algebras Q
with an n-ary near-unanimity term has surjective epimorphisms if and only if SPnPu(QRSI)

has surjective epimorphisms. It follows that if F is a �nite set of �nite algebras with a

common near-unanimity term, then it is decidable whether the (quasi)variety generated

by F has surjective epimorphisms.

�1. Introduction. Let be L a �rst order language. Given L-structures A ≤
B and K a class of L-structures, an element b ∈ B is dominated [13] byA relative
to K provided that for every C ∈ K and all homomorphisms g, g′ : B→ C such
that g|A = g′|A, we have gb = g′b. That is, if g and g′ agree on A, then they

must agree on b. The dominion of A in B relative to K, denoted by domKBA,
is the set of all elements in B that are dominated by A. At �rst glance the
de�nition may suggest that A generates domKBA, but on closer inspection this
does not make sense. As A is a substructure of B, generating with A will yield
exactly A. However, as the main result of this article shows, the intuition that
A acts as a set of generators of domKBA is not far o�. In fact, if K is closed

under ultraproducts, we prove that A actually �generates� domKBA, only that
the generation is not through the fundamental operations but rather through
primitive positive de�nable partial functions. Let us take a look at an example.
Write D01 for the class of bounded distributive lattices, let B := 2 × 2, and
let A be the sublattice of B with universe {〈0, 0〉 , 〈0, 1〉 , 〈1, 1〉}. As 01-lattice
homomorphisms map pairs of complemented elements to pairs of complemented
elements, and every element in a distributive lattice has at most one complement,
it follows that 〈1, 0〉 ∈ domKBA. The key element to take away from this argument
is that 〈1, 0〉 is generated by A if we add the complementation operation to B.
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Since this (partial) operation is de�ned in every member of D01 by the existential
positive formula

ϕ(x, y) := x ∧ y = 0 &x ∨ y = 1,

it is preserved by all relevant maps. This situation can be generalized as follows.
Suppose K is any class, and ϕ(x̄, y) is an existential positive formula such that
for every C ∈ K and all c1, . . . , cn ∈ C there is at most one d ∈ C such that
ϕ(c̄, d) holds in C. Now if A ≤ B and b ∈ B is such that B � ϕ(ā, b) for some

elements ā from A, then b ∈ domKBA. Theorem 3 below says that for K closed
under ultraproducts the converse is also true; that is, dominions relative to K
are generated by existential positive de�nable partial operations.
Since their introduction in [13], there has been vigorous work on dominions; a

well written survey on the subject is [8]. Results on dominions range from char-
acterizations for speci�c classes of structures (e.g., semigroups [13, 11], lattices
[19], etc.), to more general results such as [3], where dominions are characterized
in quasivarieties of algebras in terms of amalgamated free products.
The notion of dominion was introduced by Isbell to study epimorphisms. Re-

call that a homomorphism h : A → B is a K-epimorphism if for every C ∈ K
and homomorphisms g, g′ : B → C, if gh = g′h then g = g′. That is, h is
right-cancellable in compositions with K-morphisms. Of course every surjec-
tive homomorphism is an epimorphism, but the converse is not true. Revisiting
the example above, the inclusion of the three-element chain A into 2 × 2 is a
D01-epimorphism. The connection between epimorphisms and dominions is that
h : A→ B is a K-epimorphism if and only if domKBh(A) = B.
A class K is said to have surjective epimorphisms if every K-epimorphism

between members of K is surjective. Although this property is of a categorical
nature it has an interesting connection with logic. When K is the algebraic
counterpart of an algebraizable logic ` then: K has surjective epimorphisms if
and only if ` has the (in�nite) Beth property ([2, Thm. 3.17]). For a thorough
account on the Beth property in algebraic logic see [2].
Another work we want to mention in regard to the interplay between dominions

and the Beth de�nability property is [4]. In this article the author introduces
a family of interpolation properties for a quasivariety Q, in analogy with the
Projective Beth Property of propositional logics (see De�nition 13 below). The
properties de�ned amount to certain p.p. de�nable functions being interpolated
by terms in Q. Budkin establishes equivalences between these properties and
the fact that dominions of certain algebras in Q are trivial.
The paper is organized as follows. In the next section we establish our nota-

tion and present the basic de�nitions. Section 3 contains our characterization
of dominions (Theorem 3), the main result of this article. In Section 4 we show
how well-known characterizations of dominions, e.g., Isbell's Zizag Theorem, can
be restated in terms of primitive positive de�nable functions. In Section 5 we
introduce Budkin's algebraic Beth Properties, and provide a short proof of the
equivalence linking them to dominions. In Section 6 we study the problem of
checking a quasivariety for non-surjective epimorphisms. We prove that under
certain assumptions it su�ces to check in a subclass of the quasivariety. An



DOMINIONS AND PRIMITIVE POSITIVE FUNCTIONS 3

interesting application of these results is that if F is a �nite set of �nite al-
gebras with a common near-unanimity term, then it is decidable whether the
quasivariety generated by F has surjective epimorphisms (see Corollary 20).

�2. Preliminaries and Notation. Let L be a �rst order language and K a
class of L-structures. We write I,S,H,P and Pu to denote the class operators for
isomorphisms, substructures, homomorphic images, products and ultraproducts,
respectively. We write V(K) for the variety generated by K, that is HSP(K); and
with Q(K) we denote the quasivariety generated by K, i.e., ISPPu(K). If A is
a structure and S ⊆ A, let 〈S〉A denote the substructure of A generated by S.
We usually abbreviate a sequence a1, . . . , an as ā, whenever the length of the
sequence is understood or is not relevant. We write ā ∈ A to indicate that each
member of the sequence is in A.

Definition 1 ([13, 3]1). LetA ≤ B be structures, and K a class of structures.

• We say that A dominates an element b ∈ B relative to K if for all C ∈ K
and all homomorphisms g, g′ : B → C such that g|A = g′|A, we have
gb = g′b.

• The dominion of A in B relative to K is the set

domKBA := {b ∈ B | A dominates b relative to K}.

Observe that if A dominates b relative to K, then A dominates b relative to
the classes I(K), S(K) and P(K). Thus, if K is closed under ultraproducts and
A dominates b relative to K, then A dominates b relative to Q(K).

�3. Main Theorem. Recall that a primitive positive (p.p. for brevity) for-
mula is one of the form ∃ȳ α(x̄, ȳ) with α(x̄, ȳ) a �nite conjunction of atomic
formulas. We shall need the following fact.

Lemma 2. ([10, Thm. 6.5.7]) Let A,B be L-structures. The following are
equivalent:

1. Every primitive positive L-sentence that holds in A holds in B.
2. There is a homomorphism from A into an ultrapower of B.

LetK be a class of L-structures. We say that the L-formula ϕ(x1, . . . xn, y1, . . . , ym)
de�nes a function in K if

K � ∀x̄, ȳ, z̄ ϕ (x̄, ȳ) ∧ ϕ (x̄, z̄)→
m∧
j=1

yj = zj .

In that case, for each A ∈ K we write [ϕ]A to denote the n-ary partial func-
tion de�ned by ϕ in A. The reader should be aware that throughout this note
de�nable functions are partial functions unless otherwise stated.
If X is a set disjoint with L, we write LX to denote the language obtained by

adding the elements in X as new constant symbols to L. If B is an L-structure
and A is a subset of B, let BA be the expansion of B to LA where each new
constant names itself. If L ⊆ L+ and A is an L+-model, let A|L denote the
reduct of A to L.
Next we present the main result of this article.
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Theorem 3. Let L be a �rst order language and K a class of L-models closed
under ultraproducts. Let A ≤ B be L-structures and b ∈ B. The following are
equivalent:

1. b ∈ domKBA.
2. There are a primitive positive formula ϕ (x̄, y) and ā ∈ A such that:

(a) ϕ (x̄, y) de�nes a function in K
(b) [ϕ]B(ā) = b.

Proof. (1)⇒(2). We can assume that K is axiomatizable (replacing K by

IS(K) if necessary). Suppose b ∈ domKBA. De�ne

Σ (x) := {ϕ (x) | ϕ (x) is a p.p. formula of LA and BA � ϕ (b)},
Let c, d be two new constant symbols and take

K∗ := {M |M is a LA ∪ {c, d}-model and M|L ∈ K}.
Let C be a model of K∗ such that C � Σ(c) ∪ Σ(d). By Lemma 2, there are
elementary extensions E,E′ of C and homomorphisms

h : BA → E|LA

h′ : BA → E′|LA

such that h(b) = cC and h′(b) = dC. The elementary amalgamation theorem
[10, Thm. 6.4.1] provides us with a model D and elementary embeddings g :
E→ D, g′ : E′ → D such that g and g′ agree on C. Next, observe that

gh : B→ D|L
g′h′ : B→ D|L

are homomorphisms that agree on A, and since D|L ∈ K we must have

gh(b) = g′h′(b).

That is g(cC) = g′(dC). So, as g is 1-1, and g and g′ are the same on C we have
cC = dC.
Thus we have shown

K∗ �
∧

(Σ (c) ∪ Σ (d))→ c = d.

By compactness (and using that the conjunction of p.p. formulas is equivalent
to a p.p. formula), there is single p.p. L-formula ϕ (x̄, y) such that

K∗ � ϕ(ā, c) ∧ ϕ(ā, d)→ c = d,

and hence

K � ∀x̄, y, z ϕ(x̄, z) ∧ ϕ(x̄, z)→ y = z.

This completes the proof of (1)⇒(2).
(2)⇒(1). Suppose (2) holds. Let C ∈ K and h, h′ : B → C homomorphisms

agreeing on A. Since B � ϕ(ā, b), and p.p. formulas are preserved under homo-
morphisms, we have

C � ϕ(hā, hb) ∧ ϕ(h′ā, h′b).

Now, ϕ (x̄, y) de�nes a function in K, so hā = h′ā implies hb = h′b. a
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As an immediate application of Theorem 3 we obtain a bound on the size of
dominions.

Corollary 4. Let K be a class of L-structures closed under ultraproducts.
For any pair of L-structures A ≤ B we have

|domKBA| ≤ |A|+ |L|+ ℵ0.

Assume K is closed under isomorphisms. A structure A ∈ K is algebraically
closed in K if for every B ∈ K such that A ≤ B, every p.p. formula ϕ (x̄) and
all ā ∈ A we have

B � ϕ (ā) =⇒ A � ϕ (ā) .

Replacing primitive positive by existential we obtain the de�nition of existentially
closed. Here is another direct consequence of Theorem 3.

Corollary 5. If A is algebraically closed in K, then domKBA = A for every
B ∈ K such that A ≤ B.

It is worth noting that (2)⇒(1) in Theorem 3 always holds, i.e., it does not
require K to be closed under ultraproducts. On the other hand, as the upcom-
ing example shows, the implication (1)⇒(2) may fail if K is not closed under
ultraproducts.

Example 6. Let L = {s, 0} where s is a binary function symbol and 0 a
constant. Let B be the L-structure with universe ω ∪ {ω} such that 0B = 0 and

sB(a, b) =

{
0 if b = a+ 1,

1 otherwise,

and set K := I(B). Take A as the submodel of B with universe ω. It is easy
to see that the identity is the only endomorphism of B. Thus, in particular,

we have that dom
{B}
B A = B. We prove next that there is no p.p. formula with

parameters from A de�ning the element ω in B. Take L+ := LB ∪ {ω′}, where
ω′ is a new constant, and let Γ be the L+-theory obtained by adding to the
elementary diagram of B the following sentences:

{s(n, ω′) = 1 | n ∈ ω} ∪ {s(ω′, n) = 1 | n ∈ ω} ∪ {ω 6= ω′}.

It is a routine task to show that Γ is consistent. Fix a model C of Γ and de�ne
h, h′ : B→ C by h(n) = h′(n) = nC for all n ∈ ω, h(ω) = ωC and h′(ω) = ω′C.
Again, it is easy to see that h and h′ are homomorphisms from B to C|L. Since
they agree on A and h(ω) 6= h′(ω), we conclude that there is no p.p. formula
with parameters from A de�ning ω in B.

For some well-known classes K, it turns out that given any pair of structures
A ≤ B, the domain of A in B relative to K is generated by functions which
are de�nable by conjunctions of atomic formulas (rather than by p.p. formulas).
This is the case, for instance, when K is the class of distributive lattices (see
Section 4.1 below). It is thus natural to ask whether Theorem 3 still holds if the
formula in (2) is a conjunction of atomic formulas instead of p.p.. Consider the
following condition.
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(3) There is a �nite conjunction of atomic formulas α(x̄, ȳ), and there are ele-
ments a1, . . . , an ∈ A and b2, . . . , bm ∈ B, with m ≥ 1, such that
(a) α(x̄, ȳ) de�nes a function in K
(b) [α]B(ā) = (b, b2, . . . , bm).

It is easily seen that (3) implies (2) of Theorem 3. Our next example shows that
(2) does not necessarily imply (3). Hence, we conclude that the statement of
Theorem 3 cannot be improved in regard to the kind of formulas involved.

Example 7. Let B be the Browerian algebra whose lattice reduct is depicted
in Figure 3.1, and let A be the subalgebra of B with universe {a0, a1, . . . }∪{>}.
It is proved in [1, Thm. 6.1] that dom

V(B)
B A = B. Fix d1 ∈ B \ A, and suppose

there are a conjunction of equations α(x1, . . . , xn, y1, . . . , ym), c1, . . . , cn ∈ A and
d2, . . . , dm ∈ B such that

• α(x̄, ȳ) de�nes a function in V(B)
• B � α(c̄, d̄).

Let C and D be the subalgebras of B generated by c̄ and c̄, d̄ respectively. Note
that D is �nite and C < D. Also note that α(x̄, ȳ) de�nes a function in V(D),

and D � α(c̄, d̄), because α is quanti�er-free. So we have dom
V(D)
D C = D; but

this is not possible, as Corollary 5.5 in [1] says that epimorphisms are surjective
in �nitely generated varieties of Browerian algebras.

b

b

b b

b

b b

b

b b

b

...

a0

a1

a2

Figure 3.1

�4. Generating Sets. Theorem 3 suggests that a way to characterize do-
minions in a given class K is to �nd a concise set of p.p. formulas that su�ces to
generate dominions in K. This motivates the following de�nition. We say that
a set Γ of formulas generates dominions in K provided that each formula in Γ
de�nes a function in K, and for each A ≤ B from K we have

domKBA = 〈A〉〈B,[ϕ]B〉ϕ∈Γ .
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That is, domKBA is the smallest subset of B including A, closed under the funda-
mental operations of B and closed under the functions de�ned in B by formulas
from Γ.
Below we take a look at two classes whose dominions are well understood, and

recast their characterization results in terms of generating sets.

4.1. Distributive lattices. Let D be the variety of distributive lattices, and
let B in D. Given elements a ≤ b ≤ c in B, recall that a relative complement
of b in the interval [a, c] is an element d ∈ B such that b ∧ d = a and b ∨ d = c.
It is well known that in a distributive lattice every element has at most one
complement in each interval it belongs to. A subset A of B is said to be closed
under relative complementation provided that for any a ≤ b ≤ c in A, if d ∈ B
is the relative complement of b in the interval [a, c], then d ∈ A. Dominions in
D are characterized by the following.

Theorem 8 ([19, Thm 2.4]). Let A ≤ B be distributive lattices. Then domDBA
is the smallest sublattice of B that contains A and is closed under relative com-
plementation.

De�ne

ϕrc(x1, x2, x3, y) := (x2 ∧ y = x1) & (x2 ∨ y = x3).

Note that for B in D and a, b, c, d ∈ B we have B � ϕrc(a, b, c, d) i� a ≤ b ≤ c
and d is the relative complement of b in the interval [a, c]. The fact that relative
complements are unique in distributive lattices ensures that ϕrc de�nes a function
in D. Thus we have:

Corollary 9. The set {ϕrc} generates dominions in D.

4.2. Semigroups. Let S denote the variety of semigroups. One of the most
in�uential results on dominions is the following.

Theorem 10 (Isbell's Zigzag Theorem [13, Thm 2.3]). Let A ≤ B be semi-

groups, and let b ∈ B. Then, b ∈ domSBA i� there are an integer m ≥ 1,
a0, . . . , a2m ∈ A and b1, . . . , bm, c1, . . . , cm ∈ B such that the following equalities
hold:

b = a0c1

b = bma2m

a0 = b1a1

a2i−1ci = a2ici+1 for 1 ≤ i ≤ m− 1

bia2i = bi+1a2i+1 for 1 ≤ i ≤ m− 1

a2m−1cm = a2m.

This theorem has received quite some attention in the literature (see e.g. [9,
11, 12, 15, 16, 17]). We shall restate it as result on generating sets. For each
integer m ≥ 1 let αm(x0, . . . , x2m, y, z1, . . . , zm, w1, . . . , wm) be the conjunction
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of the following atomic formulas

y = x0w1

y = zmx2m

x0 = z1x1

x2i−1wi = x2iwi+1 for 1 ≤ i ≤ m− 1

zix2i = zi+1x2i+1 for 1 ≤ i ≤ m− 1

x2m−1wm = x2m.

Now de�ne

ζm(x0, . . . , x2m, y) := ∃z̄w̄ αm(x̄, y, z̄, w̄).

Lemma 11. For each integer m ≥ 1 the formula ζm(x0, . . . , x2m, y) de�nes a
function in S.

Proof. Let A ∈ S and suppose there are ā, b, b′ ∈ A such that A � ζm(ā, b)∧
ζm(ā, b′); we prove that b = b′. There are b̄, c̄, b̄′, c̄′ ∈ A such that A �
αm(ā, b, b̄, c̄) ∧ αm(ā, b′, b̄′, c̄′). So we have

b = a0c1

= b′1a1c1

= b′1a2c2

= b′2a3c2

...

= b′ma2m−1cm

= b′ma2m

= b′.

a

Corollary 12. The set {ζm | m ≥ 1} generates dominions in S.

�5. Dominions and Projective Beth Properties. In the article [4] A.
Budkin de�nes a family of interpolation properties for a quasivariety Q, in anal-
ogy with the Projective Beth Property of propositional logics. The properties
introduced amount to certain p.p. de�nable functions being interpolated by terms
in Q. The main point of [4] is to establish equivalences between the interpolation
properties and the fact that dominions of certain algebras in Q are trivial. In
this section we show how these equivalences are obtained as direct applications
of Theorem 3. First we need some de�nitions.

Definition 13 ([4]). Let L be an algebraic language, and let Q be a quasi-
variety of L-algebras. Let x̄ be a possibly in�nite sequence of pairwise distinct
variables, let ∆(x̄) be a set of term-equalities in x̄, and let n ≥ 1 be an integer.

• Q has the projective property PBPn(∆) if for every set of atomic formulas
Γ(x̄, q1, . . . , qn, y) and every term f(x̄, q̄) such that
(i) Q � ∆(x̄) ∪ Γ(x̄, q1, . . . , qn, y) ∪ Γ(x̄, q′1, . . . , q

′
n, z)→ y = z
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(ii) Q � ∆(x̄) ∪ Γ(x̄, q̄, y)→ y = f(x̄, q̄),

there is an L-term t(x̄) satisfying

Q � ∆(x̄) ∪ Γ(x̄, q̄, y)→ y = t(x̄).

• A ∈ Q is n-closed in Q provided that for all B ∈ Q such that A ≤ B and
B = 〈A ∪ {b1, . . . , bn}〉 for some b1, . . . , bn ∈ B, we have domQBA = A.

• A ∈ Q is Hn-closed in Q if every homomorphic image of A in Q is n-closed
in Q.

Let FQ(x̄) be the Q-free algebra, freely generated by x̄. We write FQ(x̄)/∆(x̄)
to denote the quotient of FQ(x̄) by the Q-congruence generated by {(t, s) | t =
s ∈ ∆(x̄)}.

Theorem 14 ([4, Thm. 3]). A quasivariety Q has the projective property PBPn(∆)
if and only if FQ(x̄)/∆(x̄) is Hn-closed in Q.

Proof. For the right-to-left direction see [4, Thm. 3]. Suppose Q has the
PBPn(∆). Let A ≤ B = 〈A ∪ {b1, . . . , bn}〉 ∈ Q with A a homomorphic

image of FQ(x̄)/∆(x̄), and take b ∈ domQBA. We prove that b ∈ A. Let ā ∈
A such that ā generates A and A � ∆(ā). By Theorem 3 there are a p.p.

formula ϕ(v̄, y) = ∃w1 . . . wm

∧l
i=1 γi(v1, . . . , vk, w̄, y) de�ning a function in Q,

and terms t1(x̄), . . . , tk(x̄) such that [ϕ]B(tA1 (ā), . . . , tAk (ā)) = b. Take terms
s1(x̄, q̄), . . . , sm(x̄, q̄), f(x̄, q̄) such that

B �
l∧

i=1

γi(t1(ā), . . . , tk(ā), s1(ā, b̄), . . . , sm(ā, b̄), f(ā, b̄)),

where b̄ is b1, . . . , bn. Now de�ne Γ(x̄, q1, . . . , qn, y) as the set

{γi(t1(x̄), . . . , tk(x̄), s1(x̄, q̄), . . . , sm(x̄, q̄), y) | i ∈ {1, . . . , l}} ∪ {y = f(x̄, q̄)},

and note that (i) and (ii) of De�nition 13 hold for Γ(x̄, q1, . . . , qn, y) and f(x̄, q̄).
So, there is a term t(x̄) such that Q � ∆(x̄) ∪ Γ(x̄, q̄, y) → y = t(x̄), and hence
b = tB(ā) ∈ A. a
Budkin also de�nes the projective property PBP (∆) where no restriction is posed
on the length of q̄ and the requirement (ii) is dropped. The characterization of
the PBP (∆) in terms of dominions [4, Thm. 2] can be obtained from Theorem
3 with a proof similar to the one above.

�6. Epimorphisms and epic substructures. Let A,B be structures, and
K a class of structures.

• A homomorphism h : A → B is a K-epimorphism if for every C ∈ K and
homomorphisms g, g′ : B→ C, if gh = g′h then g = g′.

It follows at once from the de�nitions that h : A → B is a K-epimorphism i�
domKBh(A) = B.

• A classK has surjective epimorphisms if for allA,B ∈ K everyK-epimorphism
from A to B is surjective.
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As mentioned in Section 1, this property is of special interest to algebraic logic,
since whenever K is the algebraic counterpart of a logic `, then K has surjective
epimorphisms if and only if ` has the the (in�nite) Beth property [2, Thm. 3.17].
When considering whether epimorphisms are surjective in a class K the no-

tion of dominion proves very helpful. This is because it translates a categorical
problem into an algebraic (or model theoretic) problem, and even more so in the
light of Theorem 3. The following de�nition isolates the phenomenon we want
to investigate.

• A is an epic substructure of B with respect to K ifA ≤ B and domKBA = B.
Notation: A ≤Ke B.

We say that A is a proper epic substructure of B with respect to K, and write
A <Ke B, if A ≤Ke B and A 6= B.
The next lemma states the straightforward connection between epic substruc-

tures and epimorphisms.

Lemma 15. Suppose h : A→ B. The following are equivalent:

1. h is a K-epimorphism.
2. The inclusion map ι : h(A)→ B is a K-epimorphism.
3. h(A) ≤Ke B.

Here are some easy facts used in the sequel.

Lemma 16. Let A,B,C ∈ K.
1. A ≤Ke B if and only if A ≤ISP(K)

e B.
2. If A ≤Ke B and h : B→ C, then h(A) ≤Ke h(B).
3. Let Q be a quasivariety. The following are equivalent:

(a) Q has surjective epimorphisms.
(b) For all A,B ∈ Q we have that A ≤Qe B implies A = B.

Given a quasivariety Q it is in a general a di�cult problem to determine
whether Q has surjective epimorphisms, or equivalently, no proper epic sub-
structures. Below we prove two results that, under certain assumptions on Q,
provide a (hopefully) more manageable class C ⊆ Q such that Q has surjective
epimorphisms i� C has surjective epimorphisms.
Our �rst result provides such a class C for quasivarieties with a near-unanimity

term. The second one for arithmetical varieties whose class of �nitely subdirectly
irreducible members is universal.
For the remainder of this section all languages considered are algebraic, i.e.,

without relation symbols. We frequently use the name algebra for a structure of
an algebraic language.

6.1. Quasivarieties with a near-unanimity term. A k-ary term t(x1, . . . , xk)
is a near-unanimity term for the class K if k ≥ 3 and K satis�es the identities

t(x, . . . , x, y) = t(x, . . . , x, y, x) = · · · = t(y, x, . . . , x) = x.

When k = 3 the term t is called a majority term for K. In every structure with
a lattice reduct the term (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) is a majority term. This
example is specially relevant since many classes of structures arising from logic
have lattice reducts.
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For functions fi : Xi → Yi with i ∈ {1, . . . , k} let (f1, . . . , fk) : X1×· · ·×Xk →
Y1 × · · · × Yk be de�ned by (f1, . . . , fk)(a1, . . . , ak) := (f1(a1), . . . , fk(ak)).

Theorem 17 ([18]). Let K be a class of structures with an k-ary near-unanimity
term and suppose the �rst-order formula ϕ(x̄, y) de�nes a function in K. The
following are equivalent:

1. There is a term t(x̄) such that K � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).
2. For all A1, . . . ,Ak ∈ Pu(K), all S ≤ A1 × · · · ×Ak and all s1, . . . , sn ∈ S

such that ([ϕ]A1 , . . . , [ϕ]Ak)(s̄) is de�ned, we have that ([ϕ]A1 , . . . , [ϕ]Ak)(s̄)
is in S.

An algebra A in the quasivariety Q is relatively subdirectly irreducible pro-
vided its diagonal congruence is completely meet irreducible in the lattice of
Q-congruences of A. We write QRSI to denote the class of relatively subdirectly
irreducible members of Q. For a class K and a positive integer k let

Pk(K) := {A1 × · · · ×Ak | A1, . . . ,Ak ∈ K}.

Theorem 18. Let Q be a quasivariety with a k-ary near-unanimity term and
letM = Pu(QRSI). The following are equivalent:

1. Q has surjective epimorphisms.
2. For all A,B ∈ Q we have that A ≤Qe B implies A = B.

3. For all A,B ∈ SPk(M) we have that A ≤Pk(M)
e B implies A = B.

4. SPk(M) has surjective epimorphisms.

Proof. The equivalences (1)⇔(2) and (3)⇔(4) are immediate, and (2) clearly
implies (3). We prove (3)⇒(2). Suppose A ≤Qe B and let b ∈ B. We shall see
that b ∈ A. By Theorem 3 there is a p.p. L-formula ϕ(x̄, y) de�ning a function
in Q, and such that [ϕ]B(ā) = b for some ā ∈ An. Let

Σ := {ε | ε is a p.p. formula of LA and BA � ε},

and de�ne

K := {C ∈Mod(Σ) | C|L ∈M}.

Let ψ(y) := ϕ(ā, y), and note that ψ(y) de�nes a nullary function in K. Note
as well that ∃y ψ(y) ∈ Σ, and hence [ψ]C is de�ned for every C ∈ K . We aim
to apply Theorem 17 to K and ψ(y). To this end �x C1, . . . ,Ck ∈ Pu(K) = K
and let S ≤ C1 × · · · × Ck. Note that as Σ is a set of p.p. formulas we have
C1×· · ·×Ck � Σ, and thus by Lemma 2 there is an ultrapower E of C1×· · ·×Ck

and a homomorphism h : BA → E. We have that E ∈ PuPk(K) ⊆ PkPu(K) =
Pk(K), and so

E|L ∈ Pk(K|L) ⊆ Pk(M).

Next observe that since h(A) ≤Qe h(B), and h(A), h(B) ≤ E|L, by (3) it follows
that h(A) = h(B). Also, as S is an LA-subalgebra of E, we have that

h(BA) = h(AA) ≤ S.

The fact that B � ψ(b), implies E � ψ(hb), and so [ψ]E = hb ∈ S. We know
that {C1, . . . ,Ck,C1×· · ·×Ck} � ∃y ψ(y); furthermore, since ψ is p.p., we have
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([ψ]C1 , . . . , [ψ]Ck) = [ψ]C1×···×Ck . Putting all this together

([ψ]C1 , . . . , [ψ]Ck) = [ψ]C1×···×Ck = [ψ]E ∈ S.

Thus, Theorem 17 produces an LA-term t such that

K � ∀y ψ(y)→ y = t.(6.1)

In particular, for all C ∈ QRSI and all c1, . . . , cn ∈ C such that [ϕ]C(c̄) is de�ned,
we have

[ϕ]C(c̄) = tC(c̄).

Next let {Bi | i ∈ I} ⊆ QRSI such that B ≤
∏

I Bi is a subdirect product. For

every i ∈ I let BA
i be the expansion of Bi to LA given by aB

A
i = πi(a), where

πi : B→ Bi is the projection map. It is clear that

BA ≤
∏
I

BA
i .(6.2)

Now, each BA
i is a homomorphic image of BA, so BA

i � Σ and thus BA
i ∈ K for

all i ∈ I. Since ∀y ψ(y) → y = t is (equivalent to) a quasi-identity, from (6.1)
and (6.2) we have

BA � ∀y ψ(y)→ y = t.

Hence b = tBA ∈ A, and the proof is �nished. a
Observe that Theorem 18 holds for anyM⊆ Q closed under ultraproducts and
containing QRSI.

Corollary 19. Let Q be a �nitely generated quasivariety with k-ary near-
unanimity term. The following are equivalent:

1. Q has surjective epimorphisms.
2. SPk(QRSI) has surjective epimorphisms.

Proof. For any class K we have Q(K)RSI ⊆ ISPu(K). Thus if Q is �nitely
generated, then QRSI is (up to isomorphic copies) a �nite set of �nite algebras,
and the corollary follows at once from Theorem 18. a
Recall that an algebra A is �nitely subdirectly irreducible if its diagonal congru-
ence is meet irreducible in the congruence lattice ofA. It is subdirectly irreducible
if the diagonal is completely meet irreducible. For a variety V we write (VFSI)
VSI to denote its class of (�nitely) subdirectly irreducible members.
The following is an interesting consequence of Corollary 19.

Corollary 20. Suppose L is a �nite algebraic language. Let F be a �nite set
of �nite L-algebras with a common k-ary near-unanimity term. It is decidable
whether the (quasi)variety generated by F has surjective epimorphisms.

Proof. Let V be the variety generated by F . By Jónsson's lemma [14] VSI ⊆
HSPu(F) = HS(F) is a �nite set of �nite structures, and by Corollary 19 it
su�ces to decide whether SPk(VSI) has surjective epimorphisms, and this is
clearly a decidable problem. If Q is the quasivariety generated by F , then
QRSI ⊆ ISPu(F) = IS(F), and the same reasoning applies. a
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6.2. Arithmetical varieties whose FSI members form a universal

class. A variety V is arithmetical if for every A ∈ V the congruence lattice
of A is distributive and the join of any two congruences is their composition.
For example, the variety of boolean algebras is arithmetical.

Lemma 21. Let V be an arithmetical variety such that VFSI is a universal class,
and let ϕ(x̄, y) be a p.p. formula de�ning a function in V. Suppose that for all
A ∈ VFSI, all S ≤ A and all s1, . . . , sn ∈ S such that A � ∃y ϕ(s̄, y), we have
S � ∃y ϕ(s̄, y). Then there is a term t(x̄) such that V � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).

Proof. Add new constants c1, . . . , cn to the language of V and let K :=
{(A, ā) | A � ∃y ϕ(c̄, y) and A ∈ VFSI}. Note that ψ(y) := ϕ(c̄, y) de�nes a
nullary function in K, and this function is de�ned for every member of K. Also
note that by our assumptions K is a universal class. Using Jónsson's lemma
[14] it is not hard to show that V(K)FSI = K. Since K|L is contained in an
arithmetical variety it has a Pixley Term [5, Thm. 12.5], which also serves as a
Pixley Term for K, and thus V(K) is arithmetical. Next we show that ψ(y) is
equivalent to a positive open formula in K. By [6, Thm. 3.1] it su�ces to show
that

• For all A,B ∈ K, all S ≤ A, all h : S → B and every a ∈ A we have that
A � ψ(a) implies B � ψ(ha).

So suppose A � ψ(a). From our hypothesis and the fact that ψ(y) de�nes a
function we have S � ψ(a), and as ψ(y) is p.p. we obtain B � ψ(ha). Hence
there is a positive open formula β(y) equivalent to ψ(y) in K. Now, [7, Thm.
2.3] implies that there is a conjunction of equations α(y) equivalent to β(y) (and
thus to ψ(y)) in K. We have K � ∃!y α(y), and by [6, Lemma 7.8] there is an
L ∪ {c1, . . . , cn}-term t′ such that V(K) � α(t′). Let t(x1, . . . , xn) be an L-term
such that t′ = t(c̄). So, if Γ is a set of axioms for VFSI, we have

Γ ∪ {∃y ϕ(c̄, y)} � ϕ(c̄, t(c̄)),

and this implies

Γ � ∃y ϕ(c̄, y)→ ϕ(c̄, t(c̄)),

or equivalently

VFSI � ∀y(ϕ(c̄, y)→ ϕ(c̄, t(c̄))).

This and the fact that ϕ(x̄, y) de�nes a function in V yields

VFSI � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).

To conclude, note that ∀x̄, y ϕ(x̄, y) → y = t(x̄) is logically equivalent to a
quasi-identity, and since it holds in VFSI it must hold in V. a

Theorem 22. Let V be an arithmetical variety such that VFSI is a universal
class. The following are equivalent:

1. V has surjective epimorphisms.
2. For all A,B ∈ V we have that A ≤Ve B implies A = B.
3. For all A,B ∈ VFSI we have that A ≤VFSI

e B implies A = B.
4. VFSI has surjective epimorphisms.
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Proof. We prove (3)⇒(2) which is the only nontrivial implication. Fix
A,B ∈ VFSI such that A ≤VFSI

e B and let b ∈ B. We shall see that b ∈ A.
By Theorem 3 there is a p.p. L-formula ϕ (x̄, y) de�ning a function in V, and
such that [ϕ]B(ā) = b for some ā ∈ An. Let

Σ := {ε | ε is a p.p. sentence of LA and BA � ε},
and de�ne

K := {C | C � Σ and C|L ∈ VFSI}.

Claim. K is a universal class.

Since K is axiomatizable we only need to check that K is closed under sub-
structures. Let C ≤ D ∈ K; clearly C|L ∈ VFSI, so it remains to see that C � Σ.
As D � Σ, Lemma 2 yields a homomorphism h : BA → E with E an ultrapower
of D. Note that E ∈ K. Since h(A) ≤Ve h(B) and h(A), h(B) ∈ VFSI, it follows
that h(A) = h(B), because there are no proper epic subalgebras in VFSI. Now
C is an LA-subalgebra of D, so h(B) = h(A) ⊆ C. Finally, since h(B) � Σ and
every sentence in Σ is existential, we obtain C � Σ. This �nishes the proof of
the claim.

Claim. V(K) is arithmetical and V(K)FSI = K.

To show that V(K) is arithmetical we can proceed as in the proof of Lemma
21. We prove V(K)FSI = K. Note that for C ∈ K we have that C and C|L have
the same congruences; hence every algebra in K is FSI. For the other inclusion,
Jónsson's lemma [14] produces V(K)FSI ⊆ HSPu(K), and by the �rst claim
HSPu(K) = H(K). So, as H(K) � Σ, we have that V(K)FSI � Σ and thus
V(K)FSI ⊆ K.
Next we want to apply Lemma 21 to V(K) and ϕ(ā, y), so we need to check

that the hypothesis holds. Take C ∈ K and S ≤ C. Since K is universal we have
S ∈ K, and thus S � ∃y ϕ(ā, y). Let t be a term such that V(K) � ∀y ϕ(ā, y)→
y = t. Then b = tBA ∈ A, and we are done. a
Every discriminator variety (see [5, Def. 9.3] for the de�nition) satis�es the
hypothesis in Theorem 22. Furthermore, in such a variety every FSI member
is simple (i.e., has exactly two congruences). Writing VS for the class of simple
members in V we have the following immediate consequence of Theorem 22.

Corollary 23. For a discriminator variety V the following are equivalent.

1. V has surjective epimorphisms.
2. For all A,B ∈ V we have that A ≤Ve B implies A = B.
3. For all A,B ∈ VS we have that A ≤VS

e B implies A = B.
4. VS has surjective epimorphisms.

It is not uncommon for a variety arising as the algebrization of a logic to be a
discriminator variety; thus the above corollary could prove helpful in establishing
the Beth de�nability property for such a logic.
Another special case relevant to algebraic logic to which Theorem 22 applies

is given by the class of Heyting algebras and its subvarieties (none of these
are discriminator varieties with the exception of the class of boolean algebras).
Heyting algebras constitute the algebraic counterpart to intuitionistic logic, and
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have proven to be a fertile ground to investigate de�nability and interpolation
properties of intuitionistic logic and its axiomatic extensions by algebraic means
(see [1] and its references).

I would like to thank Diego Castaño and Tommaso Moraschini for their in-
sightful discussions during the preparation of this paper. I would also like to
thank the anonymous referee for introducing me to the concept of dominions.
She/he pointing out that the main theorem of my original submission could be
restated as a characterization of dominions (instead of a characterization of epic
substructures) provided a signi�cant improvement to the scope of this article.
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